
Optimal Delay for Media-on-Demand with Pre-loading and

Pre-buffering

Amotz Bar-Noy

Computer and Information Science Department

Brooklyn College

E-mail: amotz@sci.brooklyn.cuny.edu.

Richard E. Ladner∗

Department of Computer Science and Engineering

University of Washington

E-mail: ladner@cs.washington.edu.

Tami Tamir

School of Computer Science

The Interdisciplinary Center

E-mail: tami@idc.ac.il

April 4, 2007

Abstract

Broadcasting popular media to clients is the ultimate scalable solution for media-on-
demand. The simple solution of downloading and viewing the medium from one channel
cannot guarantee a reasonable startup delay for viewing with no interruptions. Two known
techniques to reduce the delay are pre-loading and pre-buffering. In the former an initial
segment of the medium is already in the client buffer, and in the latter segments of the
medium are not transmitted in sequence and clients may pre-buffer later segments of the
medium before viewing them. In both techniques, clients should be capable to receive
streams from channels at the same time of handling their own buffer and view the medium
from either one of the channels or the buffer.

This paper considers broadcasting schemes that combine pre-loading and pre-buffering.
We present a complete tradeoff between (i) the size of the pre-loading; (ii) the maximum
delay for an uninterrupted playback; (iii) the number of media; and (iv) the number of
channels allocated per one medium. For a given B the size of the pre-loading as a fraction
of the medium length, for m media, and for h channels per medium, we first establish
a lower bound for the maximum delay, D, as a fraction of the medium length, for an
uninterrupted playback of any medium out of the m media. We then present an upper
bound that approaches this lower bound when each medium can be fragmented into many
segments.

∗The research was partially funded by NSF Grant No. CCF-0223578



1 Introduction

Media-on-demand (MoD) is the demand by clients to read, listen to, or view various types of
media. In its simplest function, the clients would like to have an uninterrupted playback with
start-up delay as small as possible. The subject of this paper is to reduce the maximum start-
up delay for MoD systems that support uninterrupted service. Our main objective is to achieve
the smallest maximum start-up delay for given amounts of two resources: the bandwidth of the
system, and the client local memory. There are two main types of systems that support MoD:
unicast systems and broadcast systems. The former provides an immediate service as long
as there are not too many clients. The latter can support many clients but cannot guarantee
immediate service. For popular media, broadcasting is the ultimate scalable solution. In various
broadcasting schemes, different parts of the media are transmitted on channels viewable to the
clients. This paper considers the potential benefit of broadcasting schemes by using some of
the client memory for storing in advance (pre-loading) parts of the media.

In a basic implementation of MoD systems, clients who wish to view a movie1, select the
channel that would start broadcasting this movie the earliest after their request time. Movies
are broadcast on one channel or several channels. Thus if h channels are allocated to a movie
of length L time units, a maximum start-up delay of L/h time units is guaranteed by starting
a new transmission every L/h time units. In recent years, more efficient broadcasting schemes
that are based on pre-buffering were suggested. In these schemes, each movie is partitioned
into segments, and the segments are transmitted on the channels in some order, not necessarily
their order in the movie. Clients access all the channels simultaneously, ‘collecting’ segments to
their local memory, and watch the segments of the movie in their correct order - some directly
from the channels and some from their own memory.

The above broadcasting schemes require customers to get the service through a set-top box
(STB) capable of storing locally the transmitted data. This requires that the STB be equipped
with a local memory (disk). In fact, this technology is already available: digital VCRs offered
by ReplayTV [20], TiVo [23], and UltimateTV [24], have capacities of at least 300 gigabytes,
enabling the client to store hours of movies in perfect quality. The disk capacity can be used
to store entire movies and also pre-buffered segments and pre-loaded segments of other movies.
Usually the former type of movies will be non-popular movies where the latter type will be
popular movies for which the broadcasting solution is more beneficial.

In this paper, we consider broadcasting schemes that combine pre-loading and pre-buffering.
That is, we assume that some prefix of the movie is stored at the clients’ machines, and therefore
they need only to receive the remainder of the movie. We present a complete tradeoff between
(i) the size of the pre-loading; (ii) the maximum delay for an uninterrupted playback; (iii) the
number of movies; and (iv) the number of channels allocated per movie.

For a given B, the size of the pre-loading as a fraction of the movie length, for m movies,
and for h channels per movie, we first establish a lower bound for the maximum delay, D, as a
fraction of the movie length, for an uninterrupted playback of any movie out of the m movies.

1For convenience, we use the terminology of movies in Video-on-Demand (VoD).

1



We then present an upper bound that approaches this lower bound when each movie can be
fragmented into many segments.

1.1 Related Work

MoD systems, and in particular the solution of broadcasting, have been studied extensively
in recent years. The paper [3] surveys broadcasting protocols and describes the development
of these protocols, starting with Staggered broadcasting protocols, in which the movies are
simply transmitted repeatedly on the channels (e.g., [4]), through Pyramid-based broadcasting
protocols, in which movies are partitioned into segments and different segments are broadcast
on different channels [25], and finally Harmonic broadcasting protocols in which segment i is
allocated bandwidth proportional to 1/i (e.g., [9]).

The case when there is no pre-loading, and pre-buffering may start only when clients
start viewing the movie, received much attention in the recent decade. The papers [8, 10]
present a simple schedule of one movie on h channels by partitioning the movie into 2h − 1
segments. Their schedule implies a maximum start-up delay of 1/(2h−1) for a movie of length
1. This scheme is improved in the Pagoda scheme ([16]), the new Pagoda scheme ([12]), the
Recursive Frequency-Splitting scheme ([22]), the Harmonic broadcasting scheme ([9]), and the
Polyharmonic broadcasting scheme ([15]). In these schemes, the worst-case maximum delay
asymptotically approaches 1/(eh − 1) for total bandwidth h. Several papers (e.g., [6]) have
shown this bound on the delay to be optimal.

Harmonic broadcasting is implemented in [1] by a reduction from the window-scheduling
problem. Specifically, the movie is partitioned into s equal-sized segments that are scheduled on
the channels such that the gap between any two consecutive appearances of segment i is at most
i. For a given number of channels, the goal is maximizing s (or equivalently minimizing the
start-up delay which is at most 1/s). A schedule based on this principle is shown to approach
the lower bound as h →∞. The papers [13, 14] also allow clients to start buffering segments
before they start viewing the movie to achieve better results. However, they demonstrate
the usefulness of this observation only for small examples. The paper [2] gives asymptotic
matching upper and lower bounds on the maximum delay of a broadcasting scheme that uses
pre-buffering.

The papers [19, 17] consider pre-loading, but only for the case of zero delay. The paper [19]
does not allow pre-buffering before the clients start watching the movie whereas the paper [17]
improves the results by allowing this feature. In another work on pre-loading [11], it is assumed
that each client pre-loads segments of a different set of movies, according to the client’s choice.
Earlier works on pre-loading assume that the pre-loaded data is stored at a proxy server and
not at the client’s local machine [5, 21].

2



2 Model and Preliminaries

The system broadcasts m movies on h channels. Unless specified otherwise, assume that all
m movies have the same length, L, normalized to be one time unit (L = 1). Each movie is
partitioned into s segments of equal length. Segment size may range from a single bit to the
whole movie (in case of a single segment). The segments are indexed 1 to s in the order they
should be viewed. The segments of the movies may be broadcast in any order on any channel.
Assume that it takes one time slot to transmit or view a segment and thus, the length of the
time slot is 1/s. Assume further that all the channels are synchronized in the sense that the
starting points for the time slots coincide in all of them. Clients may buffer or view segments
from any channel since they may receive data from all of them. In other words, the receiving
bandwidth of each client is h. This implies that clients are able to buffer or view segment i the
first time it is transmitted after their arrival time. Clients may buffer any number of segments
before the viewing process begins.

The maximum delay of a client is denoted by D and is given as a fraction of the movie
length. That is, if for example D = 1/4, no client will wait more than 1/4 of a movie length
until it can start an uninterrupted playback of the movie. Let d = Ds denote the maximum
delay measured as number of segments (time slots). In the broadcasting schemes we present,
the delay is given in units of time slots, thus we assume that Ds is an integer.

The basic principle in all the schemes that use pre-buffering is that early segments should
be broadcast more frequently than later segments. Intuitively, a client needs to watch the zth

segment only z− 1 time slots after it starts watching the movie, and therefore the zth segment
can be transmitted less often than earlier segments. Formally, in [2], optimal schemes that are
based on pre-buffering are developed using the windows scheduling problem and the following
is shown:

Theorem 2.1 Let S be a schedule that broadcasts s ≥ 1 segments for a movie on h ≥ 1
channels. Then S guarantees a start-up delay of d > 0 time slots if and only if segment z is
transmitted once in any window of d + z − 1 segments for each 1 ≤ z ≤ s.

Assume now that out of the s segments composing the movie, the first b are pre-loaded
and are stored at the client’s local machine, and the other s− b segments are transmitted on
channels. Clearly, the client can always watch the first b segments with no delay. Consider
the remainder of the movie as a complete (shorter) movie. Assume there exists a broadcasting
scheme that enables any client to view this shorter movie with delay at most d′ (in number of
segment units). The idea is to overlap the time the client watches the first b segments with
the time it is waiting for the rest of the data. This would result in a delay max(0, d′− b). The
challenge is to schedule the remaining s − b segments on the broadcasting channels in a way
that minimizes this term.

Example: Consider a single movie composed of s segments that is transmitted on a single
channel. Assume that the client has at its local machine all but the last 5 segments, which are

3



not pre-loaded, and which are transmitted on the channel in the following (repeated) order:

[1, 3, 2, 4, 1, 5, 2, 3, 1, 4, 2, 5]

In this order, the segments 1, 2 are transmitted every 4 slots and the segments 3, 4, 5 are
transmitted every 6 slots. Since the movie is partitioned into s segments, these 5 segments are
segments s− 4, . . . , s of the movie. The first b = s− 5 segments are pre-loaded and available
to the client at any time (thus, B = (s− 5)/s). By Theorem 2.1 the above transmission of the
last 5 segments guarantees a delay of at most d′ = 4 slots for viewing with no interruptions
the last 5 segments. Thus, if s ≥ 9 (or equivalently b ≥ 4), meaning that the client has at
least the first 4 segments of the movie, then there is no delay at all. If s < 9, the delay with
pre-loading is 4− b slots which is D = (4− b)/(b + 5) = (9− s)/s of the whole movie. We get
the following tradeoff between B and D:

s B D

5 0 4/5
6 1/6 3/6
7 2/7 2/7
8 3/8 1/8
9 4/9 0

> 9 (s− 5)/s 0

In the extremes, in order to guarantee no delay the pre-loading size should be 4/9 of the movie
length, and with no pre-loading the maximum delay is 4/5 of the movie length.

The following table provides a glossary of the notation used in the paper.

notation meaning

h number of channels
m number of different movies

ρ = h/m the ratio between number of channels and number of movies
s number of segments per each movie
B the size of the pre-loading buffer as a fraction of the movie lengt

b = Bs the size of the pre-loading buffer as a number of segments
D the maximum delay as a fraction of the movie length

d = Ds the maximum delay as a number of segments
d′ the maximum delay for the non pre-loaded part, as a number of segments

Table 1: Glossary of notations.

The lower bound and the matching broadcasting scheme we present assume that the client’s
pre-loaded memory stores only prefixes of movies. The following Theorem states that indeed
the best way to use an allocated amount B of memory to a movie is by storing (pre-loading)
a prefix of size B of this movie.

4



Theorem 2.2 For any broadcasting scheme that combines pre-loading and broadcasting, if
memory of size B is allocated to a movie, then it is optimal to store from this movie a prefix
of size B.

Proof: Consider any broadcasting scheme S in which for some movie there exists a bit i that
is not pre-loaded, while some bit j > i is. Since j is pre-loaded, it is never transmitted by the
scheme. Consider the scheme S′ in which bit i is pre-loaded and bit j is transmitted whenever
bit i is transmitted in S. Clearly, any client will have bit i on time (from its memory) and bit
j will be available at the time bit i is available in S. Since it is assumed that all clients view
the movie in order, bit i is requested before bit j, therefore, by having bit j available in S′ at
the time i was available in S, clients’ delay can only decrease. 2

3 A Lower Bound for the Maximum Delay

We compute a lower bound for the maximum delay for any s ≥ 1 segments of movies. We
assume that both b = Bs and d = Ds are integers. For large enough s, and in particular
asymptotically, when s tends to ∞, this assumption is valid.

Each client has the first b = Bs segments of each movie in its buffer. Therefore, the
channels need to broadcast only segments b+1, . . . , s. Since the maximum delay is d, segment
i of each movie should be broadcast at least once in any window of size d + i for b + 1 ≤ i ≤ s.
That is, segment i consumes at least 1/(d + i) fraction of a channel. Since the total number of
channels is h and since there are m movies, it follows that

m
s∑

i=b+1

1
i + d

≤ h .

This is equivalent to
s+d∑

i=b+d+1

1
i
≤ ρ .

The harmonic number Hn =
∑n

i=1
1
n is less than 1 + lnn (see e.g., [7] page 264, Eq. 6.66).

This implies that

ln
(

s + d

b + d

)
≤ ρ .

Since b = Bs and d = Ds, this is equivalent to

1 + D

B + D
≤ eρ .

By manipulating the above inequality we get the lower bound for D given B

D ≥ 1−Beρ

eρ − 1
.

Equivalently, the lower bound for B given D is

B ≥ 1−D(eρ − 1)
eρ

.

5



In particular, when B = 0 the lower bound matches the known lower bound [6]

D ≥ 1
eρ − 1

.

When D = 0 the lower bound for B is

B ≥ 1
eρ

.

For example, in order to guarantee no delay for a single movie transmitted on a single
channel the client must pre-load at least 1/e ≈ 0.368 fraction of the movie and without pre-
loading the maximum delay is at least 1/(e − 1) ≈ 0.582 fraction of the time it takes to
broadcast the whole movie.

4 Optimal Schedules

In this section we present an upper bound that approaches the lower bound from Section 3
when each movie can be fragmented into many segments. In the optimal schedule the last
segments of each movie are transmitted in such a way that earlier segments are transmitted
more often. Assume first a transmission of a single movie, that is, m = 1. Consider a schedule
of the numbers [x..y] on h channels such that for any x ≤ i ≤ y, in each window of i consecutive
slots, the number i appears at least once in one of the channels. For example

[4, 6, 5, 7, 4, 8, 5, 6, 4, 7, 5, 8]

is such a schedule for h = 1, x = 4, and y = 8.

Suppose we interpret the numbers x, . . . , y as segments s− y + x, . . . , s of the movie. This
reflects a partition of the movie into s segments each a 1/s-fraction of the movie length. The
segments that are not transmitted should be stored at the client memory, thus, the pre-loading
size is b = s− y + x− 1 which implies B = (s− y + x− 1)/s. In other words, the schedule of
the numbers x, . . . , y reflects a broadcast of segments b + 1, . . . , s, such that segment b + 1 is
transmitted with window x = (b + 1) + (y − s) and in general, segment z is transmitted with
window z + (y − s), for any z ∈ {b + 1, . . . , s}. Clearly, segments 1, . . . , b that are pre-loaded
do not cause any delay. By Theorem 2.1, the delay with pre-buffering is D = (y− s + 1)/s. It
follows that a viable range for s is from y − x + 1 to y + 1 (it might be that s > y + 1 but the
delay never reduces below 0), and we get the following tradeoff between B and D:

s B D

y − x + 1 0 x/(y − x + 1)
y − x + 2 1/(y − x + 2) (x− 1)/(y − x + 2)
y − x + i (i− 1)/(y − x + i) (x− i + 1)/(y − x + i)

y (x− 1)/y 1/y

y + 1 x/(y + 1) 0
> y + 1 (s + x− y − 1)/s 0

6



In particular, this means that in order to guarantee no delay with this schedule the pre-loading
size should be an x/(y +1) fraction of the movie length and with no pre-loading the maximum
delay is an x/(y − x + 1) fraction of the movie length.

The upper bound is achieved by finding large [x..y]-ranges such that any x ≤ i ≤ y is
transmitted on one of the h channels at least once in each window of i consecutive slots. This
is a special instance of the windows scheduling problem that was studied in [2]. This paper
presents an algorithm, denoted RR2, that gets as input the numbers x, h, and a parameter ∆,
and produces a periodic valid schedule on h schedules of the numbers x, x + 1, . . . , yh(x,∆),
such that yh(x,∆) is large.

Algorithm RR2 produces two-level round robin schedules. The parameter ∆ indicates the
number of elements in the upper level. For example, for x = 4, h = 1, and ∆ = 2, the
algorithm produces the output ((4, 5), (6, 7, 8)), that is, y1(4, 2) = 8, and the corresponding
schedule is [4, 6, 5, 7, 4, 8, 5, 6, 4, 7, 5, 8]. Note that this schedule iterates between scheduling
a member of (4, 5) and a member of (6, 7, 8), and that the members from each set are se-
lected in round robin. Similarly, for x = 8,∆ = 3, Algorithm RR2 produces the output
((8, 9), (10, 11, 12), (13, 14, 15, 16)), that is y1(8, 3) = 16, and the prefix of the corresponding
output is [8, 10, 13, 9, 11, 14, 8, 12, 15, 9, 10, 16, ..].

The following lemma states the value of yh(x,∆) achieved by the algorithm.

Lemma 4.1 [2] Let yh(x,∆) be the last segment assigned by the iterated RR2 algorithm on
input ∆ ≥ 2 and x ≥ ∆ on h channels, then

yh(x,∆) ≥
(

1 +
1
∆

)h∆

(x−∆) + ∆− 1 . (1)

Back to our problem, as we explain shortly, the maximum delay of a client depends on the
value x

yh(x,∆)−x+1 . The following result from [2] will be used.

Lemma 4.2 [2] For h ≥ 1, there is a positive constant ch that depends only on h such that
for any ∆ ≥ 2 and x ≥ 2∆2, the iterated RR2 algorithm guarantees

x

yh(x,∆)− x + 1
≤

(
1 +

ch

∆

) (
1

eh − 1

)
. (2)

Consider the general case for s = y − x + i in which B = (i − 1)/(y − x + i) and D =
(x− i + 1)/(y − x + i). Assign z = y + 1 and j = x− i + 1. With these variables,

B =
x− j

z − j
D =

j

z − j
.

Further, assign w = z/j. It follows that

B =
x/j − 1
w − 1

D =
1

w − 1
.

By (2), in the limit, for large values of s (and consequently large values of x, y), there exists
a valid schedule of [x..y] such that

x

y − x + 1
≈ 1

eh − 1
.

7



This implies that

x ≈ y + 1
eh

≈ z

eh
.

Furthermore, the values of B and D as a function of w are

B =
w/eh − 1

w − 1
D =

1
w − 1

.

Plugging w = 1 + 1/D in the equality for B yields

B = D

(
1 + 1/D

eh
− 1

)
=

D + 1
eh

−D =
1
eh
−

(
1− 1

eh

)
D .

Equivalently,

D =
1/eh −B

1− 1/eh
=

1− ehB

eh − 1
.

For the special case of D = 0 we have (1− ehB) = 0 or equivalently

B =
1
eh

.

For the special case of B = 0 we have 1/eh = (1− 1/eh)D or equivalently

D =
1

eh − 1
.

The calculation for the general case of m > 1 is identical. For each of the m movies,
segments s−y +x, . . . , s are transmitted with windows x, . . . , y, respectively. Along the whole
calculation it is possible to replace h by ρ = h/m. We get the following result for the general
case.

Corollary 4.3 For any D ≥ 0, there exists a broadcasting scheme that guarantees delay at
most D and requires pre-loading of size

B =
1
eρ
−

(
1− 1

eρ

)
D .

Equivalently, for a pre-loading of size B ≥ 0 the scheme guarantees delay at most

D =
1− eρB

eρ − 1
.

Note that the above upper bounds match the lower bounds from Section 3.

5 Discussion

In this paper we showed a tradeoff between the size of the pre-loaded buffer and the maximum
delay for an uninterrupted playback of movies. We first proved a lower bound for the optimal
possible tradeoff and then demonstrated how to achieve it when a movie may be partitioned
to many segments. In what follows we discuss several possible extensions.

8



Limiting the receiving bandwidth: In this paper we assumed that a client can buffer
segments of the movie from all the channels. This means that the receiving bandwidth of a
client is h times more than the playback bandwidth. Several papers explored the case where
the receiving bandwidth is only r times the playback bandwidth for some 1 < r < h (e.g. [18]).
However, no paper considers this case with the pre-loading capability.

Limited size buffers: Early works on this model assumed that the buffer size for the pre-
buffered segments is bounded as a fraction of the movie length (see the survey [3]). Although
it seems that the sky is the limit for cheap and large memory, this might not be the case for
some set-top boxes (e.g., mobile set-top boxes). It is interesting therefore to investigate the
tradeoff between the pre-loaded buffer size and the pre-buffered buffer size when their sum is
bounded.

Movies with different lengths: In this paper it is assumed that all the movies have the
same length. Broadcasting schemes for movies with different lengths have not been well studied
even with no pre-loading. It is an interesting open problem, especially since a broadcasting
scheme for movies with different lengths might use different pre-loading sizes.

Movies with different popularity: The solution of broadcasting (in contrast to unicast)
is suitable for popular media. However, even among popular media there are different levels of
popularity. In particular, only a small number of media is very popular at a specific time. It
is very intriguing to see how the combination of pre-loading and pre-buffering can be used to
provide small maximum delay to the highly requested movies while increasing the maximum
delay for less popular movies. The problem can be modelled as follows. Consider a system with
m movies with different popularity. The popularity parameter of movie i is denoted by pi such
that

∑m
i=1 pi = 1. The parameter pi can be viewed as the probability that the next request

is for movie i. Let Di denote the maximum possible delay a broadcasting scheme guarantees
for a movie i, then the goal is to minimize

∑m
i=1 piDi. That is, the weighted maximum delay

(also the expected maximum delay) of the whole system. Since the popularity parameter
may vary drastically over time, it is not practical to assume that each movie has a specific
popularity parameter and instead the following simpler model may be considered. The system
distinguishes between the hot movies and the rest of the popular movies. There are various
ways to ensure smaller delay to the hot movies, they can be transmitted more often, or a larger
portion of these movies might be pre-loaded.

9



References

[1] A. Bar-Noy and R. E. Ladner. Windows Scheduling Problems for Broadcast Systems.
SIAM Journal on Computing (SICOMP), 32(4):1091–1113, 2003.

[2] A. Bar-Noy, R. E. Ladner, and T. Tamir. Scheduling Techniques for Media-on-Demand. In
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
791–800, 2003.

[3] S. W. Carter, D. D. E. Long, and J. Pâris. Video-on-Demand Broadcasting Protocols.
In Multimedia Communications: Directions and Innovations (J. D. Gibson, Editors),
Academic Press, San Diego, 179–189, 2000.

[4] A. Dan, D. Sitaram, and P. Shahabuddin. Dynamic Batching Policies for an On-Demand
Video Server. ACM Multimedia Systems Journal, 4(3):112–121, 1996.

[5] D. L. Eager, M. C. Ferris and M. K. Vernon. Optimized Regional Caching for On-Demand
Data Delivery. In Proceedings of the IS&T/SPIE Conference on Multimedia Computing
and Networking (MMCN), 301–316, 1999.

[6] L. Engebretsen and M. Sudan. Harmonic Broadcasting is Bandwidth-Optimal Assuming
Constant Bit Rate. Networks, 47(3):172–177, 2006.

[7] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: a Foundation for
Computer Science. Addison-Wesley.

[8] K. A. Hua, Y. Cai, and S. Sheu Exploiting Client Bandwidth for More Efficient Video
Broadcast. In Proceedings of the 7th International Conference on Computer Communica-
tion and Networks (ICCCN), 848–856, 1998.

[9] L. Juhn and L. Tseng. Harmonic Broadcasting for Video-on-Demand Service. IEEE
Transactions on Broadcasting, 43(3):268–271, 1997.

[10] L. Juhn and L. Tseng. Fast Data Broadcasting and Receiving Scheme for Popular Video
Service. IEEE Transactions on Broadcasting, 44(1):100–105, 1998.

[11] J. F. Pâris. A Broadcasting Protocol for Video-on-Demand Using Optional Partial
Preloading. In Proceedings of the 11th International Conference on Computing, I:319-
329, 2002.

[12] J. Pâris. A Simple Low-Bandwidth Broadcasting Protocol for Video-on-Demand. In Pro-
ceedings of the 8th International Conference on Computer Communications and Networks
(IC3N), 118–123, 1999.

[13] J. Pâris. A Fixed-Delay Broadcasting Protocol for Video-on-Demand. In Proceedings of
the 10th International Conference on Computer Communications and Networks (IC3N),
418–423, 2001.

10



[14] J. Pâris. A Simple but Efficient Broadcasting Protocol for Video-on-Demand. In Proceed-
ings of the 24th International Performance of Computers and Communication Conference
(IPCCC 2005), 167-174, 2005.

[15] J. Pâris, S. W. Carter, and D. D. E. Long. A Low Bandwidth Broadcasting Protocol
for Video on Demand. In Proceedings of the 7th International Conference on Computer
Communications and Networks (IC3N), 690–697, 1998.

[16] J. Pâris, S. W. Carter, and D. D. E. Long. A Hybrid Broadcasting Protocol for Video
on Demand. In Proceedings of the IS&T/SPIE Conference on Multimedia Computing and
Networking (MMCN), 317–326, 1999.

[17] J. Pâris and D. D. E. Long. The Case for Aggressive Partial Preloading in Broadcasting
Protocols for Video-on-Demand. In Proceedings of the IEEE International Conference on
Multimedia and Expo (ICME), 113–116, 2001.

[18] J. Pâris and D. D. E. Long. Limiting the Receiving Bandwidth of Broadcasting Protocols
for Video-on-Demand. In Proceedings of the Euromedia Conference, 107–111, 2000.

[19] J. Pâris, D. D. E. Long, and P. E. Mantey, Zero-Delay Broadcasting Protocols for Video-
on-Demand. In Proceedings of the ACM Multimedia Conference, 189–197, 1999.

[20] ReplayTV. http://www.replay.com

[21] S. Sen, J. Rexford, and D. Towsley. Proxy Prefix Caching for Multimedia Streams. In
Proceedings of the IEEE 18th Conference on Computer Communications (INFOCOM),
1310–1319, 1999.

[22] Y. C. Tseng, M. H. Yang, and C. H. Chang. A Recursive Frequency-Splitting Scheme
for Broadcasting Hot Video in VOD Service. IEEE Transactions on Communications,
50(8):1348–1355, 2002.

[23] TiVo Technologies. http://www.tivo.com

[24] UltimateTV. http://www.ultimatetv.com

[25] S. Viswanathan and T. Imielinski. Metropolitan Area Video-on-Demand Service Using
Pyramid Broadcasting. ACM Multimedia Systems, 4(3):197–208, 1996.

11


