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Abstract The transactional approach to contention management guarantees consis-
tency by making sure that whenever two transactions have a conflict on a resource,
only one of them proceeds. A major challenge in implementing this approach lies in
guaranteeing progress, since transactions are often restarted.

Inspired by the paradigm of non-clairvoyant job scheduling, we analyze the per-
formance of a contention manager by comparison with an optimal, clairvoyant con-
tention manager that knows the list of resource accesses that will be performed
by each transaction, as well as its release time and duration. The realistic, non-
clairvoyant contention manager is evaluated by the competitive ratio between the last
completion time (makespan) it provides and the makespan provided by an optimal
contention manager.

Assuming that the amount of exclusive accesses to the resources is non-negligible,
we present a simple proof that every work conserving contention manager guarantee-
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ing the pending commit property achieves an O(s) competitive ratio, where s is the
number of resources. This bound holds for the GREEDY contention manager studied
by Guerraoui et al. (Proceedings of the 24th Annual ACM Symposium on Principles
of Distributed Computing (PODC), pp. 258-264, 2005) and is a significant improve-
ment over the O (s2) bound they prove for the competitive ratio of GREEDY. We show
that this bound is tight for any deterministic contention manager, and under certain
assumptions about the transactions, also for randomized contention managers.

When transactions may fail, we show that a simple adaptation of GREEDY has a
competitive ratio of at most O (ks), assuming that a transaction may fail at most k
times. If a transaction can modify its resource requirements when re-invoked, then
any deterministic algorithm has a competitive ratio €2 (ks). For the case of unit length
jobs, we give (almost) matching lower and upper bounds.

Keywords Scheduling - Transactions - Software transactional memory -
Concurrency control - Contention management

1 Introduction

Conventional methods for multi-processor synchronization rely on mutex locks,
semaphores and condition variables to manage the contention in accessing shared re-
sources. The perils of these methods are well-known: they are inherently non-scalable
and prone to failures. An alternative approach to managing contention is provided by
transactional synchronization. As in database systems [13], a fransaction aggregates
a sequence of resource accesses that should be executed atomically by a single thread.
A transaction ends either by committing, in which case, all of its updates take effect,
or by aborting, in which case, no update is effective.

The transactional approach to contention management [5] guarantees consistency
by making sure that whenever a conflict occurs, only one of the transactions involved
can proceed. A transaction J is in conflict when it tries to access a resource R previ-
ously modified by some active (pending) transaction J’, that has neither committed
nor aborted yet. When this happens, one of the transactions—J or J'—is aborted and
its effects are cleared. The aborted transaction is later restarted from its very begin-
ning. This guarantees that committed transactions appear to execute sequentially, one
after the other, without interference.

A major challenge in implementing a contention manager lies in guaranteeing
progress. This requires choosing which of the conflicting transactions (J or J') to
abort so as to ensure that work eventually gets done, and all transactions commit. (It
is typically assumed that a transaction that runs without conflicting accesses com-
mits with a correct result; this is guaranteed, for example, by obstruction-free trans-
actions [5].) This goal can also be stated quantitatively, namely, to maximize the
throughput, measured by minimizing the makespan—the total time needed to com-
plete a finite set of transactions.

Rather than taking an ad-hoc approach to this problem, we observe that it can
naturally be formulated in the parlance of the non-clairvoyant job scheduling para-
digm, suggested by Motwani et al. [8]. A non-clairvoyant scheduler does not know
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the characteristics of a job a priori, and is evaluated in comparison with an optimal,
clairvoyant scheduler that knows all the jobs’ characteristics in advance.

We adapt the non-clairvoyant model to our setting, by viewing each transaction
as a job and assuming that its resource needs are not known in advance. An optimal
contention manager, denoted OPT, knows the accesses that will be performed by each
transaction, as well as its release time and duration. The quality of a non-clairvoyant
contention manager is measured by the ratio between the makespan it provides and
the makespan provided by OPT. This ratio is called the competitive ratio of the con-
tention manager.

Under a natural assumption that the amount of exclusive accesses to the resources
is non-negligible (as formalized in Sect. 2), taking this approach allows us to present
a simple and elegant proof that every contention manager with the following two
properties achieves an O (s) competitive ratio, where s is the number of resources.

Property 1 A contention manager is work conserving if it always lets a maximal set
of non-conflicting transactions run.

Note that work conserving contention managers can be efficiently implemented in
our model. In general, being work conserving requires to solve the maximum inde-
pendent set (IS) problem, which is NP-hard and hard to approximate. However, in our
model, a job that is ready for execution requests a single resource in its first action;
therefore, the associated conflict graph is a collection of disjoint cliques, on which IS
is easily solved by arbitrarily picking one member from each clique.

Property 2 A contention manager obeys the pending commit property [3] if, at any
time, some running transaction will execute uninterrupted until it commits.

Both properties are guaranteed, for example, by the GREEDY contention man-
ager, proposed by Guerraoui et al. [3]: Jobs are processed greedily whenever pos-
sible. Thus, a maximal independent set of jobs that are non-conflicting over their
first-requested resources are processed each time. When a transaction begins, it is
assigned a unique timestamp (which remains fixed across re-invocations), so that ear-
lier (“older”) transactions have smaller timestamps. Assume transaction J accesses
a resource modified by another pending transaction J'; if J is earlier than J’ (has
smaller timestamp) then J’ aborts, otherwise, J waits for J’ to complete.l (Special
accommodation is given to waiting transactions, see [3].) The GREEDY contention
manager is decentralized and relies only on local information, carried by the transac-
tions involved in the conflict.

Our result is a significant improvement over the O(s?) upper bound previously
known for GREEDY (see [3]). Simulations [3, 4] show that this contention manager
performs well in practice; our analysis indicates that these, and in fact even better,
results are expected. We remark that our upper bound for GREEDY allows transac-
tions with arbitrary release times (which are unknown in advance to the contention
manager) and arbitrary durations. In contrast, the analysis of Guerraoui et al. relies

IThis resembles classical deadlock prevention schemes [9] (see [12, Ch. 18]).
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on the assumption that transactions are available at the beginning of the execution
and have equal duration.

We show that our analysis is asymptotically tight, by proving that no (determin-
istic or randomized) contention manager can achieve a better competitive ratio. This
lower bound of €2(s) holds even if the contention manager is centralized, not work
conserving, and it does not guarantee the pending commit property. The lower bound
holds even if all the transactions have the same duration and are all available at time
t = 0. As implied by the systems motivating our work, we assume that transactions
can modify their resource needs when they are re-invoked (after being aborted) or if
they run at a different time. In Sect. 4.1 we prove the lower bound for the case where
the first request of each job is fixed. In Sect. 4.2 we prove a similar result for the case
of variable first request. The second proof holds even in the case where each job re-
quests exactly one resource. The randomized versions of the proofs hold against the
standard oblivious adversary [1].

We also study what happens when transactions may fail (not as a result of a con-
flict). Guerraoui et al. [4] assume that a transaction may fail at most k times, for some
k > 1, and show a contention manager FTGREEDY that has competitive ratio O (ksz).
We improve on their result and show that the competitive ratio is at most O (ks). If a
transaction can modify its resource requirement when re-invoked, or if it is run at a
later time, then any deterministic algorithm has a competitive ratio €2 (ks).

Finally, for the special case of unit length jobs, we give (almost) matching lower
and upper bounds. We present a randomized algorithm whose competitive ratio
is O(max{s, klogk}). This is within logarithmic factor from the lower bound of
Q (max(s, k)), which holds for any (deterministic or randomized) algorithm. The al-
gorithm operates in phases and the probability that a pending job will try to run at a
given time increases as the number of jobs in the system drops.

Previous work on non-clairvoyant scheduling assumes that the jobs are not avail-
able together at the start and that the job’s duration is not known when it arrives,
while the optimal scheduler knows the set of jobs, their release times and their du-
ration from the beginning. Motwani et al. [8] allow preemption and assume that a
preempted job resumes its execution from where it was stopped; in addition, their
schedulers are centralized. In contrast, in our analysis, an aborted job is restarted
from its beginning; moreover, we mostly study decentralized contention managers.
Edmonds et al. [2] study scheduling of jobs that arrive together, but their characteris-
tics and resource needs change during their execution. Irani and Leung [6] consider
decentralized schedulers but assume unit-length jobs that are executed without inter-
ruption.

Kalyanasundaram and Pruhs [7] consider the case where the processors (running
the jobs) may fail and study the makespan and the average response time of online
algorithms in comparison with an optimal offline scheduler. Their results do not allow
preemption, and clearly, do not account for the added cost of re-invocations.

Herlihy et al. [5] suggest a generic implementation of a contention manager. Our
description follows Scherer and Scott [10], who also evaluate a wide variety of con-
tention managers in [11]. With each resource, we associate the identity of the trans-
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JI:W(R1) W(Ry) Commit
J2:W(Ry) W(Ry) Abort W(Ry) W(Ry) Commit
J3:W(R3) W(Ry) Abort W(R|) W(Rp) Abort W(R3) W(Rp) Commit

Fig. 1 A possible execution

action that most recently modified it.” Each transaction has a status field indicating
whether it is committed, aborted, or still active. This way, a transaction accessing
a resource can easily verify whether it is “locked” by another pending transaction,
and decide how to proceed—perhaps using additional data stored for each transac-
tion. All contention managers that fit this generic description are work conserving.
Scherer and Scott [10] provide a survey of contention managers; more recent work is
described in [3, 11].

2 Model and Problem Statement

Consider a set of n > 1 transactions (often called jobs below) Jy, ..., J, and a set of
s > 1 shared resources Ry, ..., Rs. Each transaction is a sequence of actions, each of
which is an access to a single resource. The transaction starts with an action and may
perform local computation (not involving access to resources) between consecutive
actions. A transaction completes either with a commit or an abort. The duration of
transaction J; is denoted d; .

Formally, an execution is a finite sequence of timed actions. Each action is taken by
a single transaction and it is either a read to some resource R, a write to R, a commit,
or an abort. The times are nonnegative, non-decreasing real numbers. It is assumed
that the times associated with actions of one transaction are increasing, namely, two
actions of the same transaction cannot occur at the same time.

A transaction is pending after its first action, which must be a read or a write, until
its last action, which is a commit or abort; it takes no further actions after a commit
or an abort.

As an example, consider the execution described in Fig. 1, W(R;) denotes write
to R;. Time advances horizontally from left to right. Note that a transaction may
request different resources in different executions. In the above example, when J3
starts, its first request is for R3. Later, when J3 is reinvoked, its first request is for R;.

We assume that the amount of exclusive accesses to the resources performed by
J1, ..., J, is non-negligible, more formally, the total duration of transactions con-
taining a write action is at least o Z?=1 d;, where o € (0, 1] is a constant.

For a scheduling algorithm A and a set, S, of jobs, makespan(A, S) denotes the
completion time of all jobs under A, that is the latest time at which any job of A is
completed. S is omitted when the set of jobs is clear from the context. For randomized
algorithms we use makespan(A, S) to denote the expected latest completion time of
any job.

2The implementation also maintains before and after information for rolling back an aborted transaction,
an issue outside the scope of our paper.
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A transaction may access different resources in different invocations, when it is
re-invoked after an abort; this is natural, for example, in the context of a transaction
that access resources according to their functionality, e.g., “the last node in a list”,
rather than their address. While the online algorithm does not know these accesses
until they occur, an optimal offline algorithm, denoted OPT, knows the sequence of
accesses of the transaction to resources in each execution.

We make the following simple observation on the decisions of OPT.

Claim 1 There is an algorithm OPT that achieves the minimum makespan and sched-
ules each job exactly once.

Proof Any execution with minimum makespan can be modified so as to remove all
partial executions. Clearly, this does not increase the makespan and provides the
above property. O

3 The Greedy Algorithm Has O (s)-Competitive Makespan

The greedy algorithm GREEDY, suggested in [3], schedules a maximal independent
set of jobs (i.e., jobs that are non-conflicting over their first-requested resources).
When a set of jobs is running, and some of these jobs are conflicting over some re-
source, R, GREEDY grants access to the “oldest” job among them, i,. If i, needs to
perform write, then all other jobs are aborted,; if it performs read, any other “reader”
can access R; too. The algorithm guarantees the pending commit property: at any
time in the execution, at least one job (the oldest) is guaranteed to complete its exe-
cution without being aborted.

Theorem 1 GREEDY is O(s)-competitive.

Proof Consider the sequence of idle time intervals, Iy, ..., Iy in which no job is
running under GREEDY, and the sequence of time intervals I{, ..., I; in which no
job is running under OPT. We first prove that there exists an optimal schedule in
which the total idle time is at least the total idle time of GREEDY. Formally,

Claim2 Y5_11;1 < X5_, 11]].

Proof By definition, GREEDY is idle at a certain time only after completing all jobs
available at that time. Let I} = [#1, 12]; this implies that during time interval [0, #{],
GREEDY is busy processing some set of jobs S. The processing of S is completed at
time 71, and the next job is released at time #,. There exists an optimal schedule that
completes the (sub)instance S at time at most #1, is idle until #», and possibly has ad-
ditional idle intervals during [0, #1]. Such an optimal schedule exists, since GREEDY
completes all jobs in S by time #; and no job is available before time #,. Since we are
interested in a schedule which minimizes the makespan, it is even possible to simply
adopt the schedule of GREEDY without violating the optimality of the schedule.
Therefore, there exists an optimal schedule with total idle time at least t, — #; =
|11] till time #,. Continuing the same way, for each prefix of idle intervals, we get
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tha_t for any j, 1 < j <k, there exists an optimal schedule with total idle time at least
Z{:l |1;] till the end of I;. In particular, for j = k this gives the statement of the
claim. [l

By assumption, a job accesses at least one resource at any time during its exe-
cution. Consider the set of write actions of all transactions. If s + 1 jobs or more
are running concurrently, the pigeonhole principle implies that at least two of them
are accessing the same resource. Thus, at least one out of s + 1 writing jobs will be
aborted. Claim 1 implies that no job is aborted in an execution of OPT, implying that
at most s writing jobs are running concurrently during time intervals that are not idle
under OPT, that is, outside 1, ..., I;. Thus, the makespan of OPT satisfies:

¢ n
m ay i d;
akespan(OPT) > E |1}| T =1
N

j=1

On the other hand, whenever GREEDY is not idle, at least one of the jobs that are
processed will be completed. Hence, the makespan of GREEDY satisfies:

k n
makespan(GREEDY) < Z [1;| + Zd,-.
j=1 i=1

The theorem follows. O

We remark that the same proof holds for any work conserving contention manager
that guarantees the pending commit property.

4 Q(s) Lower Bounds for Contention Managers
4.1 A Lower Bound for Fixed First-Request

In the following, we give a matching lower bound to the upper bound derived in
Sect. 3 for GREEDY.

We first prove the lower bound for work conserving contention manager, and then
extend it to any deterministic algorithm. The proof constructs a set of jobs and re-
quests, for which a non-clairvoyant manager obtains makespan €2(s?), while the
makespan achieved by a clairvoyant manager is O (s). Intuitively, the idea is to have
O (s) sets, each with O (s) unit-length jobs. In every set, all jobs ask for the same first
resource. Thus, only one job from each set can start in each time slot. A clairvoyant
contention manager, which knows the whole set of resources to be required by each
job, can complete a set of O(s) non-conflicting jobs in each time slot, resulting in
makespan O (s). However, for any contention manager, and for each set of jobs se-
lected to be executed simultaneously, an adversary can determine an identical second
requested resource, enforcing all but one of the jobs to abort. This yields makespan
O(s?). The details follow.
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Table 1 The set of jobs used in

the proof of Theorem 2 for a 1 2 3 e 4
work-conserving contention
manager. 1 (1,2 (1,4) (1,6) o (L2
2 (32 (3.4 (3,6) o G2
362 (5.4 (5,6) e 529)
g (2q-12 (2¢-149 (2¢9-16) ... ((29-129)

Theorem 2 Any deterministic contention manager is 2 (s)-competitive.

Proof Assume that s is even and let g = s5/2.

The proof uses an execution of g2 = s2/4 unit length jobs, described in Table 1:
Each job j requests a pair of resources (R}, R},), such that R}, is the resource re-
quired to begin the transaction, and R}, is an additional resource requested by the
job in order to complete its execution and is not known in advance (the table shows
the indices (ji, j»)). All jobs are released and available at time + = 0. An online al-
gorithm knows only the first resource request of each job, therefore, the input is in
fact a set of q2 jobs, such that for every odd-indexed resource 2i +1,0<i <g — 1,
exactly g jobs request Ro;y at the start of their execution. The second resource in
each pair will be determined by the adversary during the execution of the algorithm
in a way that will force many of the jobs to abort.

Consider a work-conserving contention manager. Being work-conserving, it must
select to execute a set of g non-conflicting jobs, each requesting a different resource
as its first requested resource. The adversary will then determine the second resource
of each of these jobs according to a single column in Table 1. Specifically, the first
phase of ¢ jobs is described by the first column of the table, that is, in order to com-
plete their execution, all jobs request at time 1 — & the resource R, as their second
resource. Clearly, at most one of these jobs can complete its execution, while all other
g — 1 jobs must abort.

In general, in phase ¢, the algorithm selects an independent set of g jobs, and the
adversary determines their second requested resource at time ¢ + 1 — & to be Ry, as
described by column ¢ of the table. Once again, only one job from this column can
complete its execution while all other jobs must abort.

All aborting jobs request R; in any subsequent execution. This implies that also
after the first g time-slots at most one job commit in each time slot, resulting in
makespan g°.

We now show that there exists an optimal schedule with makespan g: Note
that each diagonal directed from left to right in the table consists of g indepen-
dent jobs that require exactly all the resources. Formally, for every odd value z €
{1,3,...,2¢g—1},let I, be the set of jobs for which (R}, , R},) have the form (r, (r+z)
mod 2g), forr =1,3,...,2¢q — 1. For example I ={(1,2), (3,4),...2q9 — 1,29)}
and Iy, 5={(1,29 —4), (3,29 —2),(5,29),(7,2),...,(2q — 1,2qg — 6)}.

An optimal contention manager runs all g jobs forming each of these sets simul-
taneously; the makespan of this schedule is the number of sets, that is, ¢g. The com-
petitive ratio of any work-conserving algorithm is therefore g2/q = g = Q(s).
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In order to remove the assumption that the algorithm is work-conserving, we mod-
ify the resource requirements as follows: if a job starts its first execution till time g
then the second resource required to complete this job is as in Table 1. However, if a
job starts its first execution after time ¢, then it requires R; to complete its execution.
In phase ¢, for t < g, the algorithm selects an independent set of at most g jobs, and
the adversary determines their second requested resource at time ¢ 4+ 1 — & to be Ry,
as described by column ¢ of Table 1. As in the proof for work conserving algorithms,
only a single job from this column can complete its execution, while all other jobs
must abort and will require R; in their next execution. In phase 7, for ¢ > g, the al-
gorithm again selects an independent set of at most g jobs; however, since all these
jobs require Rj at time ¢ 4+ 1 — ¢, only a single job from each phase can commit and
all other jobs abort and will require R; for their next execution.

Thus, as described for work-conserving algorithms, the makespan of any algo-
rithm is at least g2 = €(s%). Recall that the optimal scheduler can complete all jobs
in g = O(s) time slots and therefore is not affected by the resource requirement
changes at time g. The ratio between the completion time of the algorithm and the
optimal schedule is again 2 (s). U

Next we generalize the bound in Theorem 2 to randomized algorithms.
Theorem 3 Any randomized contention manager is 2 (s)-competitive.

Proof We use an adaptation of Yao’s principle [14] for proving lower bounds for
randomized algorithms. It states that a lower bound on the competitive ratio of deter-
ministic algorithms using a fixed distribution on the input, is also a lower bound for
randomized algorithms and its value is given by %ﬁ’w

Assume that ¢ is an integer divisible by 128. We use the following distribution on
possible inputs. As in the proof of Theorem 2, there are g2 jobs in total, denoted by
Ji, -, jg2- Moreover, there are g jobs whose first requestis 2i +1for0 <i <¢g —1.
The set of jobs whose first request is 2/ + 1 is fixed to be the jobs jix11, ..., ji+1)q-
This set of jobs is called J;. In other words, J; is a permutation of the i-th row in Ta-
ble 1. In the following we argue that, for the given set of g2 jobs, the expected number
of conflicting jobs in each round is non-negligible. This will force the algorithm to
keep running jobs for €2(¢?) rounds in order to complete the schedule.

Among the g requests whose first request is 2i + 1, there is exactly one whose
second request is going to be 2j for 1 < j < g. However, this is not fixed and a per-
mutation of the second requests 2,4, ..., 2g for the jobs jixi1, ..., ji+1)q is chosen
uniformly at random. Note for each job, the probability to have a given second request
is exactly 1. Note also that given two jobs from different sets J; and J;» (i # i), the
values of tﬁeir second requests are independent. This is clearly not true for a pair of
requests from one set J;. The second request we define for each job changes exactly
at time ¢ to be R;. Until that time it is the second request defined by the permutation
above.

For any possible outcome of the random choices, the set of jobs is the same as be-
fore (the name of the jobs and their order are different). Specifically, given a possible
input, there is exactly one job with a pair of requests (2a + 1,2b) forO0 <a <q — 1
and 1 < b < ¢q. Thus an optimal algorithm can still complete all jobs by time g.
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Since jobs start at integer times, we consider the first % units of time, and show

that the expected number of jobs that can complete their execution by time % is at

most This is done by showing that the expected number of jobs that can be

128
completed in each time unit is at most 222 Since in the additional q time slots, only

q jobs can be completed during each time slot only add1t10nal ]ObS can complete

running by time ¢, which gives a total of lgg Since after time g only one job can

be completed in each time slot, the makespan of the algorithm is therefore at least
2
9+ 1 = Q(g?).
Consider now the behavior of the algorithm. At every integer time point
0,1,... q — 1, the algorithm chooses an independent set and runs it. We may as-

sume that this set contains at least 2L JObS 0therw1se we already see that at most

? jobs are completed, which is less than W' Consider a set of ? jobs running
simultaneously sorted in some given order. These jobs are clearly all from different
sets J;, thus their choices of second resource are independent, by the definition of
these choices. Consider the first %q jobs in this order. If among these jobs there are
at most % different second resources, this means that at least % of them will not be
completed in this round and we are done. Otherwise, every job out of (at least) %
other jobs in this independent set has a second resource that is chosen independently
of the others: it is chosen uniformly at random among the g options. Let j be a job
in this set, and suppose that j € J;. We note that after ¢ rounds have taken place, the
second resources of at most ¢ jobs of J; were revealed to the algorithm; thus, the
second resource of j belongs to the set of second resources that were not assigned to
jobs in J; scheduled in the previous rounds. It follows that j has at least g — ¢ > %q

options for the choice of second resource. Let g > %‘1 be the number of options for
job j. Since there are g options for a choice of second resource in general and g of
them are possible for j, at most g — g of the (at least) ; 9 second resources requested
for the 3¢ _]ObS cannot appear as a second request for j. Hence, we get that at least
4 _(q— g) = g — =1 are choices for a second resource that are pos51ble for j and are
already second resources for at least one job among the first 3¢ JObS in the ordering.
Then, the probability that j chooses a second resource that i 1s not unique for it in

<+ > 1> L. The expected number of jobs (among

the current round is

the % jobs that we consider) which do not have a unique second resource (and thus
cannot be completed, or make it impossible for some job among the first % jobs to be
completed), is at least %, as we wanted to prove. [l

4.2 A Lower Bound for Variable First-Request

Consider now a generalized model in which a job j may modify its first request while
waiting to be executed. Thus, the online algorithm knows the first resource requested
by any job only when this job starts running. For this model, we show a lower bound
of Q(s).

Theorem 4 Any randomized contention manager in the model where the first re-
source request is time dependent has competitive ratio 2(s).
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Proof We first prove a lower bound of €2(s) for an arbitrary online deterministic
algorithm, and then show how to adapt it to randomized algorithms. Let s" = |s/2].

In our execution, each job will have a single request for a resource. It reveals the
information regarding the resources it is going to need each time it restarts. Thus, the
resource requests are time dependent.

At first, there are 25’ sets of unit-length jobs Ay, ..., Asy. Each set contains 2s’
jobs, where all jobs in one set A; initially request resource i. For some of the jobs
this is changed later on. Consider the situation after s’ time units.

We define an offline contention manager OFF. Partition each set A; into B; and
C;. The set C; contains all jobs in A; that the algorithm completes by time s’. Add
additional jobs from A; to C; until |C;| =s’. Let B; = A; — C;. OFF runs the jobs of
B; during time units 1,2, ..., s’. Since each set B; requested a different resource, at
time s’, OFF completes all these jobs. However, the online algorithm did not run any
of these jobs yet. Starting at time s’, the jobs in By, B3, ..., By request resource R
when they start running. Thus, all waiting requests need to use the same resource, and
the online algorithm needs 25'* additional time units to complete them. In contrast,
OFF needs only s’ additional time units, since it can now run the C; jobs for all
i in s’ time units in parallel. We get that the algorithm completes all jobs at time
s' + 25’2, whereas OFF completes all jobs by time 2s’. This gives a lower bound of
145 =Q().

Assume now that the algorithm is randomized. Instead of defining C; as before,
let C; be the set of s” elements of A; with the highest probability to be run by the
algorithm and complete by time s’. Let B; = A; — C;, i.e., the jobs with smallest
probabilities to terminate successfully by time s’. As in the deterministic case, OFF
runs all jobs of all B; until time s’ and afterward all jobs of C;. Also, all jobs of B;
request only resource 1 if they are run starting from time s’ or later.

Let X; (respectively Y;) be the number of elements of B; (C;) that have been
completed by the algorithm by time s’. It holds that E(X;) < % To see this, we use
the linearity of expectation and get E(X;) < E(Y;) and since X; + ¥; < s’ we have
E(X;) + E(Y;) <s'. Thus, the expected number of elements from all B;’s that are

2
still waiting to be scheduled by the algorithm is at least 2‘7 = s'%. 1t follows that

the expected makespan is at least s’ + s 2, and we get a lower bound of Q(s) for the
randomized case as well. 0

We remark that GREEDY is O (s)-competitive also in this generalized model. The
proof of Theorem 1 makes no assumption on the identities of the requested resources,
i.e., a job may modify its resource request as long as it has not started running; also,
if a job was aborted and then restarted, it may initially ask for one resource, and later
modify its request.

5 Handling Failures
Consider a system in which jobs may fail; if a job j running at time ¢ fails, the con-

tention manager subsequently needs to restart the execution of j. Following Guer-
raoui et al. [4] we assume that a job may fail at most k times, for some k > 1; after
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a failure, the job is restarted. Indeed, for any job j, GREEDY may run j almost to
completion k times, and then restart its execution due to a failure. This stretches the
processing time of j to (k + 1)d;. In contrast, an optimal offline algorithm may avoid
the execution of a job j when j may fail. This implies:

Theorem 5 [f each job may fail at most k times, then GREEDY is O (ks)-competitive.
5.1 Lower Bounds

For this model, we show a lower bound of €2 (ks) for any deterministic algorithm. The
lower bound is obtained by constructing a job sequence in which failure occurs, for
each of the jobs, shortly before the job completes its execution. Since each job fails
k times, the deterministic online algorithm is forced to start the execution of each job
k times.

Theorem 6 Assume that the first request of a job for a resource is time dependent,
and each job may fail at most k times, for some k > 1, then any deterministic con-
tention manager has competitive ratio 2 (ks).

Proof Define the sets A;, B; and C; as in the proof of Theorem 4. The sequence
is the same until time 2s’ (= 2[s/2]) at which OFF completes all jobs. After this
time, we define failure times as follows. Consider the schedule of the algorithm. If
a running job already failed k times then it is not interrupted; otherwise, it fails just
before completion. Thus, all jobs except for at most 2s’ 24§ fail exactly k times.
Since the failure of any job occurs almost upon completion, the remaining 2s’ oy
jobs are completed only after (k + 1)(2s’ oy ) additional times units. We get a total
of (k + 1)(2s’2 — ") 4 2’ time slots, and a lower bound of Q (ks). O

We also obtain a lower bound also for randomized algorithms.

Theorem 7 Assume that the first request of a job for a resource is time dependent,
and each job may fail at most k times, for some k > 1, then any (deterministic or
randomized) contention manager has competitive ratio 2 (max{s, k}).

Proof Assume that k > 5, otherwise the deterministic bounds can be applied. A lower
bound of Q(s) follows from Theorem 4. To prove a lower bound of k consider an
input with two jobs j; and j», each having (a different) one of the two sets of failure
times: {1, %, 2, % ey %} or {%, 1,2, %, e %}. Both sets contain all multiples of
% (up to and including %) except one such number: the first set does not contain
% whereas the second one does not contain % Assume that s = 1, thus, the issue of
resources may be ignored. An offline algorithm can run the job with the first failure
times sequence at time 0, until time 1, and the other job at time 1, until time 2.
Consider an online algorithm. Let p; be the probability that job j; is running just
before time % and p» that j, is running. We have p; 4+ pp <1 (since it may be the
case that no job is running). If p; < p», we assign the first failure times sequence to
Jj1 and the second one to j, and otherwise we do the opposite assignment. The only
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way that all jobs are completed by time 2, is that some job is completed by time 1, and
thus this job needs to be running just before time %, and not interrupted at time % The
probability for that is pj in the first case and p» in the second case. However, in the
first case p; < % and in the second case py < %, so with probability at least %, at least

one job can run to completion only after time 1%1 Thus, the expected completion
time is at least 3 -2+ 5 - (1 + 1) = Q(h). O

Next we describe a randomized algorithm that matches this bound within a loga-
rithmic factor for the case where all jobs require unit processing time. We start with a
description of a centralized scheduler, and later explain how to make it decentralized.

5.2 Algorithm PHASES

Let J be the set of pending jobs, and | 7| be its size. Initially, [J is the set of all jobs,
and its size | 7| is n.

Phase 1. While | 7| > 2k repeat the following steps.
Choose randomly and uniformly a permutation of the [J jobs, and assign the
jobs in this order to run (one job at a time) in the next |J| time units. The
algorithm is oblivious to aborts or failures of jobs, and keeps the schedule
unchanged even if it becomes idle. Update 7.

Phase 2. For j =1, ..., [3log, k] repeat the following steps.
Choose randomly and uniformly an assignment of the pending jobs, to the 2k
time slots (such that each job receives one random time slot among the 2k slots,
and some slots possibly remain idle). Assign jobs to run at most one at a time,
according to the assignment, in the next 2k time units. Update 7.

Phase 3. While | 7| > 0 repeat the following steps.
Select a pending job from J and schedule it at every integer time point until it
runs to completion. Update J .

Even though the algorithm is randomized, its worst case total running time is
bounded: Phase 1 terminates after at most k + 1 iterations, since each job can be
interrupted at most k times. The same holds for Phase 2 and Phase 3. Thus, in the
worst case, the algorithm completes all jobs after O (nk + k) time units.

Next, we analyze the expected running time of the algorithm.

Theorem 8 The competitive ratio of PHASES is at most O (max{s, klogk}).

Proof Our proof consists of examining the expected duration of each of the three
phases. We show that the first phase consumes expected time of O (n) and the second
and third phases consume expected time O (klogk). Since OPT > max{l, €}, this
would give the competitive ratio as claimed. Note that if » is initially small, it may
be the case that Phase 1 is skipped, or the other phases are skipped. Moreover, it is
possible that either Phase 2 or Phase 3 are skipped, since the number of pending jobs
can drop quickly in an iteration of a previous phase.
Let n; be the number of pending jobs when Phase i starts.
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Consider Phase 1. Let X; be a random variable which denotes the length of iter-
ation i of this phase; clearly, X1 = n; = n. We claim that E(X;) < ’ L fori > 2.
Each job has equal probability to be assigned to each time slot, and smce n > 2k
during this phase, the probability of a job to run to completion during iteration i — 1
is at least % This holds since there are at most k times where a job may fail while
running, so there are at least k options to schedule it so that it does not fail. Since
this holds for any value of X;, and due to linearity of expectation, we conclude that
E(X;) < E(X' v . By induction, E(X;) < 7= 1”1 21.1,1 n. Let t be the number of it-
erations in Phase 1, which is at most k + 1. Therefore, the expected length of Phase 1
isatmost Y E(X;) =i 5= siin <2n.

Consider Phase 2. Since n < 2k, each iteration admits an assignment of all jobs to
time slots. Consider a specific job scheduled in an iteration. This job may be assigned
to any of the 2k time slots starting at integer times with equal probability. However,
out of these slots, at most k can prevent a successful completion of the job. Thus, the
job is completed in a given iteration with probability at least %

We next bound (from above) the probability that the algorithm reaches Phase 3.
The probability of a given job to be pending, even after [3log, k] iterations of
Phase 2, is at most ( )[3logz 1 =g Usmg the sum of probabilities as an upper bound,

the probability that at least one _]Ob is left for Phase 3 is at most Z% < 2’3‘ = k2 Thus,
with probability at most 1 — k%, the algorithm does not reach Phase 3, and the overall
running time for Phases 2 and 3 is at most 2k - [3log, k1.

Phase 3 lasts at most k 4+ 1 times units for every job, and thus takes at most
n3(k + 1) < 2k(k + 1) time units. This happens with probability at most and

kz’
gives expected additional time of at most < 5. We get for Phases 2 and 3 an
expected total running time of O (klogk), which completes the proof. (]

5.3 A Decentralized Implementation of PHASES

We describe a decentralized implementation of Algorithm PHASES, assuming a syn-
chronized system. Crucial to the algorithm is the assumption that pending jobs are
aware of |J| (the number of pending jobs), at the beginning of each iteration of
Phase 1, and at the end of each of the first two phases. (This can be achieved by
collecting global information.) Initially, | 7| = n.

As before, Phase 1 ends when fewer than 2k jobs remain. The length of each iter-
ation i > 1 in this phase is equal to the number of remaining jobs at the beginning of
this iteration, denoted m; . In iteration i of Phase 1, any job which has not completed
and did not fail yet in this iteration runs in the next time slot with probability m% De-
note by Sy the set of jobs that attempt to run in slot £ of some iteration, then conflicts
are resolved by selecting randomly and uniformly a single job in Sy to run; all other
jobs in Sy need to restart. Jobs follow Phase 2 in a similar manner, except that the
length of each iteration in this phase is 2k, and each of the remaining jobs runs in the
next slot with probability ﬁ The number of iterations in Phase 2, denoted y, will be
determined later.

In Phase 3, jobs start running in time slots that are integral multiples of k 4 1.
Each of the remaining jobs starts running in the next scheduling point. Conflicts are
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Initially, i = 0.

Phase 1. While || > 2k repeat the following steps.
i=i+1
m; =1|J|
For £ =1 to m; do
Se=0
For any j € J do
If j did not fail yet in iteration i then with probability 1/m; Sy = S U {j}.
If there are conflicting jobs in Sy, select randomly and uniformly one job j € Sy
to run in slot £, and Sy = {j}.
T=T\S
Phase 2. Fori =1to y do
For £ =1 to 2k do
Se=0
For any j € J do
If j did not fail yet in iteration i then with probability 1/2k Sy = Sy U {j}.
If there are conflicting jobs in Sy, select randomly and uniformly one job j € Sy
torunin slot £, and Sy = {j}.

T=T\S

Phase 3. £ =0
While | 7| > 0 do
Se=0
Forany j € J do Sy = Sy U {j}.
If there are conflicting jobs in Sy, run the oldest job j, € S¢ in the next
k 4 1slots, and Sy = {jo}.
T=T\Se
b=L0+k+1

Fig. 2 Algorithm DECENTRALIZED PHASES

resolved by selecting the oldest job to run in the next k + 1 slots, while the remaining
jobs need to restart.

The pseudocode of the algorithm appears in Fig. 2.

We next analyze the algorithm and show that it is a decentralized implementation
of algorithm PHASES, where the expected running time increases by a constant factor.

Theorem 9 The expected running time of the decentralized implementation of
PHASES is O(n + klogk).

Proof We show that the expected length of Phase 1 is O (n), while the expected length
of Phases 2 and 3 is O (klogk).

Consider Phase 1. Suppose that some job J, tries to run in slot j of iteration i.
The probability that no other job attempts to run in this slot is at least

1 m;—1 .
(1——) > M =25 2, (1)

m;
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If job J; runs alone in some slot in iteration i and does not fail, then J, completes in
this iteration. To lower bound the probability that job J, completes in iteration i, let
Good; denote the set of (at least) m; — k time slots that are good for Jy in iteration i,
i.e., if Jy runs in any of these slots then it does not fail. Also, let Al be the event “In
iteration i, job Jy runs for the first time in slot j, and conflicts with no other job in
this slot,” then the probability that J, completes in iteration i is at least

> Prob(A’)
Jj€Good;
11
> 11— — —_
X (-0) o
j€Good;
mi —1
1\ 1
3 (1__)
— 2
j=k+1 i ermi

e2

1 m; /2 1 1 m; /2
1__) _2<1_(1——> ) since k <m; /2
m; e m;

1 1 1\™mi/?
> —3<1 — —) since e < (1 — —> < e 12,
e Je m;

The first inequality follows from (1), and the second from the fact that, for the
lower bound, we may assume that Good; are the last (m; — k) slots in iteration i.
Letting § = e3(1 — 1/./e), we get that

E[X;] = (1 -8)E[X;—1],

where X; is a random variable denoting the length of iteration i of Phase 1 (as in
the analysis of Phase 1 in algorithm PHASES). It follows that the expected length of
Phase 1 is bounded by >, (1 —8)""'n = 2.

For Phase 2, we set the number of iterations to be

y =log(2(k + 1)/ logk)/log(1/(1 = 8)),

and get that its length is 2k - y = O (klogk).

For Phase 3, recall that the number of remaining jobs at the beginning of Phase 2
is bounded by 2k; the probability that a job that started Phase 2 does not complete
by the end of the phase is at most (1 — §)” < 2}2‘%:‘1). Since each of the jobs starting
Phase 3 gets (k + 1) time slots, the expected length of this phase is at most (1 — §)” -

2k(k + 1) = O (klogk). This completes the proof. U

In the decentralized implementation of PHASES, the worst case length of Phase 1 is
unbounded. The following adaptation of the algorithm results in bounding the length
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of Phase 1 by O(nk). When the phase reaches iteration z = log(k/2)/log(1/1 — §),
every remaining job starts running in the next time slot. Conflicts are resolved as
before, by random selection of one job in the conflict set. Clearly, this implies that
in the next (k 4+ 1)n time units all jobs complete. Note that, with this modification,
the expected length of Phase 1 is at most O(n) + Y ;_;(1 — 8)*(k + 1). The left
term reflects the expected running time of the original decentralized algorithm, and
the second term gives the expected number of slots used after iteration z. Here, we
consider only jobs which have not completed by iteration z and assign to each of
these jobs (k + 1) time slots. Since 22’21 (1 —68)*(k + 1) < 3n, the expected running
time remains O (n). The lengths of the other two phases are bounded.

6 Discussion

We take the perspective of non-clairvoyant scheduling to analyze the behavior of
transactional contention managers. Our framework can be extended to models not
considered here such as the case where the amount of exclusive accesses to the re-
sources is negligible, i.e., when there are many read-only jobs.

Another problem that remains open is the optimality of work-conserving con-
tention managers. The lower bound of Q2(s) presented in Theorem 2 holds for
non work-conserving contention managers; however, for work-conserving contention
managers the lower bound is suitable also for more powerful systems in which the
resource requests of a transaction do not change when it is re-executed.

The analysis of Algorithm PHASES hinges on the fact that the probability of a
job trying to execute in a phase depends on the number of pending jobs. Scherer and
Scott [10] describe a practical randomized contention manager that flips a coin to
choose between aborting the other transaction and waiting for a random time. Our
analysis suggests that this contention manager can be more effective by biasing the
coin in a way that depends on (at least) an estimate of the number of jobs waiting to
be executed.

Another interesting avenue for further research is to evaluate other complexity
measures, in particular, those that evaluate the guarantees provided for each individ-
ual transaction, like the average response or waiting time or the average punishment.
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