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Abstract. Broadcasting is an efficient alternative to unicast for deliver-
ing popular on-demand media requests. Windows scheduling algorithms
provide a way to satisfy all requests with both low bandwidth and low
latency. Consider a system of n pages that need to be scheduled (trans-
mitted) on identical channels an infinite number of times. Time is slotted,
and it takes one time slot to transmit each page. In the windows schedul-
ing problem (WS) each page i, 1 ≤ i ≤ n, is associated with a request
window wi. In a feasible schedule for WS, page i must be scheduled at
least once in any window of wi time slots. The objective function is to
minimize the number of channels required to schedule all the pages. The
main contribution of this paper is the design of a general buffer scheme
for the windows scheduling problem such that any algorithm for WS fol-
lows this scheme. As a result, this scheme can serve as a tool to analyze
and/or exhaust all possible WS-algorithms. The buffer scheme is based
on modelling the system as a nondeterministic finite state channel in
which any directed cycle corresponds to a legal schedule and vice-versa.
Since WS is NP-hard, we present some heuristics and pruning-rules for
cycle detection that ensure reasonable cycle-search time.

By introducing various rules, the buffer scheme can be transformed
into deterministic scheduling algorithms. We show that a simple page-
selection rule for the buffer scheme provides an optimal schedule to WS
for the case where all the wi’s have divisible sizes, and other good sched-
ules for some other general cases. By using an exhaustive-search, we
prove impossibility results for other important instances.

We also show how to extend the buffer scheme to more generalized
environments in which (i) pages are arriving and departing on-line, (ii)
the window constraint has some jitter, and (iii) different pages might
have different lengths.
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1 Introduction

Currently, popular on-demand data on the Internet is provided in a unicast way,
by requesting it from a server. Such systems are called pull systems. A very high
demand over a short period of time may put stress on both server and network
bandwidth. This stress can be alleviated by replicating data in mirrors or caches.
An alternative approach to on-demand for popular data is a push system where
the data is provided by periodic broadcast or multicast. Those desiring and
authorized to receive the data simply wait, hopefully a short period of time, for
the broadcast. Pushing has the advantage over pulling in that it requires less
server and network bandwidth, as long as the demand is high. This approach to
providing popular data has led to a very interesting problem. What are the best
ways to partition the channel in a time multiplexed way to provide the service
in a push system? This general question can be modelled mathematically in a
number of ways. We choose a specific approach called windows scheduling (WS)
[5, 6]. In this paper, we propose a new algorithmic technique called the buffer
scheme that can be used to design algorithms to solve WS problems and several
extensions of WS that cannot be solved using known algorithms. In addition,
the buffer scheme can be used to prove new impossibility results.

An instance to WS is a sequence W = 〈w1, . . . , wn〉 of n request windows,
and a set of h identical channels. The window request wi is associated with
a page i. Time is slotted, and it takes one time slot to transmit any page on
any channel. The output is a feasible schedule (a schedule in short) in which
for all i, the page i must be scheduled (transmitted) on one of the h channels
at least once in any window of wi consecutive time slots. Equivalently, the re-
quirement is that the gap between any two consecutive appearances of i in the
schedule is at most wi. We say that a schedule is perfect if the gap between
any two consecutive appearances of i in the schedule is a constant w′

i for some
w′

i ≤ wi.
The optimization problem associated with WS is to minimize the number

of channels required to schedule all n pages. Define 1/wi as the width of page
i and let h0(W) = �∑i 1/wi�. Then h0(W) is an obvious lower bound on the
minimum number of channels required for W.

Example I: An interesting example is that of harmonic scheduling, that is,
scheduling sequences Hn = 〈1, 2, . . . n〉 in a minimum number of channels. Har-
monic windows scheduling is the basis of many popular media delivery schemes
(e.g., [21, 15, 16, 18]). The following is a non-perfect schedule of 9 pages on 3
channels for the window sequence H9 = 〈1, 2, . . . , 9〉.

⎡

⎣
1 4 1 1 1 1 1 6 1 1 1 1 · · ·
2 1 2 5 2 4 2 5 2 4 2 5 · · ·
3 6 7 3 8 9 3 1 7 3 9 8 · · ·

⎤

⎦

Note that a page may be scheduled on different channels (e.g., 1 is scheduled on
all three channels). Also, the gaps between any two consecutive appearances of i
need not be exactly wi or another fixed number (e.g., the actual window granted
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to 5 is 4 and the actual windows of 8 and 9 are sometimes 5 and sometimes 7).
Even though this schedule is not “nicely” structured, it is feasible since it obeys
the requirement that the maximal gap between any two appearances of i is at
most wi for any i. Using our buffer scheme in exhaustive search mode, we show
that there is no schedule for H10 = 〈1, 2, . . . , 10〉 on three channels even though
∑10

i=1 1/i < 3.

Example II: In this paper we demonstrate that for some instances such “flexible”
schedules achieve better performance. Indeed, for the above example, there exists
a perfect feasible schedule on three channels. However for the following instance
this is not the case. Let n = 5 and W = 〈3, 5, 8, 8, 8〉. We show in this paper
that there is no feasible perfect schedule of these 5 pages on a single channel.
However,

[3, 5, 8a, 3, 8b, 5, 3, 8c, 8a, 3, 5, 8b, 3, 8c, 5, 3, 8a, 8b, 3, 5, 8c, . . .]

is a feasible non-perfect schedule on a single channel. This schedule was found
by efficiently implementing the buffer scheme. Most previous techniques only
produce perfect schedules.

1.1 Contributions

The main contribution of this paper is the design of a general buffer scheme for
the windows scheduling problem. We show that any algorithm for WS follows
this scheme. Thus, this scheme can serve as a tool to analyze all WS-algorithms.
The buffer scheme is based on presenting the system as a nondeterministic finite
state machine in which any directed cycle corresponds to a legal schedule and
vice-versa. The state space is very large, therefore we present some heuristics
and pruning-rules to ensure reasonable cycle-search time.

By introducing various rules for the buffer scheme, it can be transformed
into deterministic scheduling algorithms. We show that a simple greedy rule
for the buffer scheme provides an optimal schedule to WS for the case where
all the wi’s have divisible sizes. Our theoretical results are accompanied by ex-
periments. We implemented the deterministic buffer scheme with various page
selection rules. The experiments show that for many instances the determin-
istic schemes perform better than the known greedy WS algorithm
presented in [5].

By using an exhaustive-search, we prove impossibility results and find the
best possible schedules. As mentioned earlier, we prove that there is no schedule
of H10 = 〈1, 2, . . . , 10〉 on three channels. In addition, we find the best possible
schedules for other important instances. Similar to branch and bound, the search
is done efficiently thanks to heavy pruning of early detected dead-ends. The
results achieved in the exhaustive-search experiments appear not to be achievable
in any other way.

The main advantage of the buffer scheme is its ability to produce non-perfect
schedules. Most of the known algorithms (with or without guaranteed perfor-
mance) produce perfect schedules. However, in the WS problem and its ap-
plications such a restriction is not required. We demonstrate that the Earliest
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Deadline First (EDF) strategy is not the best for WS even though it optimal
for similar problems. We develop some understanding that leads us to the de-
sign of the Largest Backward Move (LBM) strategy that performs well in our
simulations.

The basic windows scheduling problem can be generalized in several ways that
cannot be handled by previous techniques that only produce perfect schedules.
(i) Dynamic (on-line) environment: pages are arriving and departing on-line
and the set of windows is not known in advance. Here the scheme is extended
naturally emphasizing its advantage as a framework to algorithms as opposed to
other greedy heuristics for the off-line setting that cannot be generalized with
such an ease. (ii) Jitter windows: each page is given by a pair of windows (w′

i, wi)
meaning that page i needs to be scheduled at least once in any window of wi time
slots and at most once in any window of w′

i time slots. In the original definition,
w′

i = 1. Here again the generalization is natural. (iii) Different lengths: pages
might have different lengths. The buffer scheme can be generalized to produce
high quality schedules in these generalizations.

1.2 Prior Results and Related Work

The windows scheduling problem belongs to the class of periodic scheduling prob-
lems in which each page needs to be scheduled an infinite number of times. How-
ever, the optimization goal in of the windows scheduling problem is of the “max”
type whereas traditional optimization goals belong to the “average” type. That
is, traditional objectives insist that each page i would receive its required share
(1/wi) even if some of the gaps could be larger than wi. The issue is usually
to optimize some fairness requirements that do not allow the gaps to be too
different than wi. Two examples are periodic scheduling [17] and the chairman
assignment problem [20]. For both problems the Earliest Deadline First strategy
was proven to be optimal. Our paper demonstrates that this is not the case for
the windows scheduling problem.

The pinwheel problem is the windows scheduling problem with one channel.
The problem was defined in [13, 14] for unit-length pages and was generalized
to arbitrary length pages in [8, 12]. In these papers and other papers about the
pinwheel problem the focus was to understand which inputs can be scheduled on
one channel. In particular, the papers [10, 11] optimized the bound on the value
of

∑n
i=1(1/wi) that guarantees a feasible schedule.

The windows scheduling problem was defined in [5], where it is shown how
to construct perfect schedules that use h0(W) + O(log h0(W)) channels. This
asymptotic result is complemented with a practical greedy algorithm, but no
approximation bound has been proved for it yet. Both the asymptotic and greedy
algorithms produce only perfect schedules.

The general WS problem can be thought of as a scheduling problem for push
broadcast systems (e.g, Broadcast Disks ([1]) or TeleText services ([2])) In such
a system there are clients and servers. The server chooses what information
to push in order to optimize the quality of service for the clients (mainly the
response time). In a more generalized model the servers are not the information
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providers. They sell their service to various providers who supply content and
request that the content be broadcast regularly. The regularity can be defined
by a window size. Finally, various maintenance problems where considered with
similar environments and optimization goals (e.g., [22, 3]).

WS is known to be NP-hard. In a way, this justifies the efforts of this paper.
A proof for the case where i must be granted an exact wi window is given in [4].
Another proof which is suitable also for the flexible case in which the schedule
of i need not be perfect is given in [7].

2 The General Buffer Scheme

In this section, we describe the buffer scheme and prove that for any instance
of windows scheduling, any schedule can be generated by the buffer scheme.
We then discuss how the buffer scheme can be simulated efficiently by early
detection and pruning of dead-end states. Using these pruning rules, we establish
an efficient implementation of the scheme that can exhaust all possible solutions.
For big instances, for which exhaustive search is not feasible, we suggest a greedy
rule that produces a single execution of the scheme that “hopefully” generates
a correct infinite schedule.

2.1 Overview of the Scheme

Let W = 〈w1, . . . , wn〉 and number of channels h be an instance of the windows
scheduling problem. Let w∗ = maxi {wi}. We represent the pages state using
a set of buffers, B1, B2, . . . , Bw∗ . Each page is located in some buffer. A page
located in Bj must be transmitted during the next j slots. Initially, buffer Bj

includes all the pages with wi = j. We denote by bj the number of pages in Bj

and by �i the location of i (i.e., i ∈ B�i
).

In each iteration, the scheme schedules at most h pages on the h channels. By
definition, the pages of B1 must be scheduled. In addition, the scheme selects at
most h− b1 additional pages from other buffers to be scheduled in this iteration.
The way these pages are selected is the crucial part of the scheme and is discussed
later. After selecting the pages to be scheduled, the scheme updates the content
of the buffers.

– For all j > 1, all the non-scheduled pages located in Bj are moved to Bj−1.
– Each scheduled page, i, is placed in Bwi

- to ensure that the next schedule
of i will be during the next wi slots.

This description implies that the space complexity of the buffer scheme de-
pends on w∗. However, by using a data structure that is ‘page-oriented’, the
buffer scheme can be implemented in space O(n).

From the pages’ point of view, a page is first located as far as possible (wi

slots) from a deadline (represented by B1), it then gets closer and closer to the
deadline and can be selected to be transmitted in any time during this advance-
ment toward the deadline. With no specific rule for selecting which of the h− b1
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pages should be scheduled, the buffer scheme behaves like a nondeterministic
finite state machine with a very large state space, where a state is simply an
assignment of pages to buffers.

In running the buffer scheme nondeterministically, it fails if in some time
point b1 > h. The scheme is successful if it produces an infinite schedule. This
is equivalent to having two time slots t1, t2 such that the states at t1 and t2 are
identical. Given these two time slots, the page-selection sequence between t1 and
t2 can be repeated forever to obtain an infinite schedule.

Theorem 1. When it does not fail, the buffers scheme produces a feasible sched-
ule, and any feasible schedule for WS can be produced by an execution of the
buffer scheme.

Remark: In our simulations and in the page-selection rules we suggest, no
channel is ‘idle’ in the execution; that is, exactly h pages are scheduled in each
time slot. It is important to observe that this no-idle policy is superior over
scheduling policies that allow idles.

2.2 Page Selection Criteria and Dead-Ends Detection

As mentioned above, the buffer scheme fails if at some time point b1 > h, that
is, more than h pages must be scheduled in the next time slot. However, we
can establish other, more tight, dead-end conditions. Then, by trying to avoid
these dead-ends, we can establish “good” page selection criteria. In this section,
we present a tight dead-end criteria, and describe how to greedily select pages
in each time slot in a way that delays (and hopefully avoids) a dead-end state.
Given a state of the buffers, let c(i, j) denote the number of times i must be
scheduled during the next j slots in any feasible schedule.

Claim. For any i, j,

c(i, j) ≥
{

0 if j < �i

1 +
⌊

j−�i

wi

⌋
if j ≥ �i

Proof. If j < �i, that is, if i is located beyond the first j buffers, we do not need
to schedule i at all during the next j slots. If j ≥ �i, then we must schedule i
once during the next �j slots. After this schedule, i will be located in Bwi

. Note
that for any t, given that i ∈ Bwi

we must schedule i at least �t/wi	 times during
the next t slots. In our case, we have t = j− �i, since this is the minimal number
of slots that remains after the first schedule of i.

For example, if �i = 1, wi = 3 and j = 11, then c(i, j) = 4. This implies
that i must be scheduled at least 4 times during the next 11 slots: once in the
next slot, and three more times in the remaining 10 slots. Let c(j) denote the
total number of page schedules the system must provide in the next j slots.
By definition, c(j) =

∑n
i=1 c(i, j). By definition, jh is the number of available

page schedules in the next j slots. Let f(j) = jh− c(j) denote the freedom level
existing in the next j slots.
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If for some j, f(j) < 0 then a dead-end state is reached. If f(j) = 0, then only
pages from the first j buffers must be scheduled in the next j slots. If f(j) > 0,
then some freedom exists in the way the pages are selected. That is, c(j) pages
must be selected from the first j buffers, and the remaining f(j) pages can come
from any buffer. In particular, for j = 1, only the pages in B1 are considered,
thus, this rule generalizes the obvious condition for B1.

Importantly, it is possible to know how many pages must be selected from
the first j buffers in the next slot. For any j, the system can provide at most
(j−1)h page-schedules during any j−1 slots. Thus, at least n(j) = c(j)−(j−1)h
pages from the first j buffers must be selected in the next slot in order to avoid
a dead-end. Again, this condition generalizes the condition for B1.

2.3 Delaying Dead-Ends and Deterministic Rules

We present a greedy way to select the pages to be scheduled based on the pa-
rameters c(j) and n(j) that are calculated during the selection process. Let s
denote the number of pages selected so far in the current iteration. Initially,
j = 1 and s = 0. As long as s < h, continue selecting pages as follows. For each
j, if n(j) > h the selection process fails. If n(j) = s, there are no constraints
due to Bj (since s pages have already been selected from the first j buffers) and
the selection proceeds to j + 1. Otherwise (s < n(j) ≤ h), select from the first j
buffers n(j)−s pages that were not selected yet, and proceed to j +1. Note that
this scheme is still nondeterministic because we have not yet specified exactly
which pages are scheduled. We call this scheme the restricted buffer scheme.

Theorem 2. Any legal schedule for WS can be generated by the restricted buffer
scheme.

We now give some deterministic rules for deciding exactly which pages to
schedule in a restricted buffer scheme. In applying the restricted buffer scheme,
it must determine, given a specific k and j, which k pages from the first j buffers
are to be scheduled in the next time slot. Naturally, high priority is given to pages
whose transmission will reduce the most the load on the channels.

This load can be measured by a potential function based on the locations
of the pages. We suggest two greedy selection rules, each of them maximizes
a different potential function. Our first greedy rule is suitable for the potential
function φ1 =

∑
i �i. Our second greedy rule is suitable for the potential function

φ2 =
∑

i �i/wi. These two approaches are realized by the following rules:

1. Select pages for which wi − �i is maximal.
2. Select pages for which (wi − �i)/wi is maximal.

In the first rule, denoted LBM (Largest Backward Move), pages that can in-
crease φ1 the most are selected. In LBM, pages that will move the most are
scheduled first. In the second rule, denoted WLBM (weighted LBM), the pages
that increase φ2 the most are selected. Each of these rules can be applied when
ties are broken in favor of pages associated with smaller windows or larger win-
dows. Our simulations reveal that breaking ties in favor of pages with small
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windows performs better for almost all inputs. On the other hand, we can-
not crown any of these two rules as the ultimate winner. For the first rule we
show that it is optimal for a large set of instances, even without the dead-end
detection of the restricted buffer scheme. The second rule performs better on
large harmonic instances. For both rules, the simulations give good results (see
Section 3).

In our simulations, a third natural greedy rule is considered, Earliest Dead-
line First, in which the pages with minimal �i are selected. This rule is optimal
for other periodic scheduling problems that care about average gaps (e.g., peri-
odic scheduling [17] and the chairman assignment problem [20]). However, in our
problem this rule performs poorly. This can be explained by the fact that dead-
lines are well considered by the dead-end detection mechanism of the restricted
buffer scheme. The role of the additional page selection is to reduce future load
on the channels.

2.4 The LBM Selection Rule

Let LBM be the buffer scheme with the greedy rule that prefers pages with large
(wi − �i) and breaks ties in favor of pages with smaller windows. We show that
LBM is optimal for a large set of instances even without the dead-end detection
mechanism of the restricted buffer scheme. Without dead-end detection, LBM
runs as follows:

1. Initialization: Put i in buffer Bwi
for all 1 ≤ i ≤ n.

2. In each time slot:

(a) If b1 > h then terminate with a failure.
(b) Otherwise, schedule all the pages from B1.
(c) If h > b1, select h− b1 additional pages with the largest (wi − �i), break

ties in favor of pages with smaller windows.

Optimality for Divisible-size Instances:

Definition 1. An instance W of WS is a divisible-size instance, if wi+1 divides
wi in the sorted sequence of windows w1 ≥ · · · ≥ wi ≥ wi+1 ≥ · · · ≥ wn for all
1 ≤ i < n.

For example, an instance in which all the windows are powers of 2 is a
divisible-size instance. The divisible-size constraint is not unreasonable. For ex-
ample, pages could be advertising slots which are only offered in windows that
are powers of 2, in a way that magazines sell space only in certain fractions, 1/2
page, 1/4 page, and so on. The following Theorem proves that LBM is optimal
for divisible-size instances.

Theorem 3. If an instance, W, of WS is a divisible-size instance and h ≥
h0(W), then LBM never fails.
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3 Deterministic Rules Experiments

We simulated the buffer scheme with the deterministic page-selection rules given
in Section 2.3. The performance of the buffer scheme, measured by the number
of channels required to schedule the pages, was compared for each instance, W,
with the lower bound h0(W) and with the number of channels required by the
greedy algorithm, Best-Fit Increasing (BFI), given in [5]. The algorithm BFI
schedules the pages in non-decreasing order of their window request. Page i with
window request wi is assigned to a channel that can allocate to it a window w′

i

such that wi −w′
i is non-negative and minimal. In other words, when scheduling

the next page, BFI tries to minimize the lost width (1/w′
i − 1/wi). Note that

BFI produces only perfect schedules.
In our simulations we considered several classes of instances. In this extended

abstract we report about two of them:
(i) Random - Sequences generated randomly, wi is chosen randomly in 2, . . . , 500
according to the following distribution. Let S =

∑500
i=2 i then the probability

of choosing wi = i is i/S. The simulation results for random instances are
shown in Figure 1. The same set of randomly chosen pages was scheduled by
the greedy BFI algorithm, by the buffer scheme using the LBM rule and by
the buffer scheme using the weighted LBM rule. It can be seen that the buffer
scheme always performs better, or not worse, than the greedy algorithm. Also,
the buffer scheme is always within one channel from the lower bound (given by
h0(W)).
(ii) Harmonic - Hn = 〈1, 2, . . . , n〉. The simulation results for Harmonic in-
stances is shown in Figure 2. For each number of channels h = 2, . . . , 8 and for
each rule, the maximal n such that Hn is scheduled successfully is presented.
For these instances, the algorithm BFI performs better than any of the deter-
ministic rules of the buffer scheme. The differences though are not significant.
In particular, for any harmonic sequence, none of the rules failed on h0(W)+1
channels.
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4 The Exhaustive Buffer Scheme

In this section, we demonstrate the usefulness of the buffer scheme for practical
cases for which it is possible to run an efficient implementation of the scheme that
exhausts all possible solutions. Dead-end detection is integrated in the search.
It enables early pruning of dead-end states and ensures reasonable cycle-search
time. We use the scheme to find the best schedules for some instances and to
prove non-trivial impossibility results for other instances.

To obtain our results, we reduce the problem of finding a schedule based on
the buffer scheme to the problem of detecting a directed cycle in a finite directed
graph. This problem can be solved using standard Depth First Search (DFS).
Consider the directed graph G in which each vertex represents a possible state
of the buffers, and there is an edge from v1 to v2 if and only if it is possible to
move from the state represented by v1 to the state represented by v2 in one time
slot - that is, by scheduling h pages (including all the pages of B1) and updating
the resulting page locations as needed. Note that G is finite since the number of
pages is finite and each page has a finite number of potential locations. Now use
a standard DFS to detect if there is a directed cycle. If a cycle is detected, then
this cycle induces an infinite schedule. If no directed cycle exists, by Theorem 1,
there is no schedule.
Windows Scheduling for Broadcasting Schemes: The buffer scheme can find for
small values of n the minimal d such that there exists a schedule of the in-
stance W = 〈d, . . . , d + n − 1〉 on h channels. These instances are of special
interest for the media-on-demand application since a schedule of W would imply
a broadcasting scheme for h channels with delay guaranteed at most d/n of the
media length (using the shifting technique presented in [6]). In this scheme, the
transmission is partitioned into n segments. The trade-off is between the num-
ber of segments and the delay. Table 1 summarizes our simulation results for
n = 5, 6, 7, 8 segments and a single channel. For each 5 ≤ n ≤ 8, we performed
an efficient exhaustive search over all possible executions of the buffer scheme.
While for some values of n the optimal schedules are perfect and can be gener-
ated by simple greedy heuristics, for other values of n, the non-perfect schedules
produced by the buffer scheme are the only known schedules. This indicates that
for some values of n and d the best schedule is not perfect. No existing technique
can produce such schedules.

To illustrate that optimal schedules might be non-structured, we present the
optimal one-channel schedule for 〈5, . . . , 11〉. No specific selection rule was ap-

Table 1. Some best possible schedules for small number of segments

# of segments best range delay

5 4..8 4/5 = 0.8

6 5..10 5/6 = 0.833

7 5..11 5/7 = 0.714

8 6..13 6/8 = 0.75
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plied to produce this schedule, it was generated by exhaustive search over the
non-deterministic execution of the buffer scheme. [10, 9, 7, 5, 8, 6, 9, 11, 5, 7, 10, 6, 8,
5, 11, 9, 7, 6, 5, 8, 10, 6, 7, 5, 9, 11, 6, 8, 5, 7, 10, 9, 6, 5, 7, 8, 11, 5, 6].

Impossibility Results: Using the buffer scheme, we were able to solve an open
problem from [5] by proving that no schedule exists on three channels for the
instance H10 = 〈1, . . . , 10〉 even though

∑10
i=1 1/i < 3. Using the early detection

of dead-ends we able to reduce the search proving impossibility from 3,628,800
states to only 60,000 states. Using similar techniques we determined that there
are no one channel schedules for any of the sequences 〈3..7〉 , 〈4..9〉 , 〈4..10〉, and
〈5..12〉. This means that the ranges given in the Table 1 are optimal.

Arbitrary Instances: Most of the previous algorithms suggested for WS produce
perfect schedules. The buffer scheme removes this constraint. We demonstrate
this by the following, one out of many, example. Consider the instance W =
〈3, 5, 8, 8, 8〉. Using the fact that gcd(3, 8) = gcd(3, 5) = 1, it can be shown that
there is no perfect schedule for W on a single channel. The exhaustive search
and the deterministic buffer scheme with LBM produce the following non-perfect
schedule for W:

[3, 5, 8a, 3, 8b, 5, 3, 8c, 8a, 3, 5, 8b, 3, 8c, 5, 3, 8a, 8b, 3, 5, 8c, . . .].

We could not find any special pattern or structure in this schedule, suggesting
that the only non-manual way to produce it is by using the buffer scheme.

5 Extensions to Other Models

We show how the buffer scheme paradigm can be extended to more general envi-
ronments. As opposed to other known heuristics for WS, the first two extensions
are simple and natural.

Dynamic Window Scheduling: In the dynamic (on-line) version of WS, pages
arrive and depart over time [9]. This can be supported by the buffer scheme as
follows: (i) Any arriving page with window wi is placed upon arrival in Bwi

.
(ii) Any departing page is removed from its current location. The number h of
active channels can be adjusted according to the current load. That is, add a
new channel whenever the current total width is larger than some threshold (to
be determined by the scheme), and release some active channels whenever the
current total load is smaller than some threshold.

Window Scheduling with Jitter: In this model, each page is associated with a
pair of window sizes (w′

i, wi) meaning that i needs to be scheduled at least once
in any window of wi time slots, and at most once in any window of w′

i time
slots. That is, the gap between consecutive appearances of i in the schedule
must be between w′

i and wi. In the original WS, w′
i = 1 for all 1 ≤ i ≤ n. In the

other extreme, in which w′
i = wi, only perfect schedules are feasible and the gap
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between any two appearances of i in the schedule is exactly wi. To support such
instances with a buffer scheme, we modify the page-selection rules as follows: (i)
After scheduling i, put it in buffer Bwi

. (ii) Page i can be selected for scheduling
only if it is currently located in one of the buffers B1, B2, . . . , Bwi−w′

i
+1. This

ensures that at least w′
i slots have passed since the last time i was scheduled.

The first selection of i can be from any buffer.

Pages with Different Lengths: In this model, each page is associated with a win-
dow wi and with a length pi. Page i needs to be allocated at least pi transmission
slots in any window of wi slots. Clearly, pi ≤ wi for all 1 ≤ i ≤ n, otherwise it is
impossible to schedule this page. We consider non-preemptive windows schedul-
ing in which for any i, the pi slots allocated to i must be successive. In other
words, i must be scheduled non-preemptively on the channels and the gap be-
tween any two beginnings of schedules is at most wi.1 To support pages with
different lengths, each i is represented as a chain of pi page-segments of length
1. Due to lack of space we do not give here the full details of how these page
segments are selected one after the other.
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