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Abstract. We consider resource allocation games with heterogeneous users
and identical resources. Most of the previous work considered cost struc-
tures with either negative or positive congestion effects. We study a cost
structure that encompasses both the resource’s load and the job’s share in
the resource’s activation cost.
We consider the proportional sharing rule, where the resource’s activation
cost is shared among its users proportionally to their lengths. We also
challenge the assumption regarding the existence of a fixed set of resources,
and consider settings with an unlimited supply of resources.
We provide results with respect to equilibrium existence, computation,
convergence and quality. We show that if the resource’s activation cost
is shared equally among its users, a pure Nash equilibrium (NE) might
not exist. In contrast, under the proportional sharing rule, a pure NE
always exists, and can be computed in polynomial time. Yet, starting at
an arbitrary profile of actions, best-response dynamics might not converge
to a NE. Finally, we prove that the price of anarchy is unbounded and the
price of stability is between 18/17 and 5/4.

1 Introduction

In resource allocation applications, tasks are assigned to resources to be performed.
For example, in job scheduling models, jobs are assigned to servers to be processed,
and in network routing models, traffic is assigned to network links to be routed.
In the last decade, algorithmic game theory has introduced game theoretic con-
siderations to many of these problems [17, 13, 21, 3, 2]. At the heart of the game
theoretic view is the assumption that the players have strategic considerations
and act to minimize their own cost, rather than optimizing the global objective.
In resource allocation settings, this would mean that the jobs choose a resource
instead of being assigned to one by a central designer.

The literature is divided into two main approaches with respect to the cost
function. The first class of models emphasizes the negative congestion effect, and
assumes that the cost of a resource is some non-decreasing function of its load. Job
scheduling [11, 23] and selfish routing [10, 21] belong to this class of models. The
second class assumes that each resource has some activation cost, which should be
covered by its users, thus a user wishes to share its resource with additional users
in attempt to decrease its share in the activation cost. Roughly speaking, the cost



of using a resource in this class is some decreasing function of its load. Positive
congestion effects have been considered in network design games [8, 5, 2].

We claim that in practice both the positive and the negative congestion effect
take place. On the one hand, a heavy-loaded resource might be less preferred
due to negative congestion effects; on the other hand, resources do have some
activation cost, and sharing this cost with other users releases the burden on
a single user. Our goal is to combine these two components into a unified cost
function. Consequently, the cost function in our model is composed of (i) the load
on its resource, and (ii) its share in the activation cost of its chosen resource.

An additional assumption we wish to challenge is the existence of an a priori
given set of resources. In many practical settings a set of users controlling some
jobs have the opportunity to utilize a new resource at their own cost. For example,
a user might be able to purchase a dedicated server for his job if he is willing to
cover its cost. Consequently, we consider settings in which the number of resources
is unlimited a priori. (Obviously, the number of resources will never exceed the
number of users.)

In our model, each resource is associated with some fixed activation cost, which
should be jointly incurred by the set of jobs using it. A crucial question in this
setting is how to divide the resource cost among its users. Sharing of joint costs
among heterogeneous players is a common problem, and a large number of sharing
rules have been proposed for this problem, each associated with different efficiency
and fairness properties [15, 16, 12]. Here, our focus is not on the mechanism de-
sign point of view. Rather, we analyze two specific sharing rules with respect to
equilibrium existence, computation, convergence and quality. The first rule is the
uniform sharing rule, under which the resource’s cost is shared evenly among its
users. The second rule is the proportional sharing rule, under which the resource’s
cost is shared among its users in proportion to their sizes. Note that under both
sharing rules, for a sufficiently small activation cost, the unique NE will be one
in which each job is processed by a different resource. In the other extreme, for
a sufficiently large activation cost (in a sense that will be formalized below), the
unique NE will be one in which all the jobs will be assigned to a single resource.

1.1 Our Results

Equilibrium existence: Our game in its general form does not comply with the
family of potential games (or congestion games), which always admit a NE in pure
strategies [19, 14]. Thus we need to pursue new techniques for proving equilibrium
existence. In particular, as we show, the cost sharing method strongly affects the
equilibrium existence. Specifically, in the uniform sharing model a pure NE might
not exist, while in the proportional sharing model a pure NE always exists. This
motivates the use of this sharing model in our study of the remaining aspects.

Computational complexity: Under a job scheduling model with a fixed
number of machines and where a user’s cost is the load of its chosen machine, the
longest processing time (LPT) algorithm always results in a NE [10]. Here, we
devise an algorithm that computes a NE for our setting in polynomial time. The
main challenge of the algorithm is to determine the number of active machines.

Convergence to equilibrium: Even if a NE exists, it is not necessarily the
case that natural dynamics (like best-response dynamics (BRD), where each job,



in turn, performs a best-response to the current profile) always lead to a NE. Yet,
in potential games [14], BRD is guaranteed to converge to a NE. BRD is known
to converge to a NE both in resource allocation games that ignore the negative
congestion effects and in those ignoring the activation costs [6]. However, as we
show, this is not the case in our unified model, that is, BRD might not converge
to a NE. Yet, if all the jobs are of equal size, the game is a congestion game (as
in [2]), and convergence of BRD is guaranteed.

Equilibrium quality: A NE may not be socially optimal. In order to quantify
the inefficiency we define an objective function, and compare its value under the
optimal solution and its value under some NE.

We quantify the inefficiency according to well-established measurements, namely
the price of anarchy (PoA) [13, 18] and the price of stability (PoS) [2]. The PoA is
defined as the ratio between the cost of the worst NE and the cost of the optimal
solution, while the PoS is defined as the ratio between the cost of the best NE and
the cost of the optimal solution. These metrics have been studied in a variety of
applications, such as selfish routing [20], job scheduling [13, 4], network formation
[7, 1, 2], facility location [22] and more. The objective function we consider is the
egalitarian one, i.e., we wish to minimize the cost of the job that incurs the highest
cost. We show that the PoA is not bounded. For the PoS we give an upper bound
of 5/4 and a lower bound of 18/17.

All missing proofs are given in the full version of this paper [9].

2 Model and Preliminaries

An instance of our game, G = 〈I, B〉, consists of a set of n jobs, each asso-
ciated with length pj (processing time, bandwidth requirement, etc.). Let I =
{p1, . . . , pn} denote the job lengths. Also given is a set of identical resources
M = {M1,M2, . . .} (machines, links, etc.), each associated with an activation
cost B. If the set of machines is limited, we denote m = |M |. While our model is
general, we use terminology of job scheduling for simplicity of presentation.

The action space Sj of player j is defined as all the individual resources, i.e.,
Sj = M . The joint action space is S = ×n

j=1Sj . In a joint action s ∈ S, player j
selects machine sj as its action. We denote by Rs

i the set of players on machine
Mi in the joint action s ∈ S, i.e., Rs

i = {j : sj = Mi}. The load of Mi in s,
denoted by Li(s), is the sum of the weights of the players that chose machine Mi.
In particular, a player can chose to be on a dedicated machine (i.e., assigned to a
machine with no additional jobs). In this case, Li(s) = pj .

The cost function of player j, denoted by cj , maps a joint action s ∈ S to
a real number, and is composed of two components; one depends on the total
load on the chosen resource, and the other is its share in the resource’s activation
cost. Formally, the cost of player j under a joint action s in which sj = Mi is
cj(s) = f(Li(s), bj(s)), where Li(s) =

∑
j∈Rs

i
pj is the total load of players served

by Mi, and bj(s) is j′s share in the cost B. The function f is increasing in both
Li(s) and bj(s). In this paper, we assume that cj(s) = Li(s) + bj(s).

The resource’s activation cost may be shared among its users according to
different sharing rules, two of which we consider in this paper. Under the uniform
sharing rule, all the jobs assigned to a particular resource share its cost equally.
Formally, a job assigned to Mi under joint action s pays bj(s) = B/|Rs

i |. Under the



proportional sharing rule, the jobs assigned to a particular resource share its cost
proportionally to their sizes. Formally, a job assigned to Mi under joint action
s pays bj(s) = pjB

Li(s)
. For example, let G = 〈I = {1, 2}, B = 12〉, and let s be

the schedule in which both jobs are assigned to the same machine. Then, under
uniform sharing c1(s) = c2(s) = 3 + 12/2 = 9, while under proportional sharing,
c1(s) = 3 + 12/3 = 7, c2(s) = 3 + 2 · 12/3 = 11.
Nash Equilibrium (NE): A joint action s ∈ S is a pure Nash Equilibrium if no
player j ∈ N can benefit from unilaterally switching his action.

Let g(s) denote the social cost function under the joint action s. The op-
timal social cost is OPT = mins∈S g(s). We consider the egalitarian objective
function, in which the goal is to minimize the highest cost some player incurs.
Formally, g(s) = maxj cj(s). Let Φ(G) be the set of Nash equilibria of the game
G. If Φ(G) 6= ∅ then the PoA (PoS) is the ratio between the maximal (minimal)
cost of a Nash equilibrium and the social optimum, i.e., maxs∈Φ(G) g(s)/OPT
(mins∈Φ(G) g(s)/OPT ).

2.1 Proportional Sharing Rule - Useful Observations
In this section we present several observations that provide some intuition regard-
ing proportional sharing. These observations will be used repeatedly in the sequel.
The first observation specifies the conditions under which a job prefers to migrate
from one machine to another. Note that in the standard model (where a job’s
cost depends only on the load on its chosen machines), the equivalent condition is
simply Li′(s)+pj > Li(s). In our model, however, a migration might be beneficial
even if it involves an increase of load.

Lemma 1. Consider a schedule s. Suppose j ∈ Rs
i , and let ρ = Li(s)(Li′ (s)+pj)

pj
.

Job j reduces its cost by a migration to machine i′ if and only if Li′(s)+pj > Li(s)
and B > ρ or Li′(s) + pj < Li(s) and B < ρ.

Proof. The cost of job j under schedule s is cj(s) = Li(s) + pjB/Li(s). Let
s′ be the obtained schedule after j’s migration to machine Mi′ . It holds that
cj(s′) = Li′(s) + pj + pjB/(Li′(s) + pj). The assertion follows immediately from
comparing cj(s) and cj(s′).

The following observations provide lower and upper bounds for an agent’s
individual cost.

Observation 1 In any joint action s, for every job j, cj(s) ≥ 2
√

pjB. Addition-
ally, for every j s.t. pj ≥ B, cj(s) ≥ pj + B.

Observation 2 In any NE, s, for every job j, cj(s) ≤ pj + B.

The following observation, whose proof can be easily derived by Lemma 1,
provides some insight into beneficial and non-beneficial migrations of jobs.

Observation 3 (i) A job j of length pj < B which is assigned to a machine with
load smaller than B cannot reduce its cost by migrating to a machine with load
greater than B or to a dedicated machine. (ii) Given an assignment s of jobs of
lengths smaller than B s.t. Li′(s) + pj ≥ Li(s) for every i, i′ and j assigned to
machine Mi, if Li(s) + Li′(s) > B, then no migration is beneficial.



2.2 Longest Processing Time (LPT) Rule
LPT is a well-known scheduling heuristic [11]. The LPT rule sorts the jobs in
a non-increasing order of their lengths and greedily assigns each job to the least
loaded machine. In the traditional load-balancing problem, the LPT rule is known
to produce a NE [10]. However, the stability of an LPT assignment in our setting
is not clear since LPT cares about the machines’ loads solely and does not con-
sider the activation costs. Obviously, under an unlimited supply of resources, LPT
will simply assign each job to a new machine, and the resulting schedule is not
necessarily a NE. A natural generalization of LPT, in which each job is assigned
to a machine minimizing its cost, does not necessarily lead to a NE either, even
with unit-size jobs (consider for example G = 〈I = {1, 1, 1, 1}, B = 4− ε〉). In this
paper we use a variant of LPT (see Sections 3 and 4). The next lemma provides
an important non-trivial property of the LPT algorithm, to be used in the sequel.

Lemma 2. Let I be a set of jobs s.t. pj < C for every j. Let m be the minimal
number of machines s.t. an LPT-schedule of I on m machines has makespan at
most C. The total load on any two machines in the LPT-schedule on m machines
is greater than C.

3 Equilibrium Existence and Computation

3.1 No Equilibrium Under the Uniform Sharing Rule
Under the uniform sharing rule a pure NE might not exist. Consider for example
the instance G = 〈I = {1, 10}, B = 4〉. On dedicated machines, the jobs’ costs
are 5 and 14 respectively. If they are assigned together, each job pays 13. Thus,
no schedule is stable: the short job will escape to a dedicated machine, while the
long job will join it. This example motivates the use of the proportional sharing
rule.

3.2 Equilibrium Under the Proportional Sharing Rule
In this section we prove that under the proportional sharing rule and unlimited
supply of resources a pure NE always exists. Moreover, a NE can be found in time
O(nlog2n). Our algorithm, denoted LPT∗, uses as a subroutine the assignment
rule Longest Processing Time (LPT) [11]. Given an instance I, let Ishort ⊆ I be
the subset of jobs having length less than B, and let Ilong = I \ Ishort.

Algorithm LPT∗:

1. Schedule each of the jobs in Ilong on a dedicated machine.
2. The jobs of Ishort are scheduled by algorithm LPT. The number of machines,

m, is the minimal number of machines such that LPT produces a schedule
having makespan at most B (i.e., LPT on m−1 machines produces a schedule
having makespan more than B).

Note that the number of machines used in the second step is well defined,
since all the participating jobs are shorter than B, therefore, a schedule hav-
ing makespan less than B exists. The running time of LPT∗ is O(nlog2n). Long
jobs are identified and scheduled in time O(n), the short jobs are sorted in time
O(nlogn) and then LPT is executed at most logn times (binary search for the
right value of m - which is an integer in the range [1, n]).



Theorem 4. The profile s̄ obtained by LPT∗ is a NE.

Minimal Lexicographic Assignment: In the traditional load balancing game
with a fixed number of machines, the minimal lexicographic profile is known to be
a NE [10]. In our model, this profile is not well-defined as the number of machines
is not fixed. Let ŝ∗k be the lexicographically minimal assignment of Ishort on k
machines. Let m be such that the makespan under ŝ∗m is smaller than B whereas
the makespan under ŝ∗m−1 is at least B. Let ŝ∗ be the profile in which: (i) every
long job is assigned to a dedicated machine, and (ii) the jobs of Ishort are assigned
according to ŝ∗m. The proof of Theorem 4 can be easily tuned to show that ŝ∗

is a NE. However, this profile cannot be found efficiently. Moreover, as shown in
Theorem 9, both s̄ and ŝ∗ might incur arbitrarily large cost compared to the social
optimum.
Identical Jobs: A simpler case is when all the jobs have the same length. Note
that for this case the uniform and the proportional sharing rule coincide.

Theorem 5. If all jobs have the same length, a NE can be computed in linear
time.

Limited Supply of Resources: Assume that the number of machines that can
be used is limited. Let m = |M | be the given number of machines, and let m∗

be the number of machines required by algorithm LPT∗. If m∗ ≤ m then clearly
LPT∗ produces a NE. Otherwise, it can be seen that the assignment according to
LPT rule on m machines results produces a NE. Thus,

Theorem 6. Every resource allocation game under the proportional sharing rule
and a limited supply of resources admits a Nash equilibrium in pure strategies.
The NE can be computed efficiently

3.3 Convergence of Best-Response Dynamics

In this section we show that unlike other job scheduling games, in our model
best-response-dynamics (BRD) do not necessarily converge to a Nash equilibrium.
BRD is a local-search method in which, starting from an arbitrary joint action,
in each step, some player is chosen and plays its best-response strategy (i.e., the
strategy that minimizes its cost, given the strategies of the other players). By
considering the instance 〈I = {10, 10, 10, 20}, B = 72〉, and the initial joint action
{(10, 10); (10, 20)}, we get:

Theorem 7. Under proportional sharing, BRD might not converge to a NE.

Yet, with unit-size jobs the resulting game is a congestion game [19], thus
BRD is guaranteed to converge to a NE (note that while the set of resources
is not given, a game with a fixed set of n resources is equivalent to our game,
thus it is a congestion game). Moreover, one can easily verify that the function
P (s) =

∑
i B · Hxi + 1

2x2
i where xi denotes the number of jobs on machine i,

H0 = 0, and Hk = 1 + 1/2.. + 1/k, is a potential function for the game.



4 Equilibrium Quality

In this section we provide bounds for the price of anarchy (PoA) and the price
of stability (PoS). In particular, we present sufficient condition for having PoA =
PoS = 1, we show that the PoA is unbounded, and finally, we prove that the PoS
is less than 5/4 and provide an example in which the PoS is 18/17.

Theorem 8. If there exists a job j s.t. pj ≥ B, then PoA = PoS = 1.

Therefore, we would like to analyze the PoA and PoS for instances in which
all the jobs have load less than B. We first present an upper bound for the PoA
which depends on the length of the longest job. Let p = αB be the length of the
longest job in the instance, for some α < 1,

Lemma 3. PoA ≤ 1+α
2
√

α
.

However, α can be arbitrarily small, therefore, the PoA is not bounded, as we
show below.

Theorem 9. For any given r, there exist instances for which PoA > r, even with
unit-size jobs.
Proof. Given r, let B = 4 dre2 and consider an instance with B unit-length jobs.
An optimal schedule groups the jobs in sets of

√
B = 2 dre, each paying 2

√
B. A

possible NE is to schedule all the jobs on a single machine. This is a NE because
each job incurs a cost of B + 1 which cannot be reduced by migrating to a new
machine. In particular, this is the NE produced by LPT∗, and by finding the
minimal lexicografic assignment. For this instance, α = 1/B, and the analysis in
the proof of Theorem 3 is tight. Moreover, the above construction can be repeated
with Bz+1 jobs, each of length 1/Bz to get PoA = Ω(BO(z/2)).

For standard load balancing games, it is well-known that the price of stability
is 1, even for the model of unrelated machines [23]. We show that this is not the
case in our model. By analyzing the instance G = 〈I = {2, 1, 1}, B = 4〉, we get

Theorem 10. In the resource allocation game under the proportional sharing
rule, PoS ≥ 18

17 .

On the other hand, the price of stability is bounded by a small constant:
Theorem 11. In any resource allocation game under the proportional sharing
rule, PoS ≤ 5

4 .

Proof. Let αB be the length of the longest job in the instance, for α < 1. If α >
0.25 then by Theorem 3, PoA < 5

4 , and the assertion follows since PoS ≤ PoA.
Thus, assume that α ≤ 0.25, and let c =

√
α. Let m be the minimal number

of machines such that algorithm LPT on m machines produces a schedule whose
makespan is at most 2cB. Let s be the profile obtained by LPT on m machines.
We show that s is a NE: Note that for any α ≤ 0.25, c ≤ 0.5 and thus the
makespan is at most B. Therefore, by Observation 3(i), no job will migrate to a
dedicated machine. Also, by Lemma 2 (applied with C = 2cB), the total load on
any two machines is at least 2cB, and since the maximal gap in the load between
any two machines is at most αB, we have that for any two machines having
loads Li, Li′ , it holds that LiLi′ ≥ (c − α

2 )B(c + α
2 )B = (α − α2/4)B2. Finally,



the load on any machine is at least (c − α)B. A known property of schedules
produced by LPT is that any migration involves increase in the load. By Lemma
1 such a migration is profitable for a job of length p migrating from load Li into
load Li′ only if B > Li(Li′ + p)/p. However Li(Li′ + p)/p = (LiLi′/p) + Li ≥
((α−α2/4)B2/αB) + (c−α)B = (1−α/4 + c−α)B > B for any α ≤ 0.25 (since√

α > 5
4α).

The maximal cost of a job in s is at most 2cB + αBB/2cB = 5
2

√
αB. By

Observation 1 the cost of the longest job is at least 2
√

αB, thus PoS ≤ 5
4 .
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4. A. Czumaj and B. Vöcking. Tight Bounds for Worst-case Equilibria. SODA, 2002.
5. A. Epstein, M. Feldman, and Y. Mansour. Strong Equilibrium in Cost Sharing

Connection Games. In ACMEC, 2007.
6. E. Even-Dar and Y. Mansour. Fast Convergence of Selfish Rerouting. SODA, 2005.
7. A. Fabrikant, A. Luthra, E. Maneva, C. Papadimitriou, and S. Shenker. On a Net-

work Creation Game. In PODC, 2003.
8. J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the Cost of Multicast

Transmissions. In J. of Computer and System Sciences, vol. 63, pages 21–41, 2001.
9. M. Feldman and T. Tamir. Conflicting Congestion Effects in Resource Allocation

Games. http://www.faculty.idc.ac.il/tami/Papers/coco.pdf.
10. D. Fotakis, S. Kontogiannis, M. Mavronicolas, and P. Spiraklis. The Structure and

Complexity of Nash Equilibria for a Selfish Routing Game. In ICALP, 2002.
11. R. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM J. Appl. Math.,

17:263–269, 1969.
12. S. Herzog, S. Shenker, and D. Estrin. Sharing the ”Cost” of Multicast Trees: An

Axiomatic Analysis. In IEEE/ACM Transactions on Networking, 1997.
13. E. Koutsoupias and C. H. Papadimitriou. Worst-case Equilibria. In STACS, 1999.
14. D. Monderer and L. S. Shapley. Potential Games. Games and Economic Behavior,

14:124–143, 1996.
15. H. Moulin and S. Shenker. Serial Cost Sharing. Econometrica, 60:1009–1037, 1992.
16. H. Moulin and S. Shenker. Strategyproof Sharing of Submodular Costs: Budget

Balance Versus Efficiency. Journal of Economic Theory, 18:511–533, 2001.
17. N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory.

Cambridge University Press, 2007.
18. C. Papadimitriou. Algorithms, Games, and the Internet. In STOC, 2001.
19. R. W. Rosenthal. A Class of Games Possessing Pure-Strategy Nash Equilibria.

Internation Journal of Game Theory, 2:65–67, 1973.
20. T. Roughgarden. The Price of Anarchy is Independent of the Network Topology. In

STOC, 2002.
21. T. Roughgarden and E. Tardos. How Bad is Selfish Routing? Journal of the ACM,

49(2):236 – 259, 2002.
22. A. R. Vetta. Nash Equilibria in Competitive Societies with Applications to Facility

Location, Traffic Routing and Auctions. In FOCS, 2002.
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