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Abstract In job scheduling with precedence-constraints, i < j means that job j can-
not start being processed before job i is completed. In this paper we consider selfish
bully jobs who do not let other jobs start their processing if they are around. Formally,
we define the selfish precedence-constraint where i <, j means that j cannot start be-
ing processed if i has not started its processing yet. Interestingly, as was detected by
a devoted kindergarten teacher whose story is told below, this type of precedence-
constraints is very different from the traditional one, in a sense that problems that are
known to be solvable efficiently become NP-hard and vice-versa.

The work of our hero teacher, Ms. Schedule, was initiated due to an arrival of
bully jobs to her kindergarten. Bully jobs bypass all other nice jobs, but respect each
other. This natural environment corresponds to the case where the selfish precedence-
constraints graph is a complete bipartite graph. Ms. Schedule analyzed the minimum
makespan and the minimum total flow-time problems for this setting. She then ex-
tended her interest to other topologies of the precedence-constraints graph and other
special instances with uniform length jobs and/or release times.

Keywords Scheduling - Approximation algorithms - Selfish precedence-constraints

1 Bully Jobs Arriving in Town

Graham school is a prestige elementary school for jobs. Jobs from all over the country
are coming to spend their childhood in Graham school. Ms. Schedule is the kinder-
garten teacher and everybody in town admires her for her wonderful work with the
little jobs. During recess, the jobs like to play outside in the playground. Ms. Sched-
ule is known for her ability to assign the jobs to the different playground activities in
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a way that achieves many types of objectives (not all of them are clear to the jobs or
to their parents, but this is not the issue of our story).

The jobs enjoy coming to school every morning. In addition to the national cur-
riculum, they spend lot of time learning and practicing the rules Ms. Schedule is
teaching them. For example, one of Ms. Schedules’s favorite rules is called LPT [12].
They use it when playing on the slides in the playground. At first, each of the n jobs
announces how long it takes him to climb up and slide down. Then, by applying the
LPT rule they organize themselves quite fast (in time O(nlogn)) in a way that en-
ables them to return to class without spending too much time outside. Ms. Schedule
once told them that she will never be able to assign them to slides in a way that really
minimizes the time they spend in the playground, but promised that this LPT rule
provides a good approximation.

For years, everything went well at school. The jobs and their parents were very
satisfied with the advanced educational program of Ms. Schedule, and the enrollment
waiting list became longer and longer. Until the bully jobs came to town and joined
the kindergarten.

Being very polite and well-mannered, the veteran jobs prepared a warm welcome
party to the bully jobs. Ms. Schedule taught them the different kindergarten rules,
and for the first few days no one noticed that the new jobs are different. It was only
after a week that Ms. Schedule observed that the new bully jobs were not obeying
the rules. Other jobs complained that sometimes, when they were waiting in lines,
bully jobs passed them and climbed up the slide even if they were not first in line.
One of the nice jobs burst into tears claiming that “I’m a very fast climber, according
to SPT rule [21], I need to be first in line, but all these bully jobs are bypassing me”.
Indeed, Ms. Schedule herself noticed that the bully jobs were bypassing others. She
also noticed that as a result, the whole kindergarten timetable was harmed. The jobs
had to spend much more time outside until they had all completed sliding.

Ms. Schedule decided to have a meeting with the bully jobs’ parents. In this meet-
ing, it came clear to her that she will need to make a massive change in the kinder-
garten rules. The parents justified the inconsiderate behavior of their kids. “Our kids
are selfish”, they said, “they will never obey your current rules. They will always by-
pass all the other kids. You should better not try to educate them, just accept them
as they are”. Ms. Schedule was very upset to hear it, she was about to tell them that
their kids must obey her rules, and otherwise will be suspended from school, but she
was a bit afraid of their reaction,! so she promised them to devise new rules for the
kindergarten. The parents were satisfied and concluded: “Remember, bully jobs al-
ways bypass those that are in front of them in line. They also move from one line to
another. But we, bullies, respect each other! bully jobs will not pass other bully jobs
that were assigned before them in line”.

Ms. Schedule came back home tired and concerned, feeling she must design new
rules for her kindergarten, taking into consideration what she have just learnt about
the bully jobs.

1Bully jobs tend to have bully parents.
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2 Ms. Schedule Defining Her Goals

Ms. Schedule relaxed with a cup of good green tea. She decided that the first thing
she needed is a formal definition of her new model. “In my setting”, she thought,
“there is a set J of jobs, and a set M of m identical machines (slides). Each job is
associated with a length (sliding time) p;. Some of the jobs are bully and the other
are nice. I will denote these sets B and N respectively, B U N = J. My rules assign
jobs to slides, and determine the internal order of the jobs on each slide. The bully
jobs, however, do not obey my assignment. Specifically, if a bully job can reduce its
waiting time by passing other jobs in line or by moving to another line it will do
s0. On the other hand, bully jobs respect each other. If I assign them in some order
to some line then their internal order will be kept. Moreover, if a bully moves to a
different line, he will be last among the bullies who are already in line. Each of my
assignment methods produces a schedule s of jobs on the slides, where s(j) € M
denotes the slide job j is assigned to. The completion time, or flow-time of job j,
denoted C}, is the time when job j completes its processing. The load on a slide M;
in an assignment s is the sum of the sliding times of the jobs assigned to M;, that is
Zjl s()=M; Pj- The makespan of a schedule, denoted C,,,, is the load on the most
loaded slide; clearly, this is also the maximal completion time of a job.”

2.1 Scheduling with Selfish Precedence-Constraints

Ms. Schedule thought that her problem, in some sense, is similar to the problem of
scheduling with precedence-constraints. In scheduling with precedence-constraints,
the constraints are given by a partial order precedence relation < such that i < j
implies that j cannot start being processed before i has been completed. Selfish-
precedence is different. It is given by a partial order precedence relation <; such that
i <y j implies that j cannot start being processed before i is starting.

“I believe” she thought “that selfish precedence-constraints induces interesting
problems that should be studied, especially in these days when it is very popular
to deal with algorithmic game theory and selfish agents. A selfish job only cares
about his delay and his completion time, it is OK with him that others are also do-
ing well, but he is ready to hurt others in order to promote himself. This is exactly
reflected by the fact that if i <; j, then job i doesn’t mind if job j is processed in
parallel with him, as long as it doesn’t start being processed before him”. Ms. Sched-
ule decided to devote some of her valuable time to consider this new type of selfish
precedence-constraints. “I’m not aware of any early work on this interesting setting”,
she mentioned to herself.

“For a single machine, I don’t expect any interesting results.” Ms. Schedule figured
out, “It is easy to see that with a single machine, a schedule is feasible under the
constraints < if and only if it is feasible under the constraints <. Therefore all the
results I see in my favorite web-site [1], carry over to selfish precedence-constraints.”

“In fact, there is this issue of release times, which makes the precedence-
constraints different, already with a single machine” Ms. Schedule kept pondering
“since bully jobs only care about their delay, they let other jobs be processed as long
as they are not around (before their release time). It is only when they show up that
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they bypass others. Upon being released a bully job pushes a nice job away from
the slide even if he already started climbing”. Ms. Schedule decided to elaborate on
that issue of release times later (see Sect. 5), and to set as a primal goal the analysis
of the basic problems of minimum makespan (Sect. 3) and minimum total flow-time
(Sect. 4) for the precedence constraint setting she has in her kindergarten. She also
considered the special case of unit-length jobs with arbitrary precedence-constraints
setting (Sect. 6). In this paper we tell her story and reveal her results.

2.2 Complete-Bipartite Selfish Precedence-Constraints and the Price of Bullying

“What I actually face”, Ms. Schedule kept thinking, “is the problem in which the
selfish precedence-constraints graph is a complete bipartite Ky, ,, where b = |B],
n=|N|,andi <, j foreveryi € Band j € N.

As a first step, I would like to evaluate the potential loss from having bully jobs in
my kindergarten. Similar to other equilibria notions, a schedule is a Bully equilibrium
if no bully job can reduce its completion time by migrating to another machine or
bypassing nice jobs. Indeed, since bully jobs bypass all nice jobs in their line and
can also migrate from one machine to another, a bully equilibrium schedule must
respect the K, , selfish precedence-constraints. On the other hand, a schedule might
respect the K , constraints, but not be a bully-equilibrium. Nevertheless, as I show
below, if this is the case, then the schedule can be trivially improved with respect to
any reasonable objective function. Therefore, w.l.o.g., I would assume the following
equivalence:”

Property 2.1 W.l.o.g., a schedule is a bully equilibrium if and only if it obeys the
Ky n selfish precedence-constraints.

Proof As explained above, any bully equilibrium schedule obeys the K}, selfish
precedence-constraints. However, the other direction is not necessarily valid in any
schedule. We show that if a schedule obeys the K}, ,, selfish precedence-constraints
but is not a bully equilibrium, then it can be improved with respect to any reasonable
objective function, in particular minimizing the makespan and the total flow-time.
Assume that the precedence-constraints hold, but some bully job j can benefit from
migrating from machine M; to machine M» (see Fig. 1(a)). For i = 1, 2, denote by
B;, N; the sets of bully and nice jobs on M;. W.l.o.g., j is the last bully job on M
(as any bully job located after j on M also benefits from such a migration). As bully
jobs respect each other, after the migration, j will be the last bully on M. Thus, it
must hold that j starts its execution after the completion time of all bullies on M>.

wls [ w ] s J» |

vl s | [ % | Le ||~ |

(a) (b)

Fig. 1 Improving a non bully-equilibrium by simple migrations
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Also, by the precedence-constraints, the first nice job on M» begins not earlier than ;.
Consider a schedule in which j and the jobs of N1 migrate to M> and the jobs of N>
migrate to Mj—starting at the same time as on M» (see Fig. 1(b)). Note that due to
additional bully jobs, on additional machines, the starting time of N; might not be
reduced by the same value as the starting time of j, but it cannot be later than its
original starting time on M. The resulting schedule is clearly feasible. Moreover, the
completion time of j and possibly of the jobs of N is reduced, while the completion
times of all other jobs remain the same. |

2.2.1 The Price of Bullying

Let S(/) denote the set of all schedules of an instance I, not necessarily bully
equilibria. For a schedule s € S(I), let g(s) be some measure of s. For example,
g(s) =max ey Cj(s) is the makespan measure, and g(s) = Zje] Cj(s) is the total
flow time measure.

Definition 2.1 Let ® (/) be the set of Bully equilibria of an instance /. The price of
bullying (PoB) for a measure g(-) is the ratio between the best bully equilibrium and
an optimal solution. Formally, PoB(/) = minsee(7) g(s)/ minges(r) g(s).

Theorem 2.2 For the objective of minimizing the makespan, the price of bullying is
2L
m

Proof Consider an instance with m(m — 1) unit-length bully jobs and a single nice
job of length m. An optimal non bully-equilibrium schedule assigns load m on each
machine. On the other hand, in any bully-equilibrium, there are m — 1 bully jobs on
each machine (otherwise, some bully job can benefit from migrating from a machine
with more than m — 1 bully jobs into a machine with at most m — 2 bully jobs). Thus,
the long nice job starts its processing at time at least m — 1, resulting in makespan at
least 2m — 1. The resulting PoB is 2”;’—*1 =2- % The above instance achieves the
maximal possible PoB since any bully equilibrium schedule is a possible output of
List-Scheduling, which is known to provide a (2 — %)-approximation to the minimum

makespan [11] (see also Sect. 3.1). Il

Theorem 2.3 For the objective of minimizing the total flow-time, the price of bullying
is(n+b)/m.

Proof Consider an instance with n = z - m nice jobs of length ¢, and b = m bully jobs
of length 1. An optimal, non bully-equilibrium schedule assigns on each machine z
nice jobs followed by a single bully job. The total flow-time is m + O(mz%¢). In
any bully-equilibrium, the bully jobs are scheduled first, one on each machine, and
the total flow-time is at least m(z + 1) + O(mz%e). As ¢ approaches 0, the PoB
approaches z + 1 = (n + b)/m. We show that the above instance achieves the highest
possible PoB. Consider the best bully-equilibrium of any given instance. If n +b < m
then by assigning a single job to arbitrary n 4+ b machines we get PoB = 1. Otherwise,
we show that the total flow-time of any m jobs is at most > _ iPj- Let Jj,5: be the set
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of m jobs that are last on some machine. Note that when n + b > m then no machine
is idle in a best bully-equilibrium schedule, therefore Jj,s; is well defined. These m
jobs have total flow-time exactly » j pj- For any other set Jg of m jobs, it is possible
to map each job in Jg to a different job in Jj,5; with a not-smaller completion time.
If the jobs in Jg are scheduled on different machines, then this mapping is trivial—a
job scheduled on M; is mapped to the last job on M;. If there are several jobs in Jg on
the same machine, say M1, then there must be another machine, say M>, from which
there is no representative in Jg. Any non-last job on M; can be mapped to the last
job on M>. Even if M, completes before M, it must be that in any optimal bully-
equilibrium, the gap between their completion times is not larger than the processing
time of the last job on M (otherwise, the last job on M| can migrate and improve the
schedule). Therefore, the total flow-time of the jobs in Jg is at most the total flow-time
of the jobs in Jj,s . Given that the total flow-time of any m jobs is at most iPjs
use averaging arguments to get that the total flow-time of any best bully-equilibrium
schedule is at most "+h Z pj. Specifically, n + b = km + r for some integers k, r.

The r jobs with the hlghest ﬂow time have total flow time at least = Z pj,any other
set of m jobs has total flow time at least Z pj» thus the total ﬂow tlme is at least

k+.)>;pj= ”mib >_; pj- On the other hand, the optimal total flow time is at
least ) ; p;, thus, the PoB is bounded by (n + b)/m. O

3 Makespan Minimization: P|Kjp ,, s-prec|Cpax

Ms. Schedule’s first goal was to minimize the recess length. She wanted all jobs to
have a chance to slide once. She knew that the problem P||C,4 is strongly NP-hard,
therefore, the best she could expect is a PTAS. A natural approach she considered is
the following: Let .4 be an approximation algorithm for P|Cy,4x. Use A to schedule
the bullies, then use .4 to schedule the nice jobs and glue the resulting schedules. The
resulting algorithm will be denoted double-.A.

With regular precedence-constraints, an optimal solution for P|Kp ,, prec|Cipax
consists of a concatenation of optimal solutions for each job-type, but with selfish
precedence-constraints, this approach might not lead even to a good approximation.
To clarify this point better, Ms. Schedule drew Fig. 2, and pointed out to herself that
gluing independent optimal solutions for each job -type (denote this method double-
OPT) can be far by a factor of at least 2 — - + from an optimal solution. For any
number of machines m, the instance in Ms. Schedule’s figure consists of a single nice
job having length 1 (colored white in Fig. 2) and 2m — 1 bully jobs (colored grey),
out of which, m have length 1/m and m — 1 have length 1. For such an instance,
if the minimum makespan problem is solved independently and optimally for each
job-type, and the resulting schedules are glued, then the makespan is 2, while an
optimal schedule of such an instance has makespan (m + 1)/m. The reason for this
relative poor performance of double-OPT is that in an optimal schedule, the bully jobs
might better be assigned in a non-balanced way. Ms. Schedule decided to consider
and analyze known heuristics and also to develop a PTAS for the problem.
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Fig.2 A double-OPT schedule (left) vs. an optimal schedule (right). The approximation ratio is 2 — miﬂ

3.1 Double List-Scheduling

Let the jobs stand in a single line, bully jobs first in arbitrary order followed by the
nice job in arbitrary order. Then assign them to slides greedily according to this or-
der. Each job goes to the first available slide. The starting times of the jobs form
a non-decreasing sequence; in particular, every bully job is starting not later than
every nice job. Therefore, the resulting schedule is feasible. Moreover, it is a pos-
sible execution of the known List Scheduling algorithm [11], therefore it produces
a(2-— %)—approximation to the makespan, even compared to the makespan with
no selfish precedence-constraints. This bound is tight since an instance might in-
clude only jobs of one type (bully or nice), therefore, the known lower bound for list
scheduling, of 2 — apphes here.

3.2 Double-LPT

Let the jobs stand in a single line, bully jobs first in non-increasing sliding-time order,
followed by the nice jobs in non-increasing sliding-time order. Then assign them to
slides greedily according to this order. Each job goes to the first available slide. As
this is a possible execution of the adjusted list-scheduling algorithm, the resulting
assignment is feasible. However, the actual approximation ratio of this heuristic is not
much better than the (2 — l) guaranteed by list- scheduling, and does not resemble
the known bounds of LPT (of (— — —) [12] or (1 + ) where k is the number of
jobs on the most loaded machme [5]) Since this algorithm follows the double-A
approach, its approximation ratio cannot be better than 2 — T In particular, note
that for the instance described in Fig. 2, the double-OPT schedule is achieved also by
double-LPT.

Ms. Schedule was able to show that this ratio of 2 — ﬁ is the worst possible for
double-LPT. Formally,

Theorem 3.1 The approximation ratio of double-LPT for P|Kp ,,s-prec|Cpax is
2

2 - m—H .

Proof Let Arpr be the assignment produced by double-LPT, and let Ji, of length

Dk, be the job determining the makespan. W.1.0.g, Ji is the last job the double-LPT

order (removing the later jobs can only reduce the optimal makespan). Let Cpp7, C*

denote the makespan of Ay pr and an optimal schedule respectively. If J; € B then
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all jobs are bullies and the regular analy51s of LPT can be applied here. Since for
every m > 0 it holds that 7 —7-<2-— ﬁ, the claim is valid.

Therefore, assume Jj e N. As “all machines are busy at time Cppr — px, it holds
that Zj pj= (m —D(CLpr —pk) + Crpr. Therefore, Cppr < % Z/ Dj +pkm’;1 .
Clearly, C* L Z p;j- Let a be the value such that C* = pk(l + o).

Case 1: « > —. Thus, C* > pk’"+1 In this case, CLpr < o Z pj+ pk ’"T <
C*(1+ 2=t 1) =C*"2- 2.

Case2: a < E In this case, C* < pkm+ and the analysis is involved. Let £,, be the
number of nice jobs of length at least py (including Ji). It must hold that ¢, < m,
since otherwise at least two such jobs are assigned together in any schedule and in
particular C* > 2p; > (1 + ) pr. We know that C* = (1 + «) px, therefore, in an
optimal schedule, each of these ¢,, jobs begins its processing at time at most apy.
Moreover, this implies that in the optimal schedule, no bully job may start its pro-
cessing later than apy. Let M,, be the set of machines that are assigned the ¢, long
nice jobs in an optimal schedule. Each of these machines is assigned bully jobs of
total length at most apy. Each of the other m — ¢, machines is assigned bully jobs of
total length at most apy and maybe one additional bully job. We can therefore con-
clude that excluding the longest m — ¢, ones, the total length of bully jobs is at most
mopy.

So how does a double-LPT schedule of such an instance look like? First, the
m — £, longest bully jobs are assigned, one to each machine, and then the re-
maining bully jobs are assigned. We know that ¢, machines remain empty af-
ter the m — £, long bully jobs are assigned, and that LPT assigns them bully
jobs of total load of at most mapyg. If £, = 1 then J is added to load at most
mapy and the makespan of LPT is pi(1 + ma). Given that C* = pi(1 + «),
the ratio is LEH2% <2 — m%rl for any o < 1/m. If €, > 1 then we use the
fact that LPT guarantees that the gap in the load between any two of the ¢,
machines is at most opi. Thus, the load on each of these ¢, machines af-
ter LPT assigns the bully jobs is at most mapy/€, + apr < pr(ma/2 + ).
When J; joins a machine, the total load on it becomes at most p (1 + ma/2 + o).
The approximation ratio is therefore less than (1 + moa /2 + o) px /(1 4+ @) pi. For any
o < 1/m, this ratio is less than 1.5.

As demonstrated in Fig. 2, the above analysis is tight for any m > 2. The tight
bound is achieved for a = 1/m. g

1

3.3 A PTAS for P|Kp pn, s-prec|Cmax

Ms. Schedule was familiar with several PTASs for the minimum makespan prob-
lem [8, 13]. She was even working on implementing one with the little jobs in
their Drama class, hoping to have a nice show for the end-of-year party. How-
ever, knowing that double-OPT may be far from being optimal, she understood that
with selfish precedence-constraints a 51mllar double-PTAS approach will not lead to
approximation-ratio better than 2 — +1, independent of ¢. “I must develop a new
PTAS, in which the assignment of bully and nice jobs is coordinated”, she thought.
Ms. Schedule was able to solve the problem by combining the dual-approximation
scheme idea from the PTAS of Hochbaum and Shmoys for P||Cy,4y [13], and the idea
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of grouping small jobs, as introduced in the PTAS of Sahni for instances with a con-
stant number of machines (P, ||Cyqx) [20]. She explained her PTAS to the school’s
principal.

“As you surely know, the idea in the PTAS of Hochbaum and Shmoys [13] is to
relate a schedule on m machine to a packing in m bins. I am going to adopt this idea.
However, I need to define a new variant of the bin packing problem, in which items of
two types are packed”, she started her explanation. “I will denote this problem two-
type bin-packing (2T -BP). The input for 27 -BP is a collection of items whose sizes
are in [0, 1]. Some of the items are of type-B, the others are of type-N. Formally, let
I ={pi1...p;} bethesizesinasetof z items, where 0 < p; < 1. Asinregular BP, the
goal is to pack all the items into bins {B1, Ba, ..., By} such that the number of bins,
k, is minimized and the packing is feasible, that is, forall i, 1 <i <k, ZjeBi pj <1
In addition, the following condition should hold:

Condition C7 Let 8; denote the number of type-B items packed in bin i. Then,
there exists a 0 < y < 1 such that for all i, 1 <i <k, the total size of the smallest
Bi — 1 type-B items packed in bin i, is at most y, and the total size of type-N items
packed in bin 7 is at most 1 — y.

This condition implies that for some 0 < y < 1, for every bin i, it is possible to
place the type- B items at the bottom of the bin, such that the total capacity allocated to
all but the largest type- B item in the bin is at most y. In other words, assume that you
place the items one above the other starting from the bottom of the bin, then Condition
Cor implies that all type-B items are placed such that their low y-coordinate is at
most y, and all type-N items are placed such that their low y-coordinate is at least

iR

y.

“The exact solutions of P|Kp_ ,, s-prec|Cqx and 2T -BP relate in the following
way”’, Ms. Schedule continued. “Given an instance for the minimum makespan prob-
lem, it is possible to schedule all the jobs on m machines with makespan C,,,, if and
only if it is possible to pack in m bins all the items in a 27 -BP instance, where the
size of item j is pj/ Cpax, and the packing-type of item j corresponds to the job-type
of j;i.e., type-B (type-N) items corresponds to bully (nice) jobs”.

In order to fully understand this relation, Ms. Schedule showed the principal Fig. 3,
which demonstrates this relation for m =4 and C,4x = d. Type-B items and bully
jobs are colored grey, type-N items and nice jobs are colored white. The principal
noted to himself that the selfish precedence-constraints are kept if and only if Con-
dition Co7 holds: the starting time of each of the nice jobs is at least y, which is the
latest starting time of a bully job—given by the highest level in which a type-B item
is placed in some bin. Therefore, the packing fulfills Condition C»7 if and only if the
schedule fulfills the selfish precedence-constraints.

“Next, let OPT2rpp(I) be the number of bins in an optimal solution for 27 -
BP, and let C;; . (I, m) be the minimal possible makespan of an instance / on m
machines. Denote by é the 27 -BP input derived from 7/ in which the item sizes are
the job lengths divided by d. I already argued that:

I
OPTBP(3>§m & Ch(Im)<d.
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1T

B, B, B; B,

Fig. 3 A 2T-BP packing (left) and the corresponding feasible schedule (right)

So all I need to do in order to complete the PTAS is to develop a dual approxima-
tion scheme for 27 -BP. For an instance 7, I seek a solution with at most OPT7gp (1)
bins, where each bin is filled to capacity at most 1 + €. In other words, I relax the
bin capacity constraint by a factor of 1+ ¢. The proof of the following observation is
identical to the corresponding proof in [13], you might know it”. “Of course I know
it”, the principal broke in, “it is based on a binary search of the minimum makespan.”

Observation 3.2 If there exists a dual-PTAS for 2T -BP, then there exists a PTAS for
P|Kp n, s-prec|Cpmax .

“Hence, let me now describe the dual-PTAS for 27-BP”, said Ms. Schedule.
“Given ¢, partition the items into small items—of size at most ¢, and big items—
of size larger than ¢. Note that unlike the dual PTAS in [13], for regular BP, the small
items cannot be added greedily to a packing of the big items, as in [13]. This is prob-
lematic because if big type-B items are packed till level y, then, in order to fulfill
Condition Ca7, any bin opened in the greedy stage can accommodate small type-N
items of total size at most 1 — y, and if there are many small type-N items and y
is large, then I might end up with many bins that are only filled to capacity 1 — y,
independent of ¢. I therefore need a different approach for the small items.”

Handling the Small Items “The first step of my scheme is to modify the instance
I into a simplified instance I’. Given I, ¢, let PSB , Pév denote the total size of small
type-B and type-N items, respectively. The modified instance I’ consists of all big
items in / together with |_PSB /€] type-B items and LPSN /€] type-N items of size ¢.
These items, which replace the small items, will be denoted agent items.”

“The second step is to find a packing of I’ in OPT,rgp(I) bins of size 1 + 2¢.
I will get to that soon. Finally, given this packing of I’, I need to transform it into
a packing of 7.” Ms. Schedule continued. “I will keep a pool of non-packed small
type-B items and a pool of non-packed small type-N items. I will go over the bins
one after the other. In the packing of I, in every bin, the type-B items are placed
below the type-N items. I will first replace the big items of I’ by their corresponding
items in /. Next, if there are k > 0 agent type-B items in the bin, I will add small
type- B items from my pool—till the first time that the total size of the small type-B
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items is at least ke. Similarly, I will replace the type-N agent items in the bin, by
original small type-N items of at least the same total size. I might run out of small
items at some point but this is fine. The total overflow on each bin compared to its
content in the packing of I’ is at most 2¢ (maximal size of two small items, one from
each type).”

“There is one more point you need to consider,” The principal broke in, “The
feasibility of the packing might be hurt—if the largest type- B item in a bin is an agent
item, then when this item is replaced by several small type-B items, later starts of
type- B items are introduced—that is, the value of the corresponding y is increased—
which might hurt Condition C7 of a feasible 27-BP”. “I am glad you are following”,
said Ms. Schedule in delight. “To solve this problem, I can shift upward (by having a
small empty space) the minimal level on which type- N items are placed. A shift of at
most ¢ will do the work. I get that in every bin, the maximal increase in the minimal
level on which type-N items can be placed, due to both an overflow of a small type-B
item and a shift to guarantee the y-condition, is at most ¢. In addition, as explained
above, an additional overflow of ¢ might be causes due to the replacement of the
type-N agent items. Summing up,’

Corollary 3.3 A two-type packing of I’ in m bins of size z induces a feasible two-type
packing of I in m bins of size at most z + 2¢.

In addition, Ms. Schedule related in a similar way the optimal solutions for I’ and
I as follows:

Claim 3.4 A two-type packing of I in m bins of size z induces a feasible two-type
packing of I’ in m bins of size at most 7 + 2¢.

Proof Given a packing of I in bins of size z, a packing of I’ can be derived by
replacing, in each bin separately, the small items with agent jobs of size &, with at
least the same total size. Recall that the number of type-B (type-N) agent items of
size € in I’ was determined to be LPSB/(E)J, (LPéV/(s)J). By applying the above
replacement, and performing shifting to starting locations of type-N items (if new,
late, starting locations of type- B items were introduced, as explained in the paragraph
above Corollary 3.3) we get a packing of I’ into the same number of bins whose sizes
might increase to z + 2¢. O

“Combining Corollary 3.3 and Claim 3.4, I get the following structure for my
dual-PTAS. Stay tuned for step 3, which I still need to explain to you.”

A dual-PTAS for 27 -BP:

For a given &', let ¢ = &/4.

Convert I into an instance I’ with no items smaller than €.

Pack I’ in OPT>7gp(I') bins of size 1 + 2¢.

Convert the packing of I’ into a packing of I in OPT,7 g p(I) bins of size
1+44e.

bl s
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A dual-PTAS for a 2T-BP Instance with Big Items (Step 3 above) Let I' be
an instance of 27-BP with all-big items. Recall that, for a given ¢ > 0, our
dual approximation-scheme needs to find a packing of all items using at most
OPT,7gp(I") bins, such that the total size of the items packed in each bin is at most
I+ 2e.

Divide the range [e, 1] into intervals of size 2. This gives S = [18;25] inter-
vals. Denote by /; the endpoints of the intervals. We now examine a packed bin.
Since the minimal item size is &, the bin can contain at most L%J items. De-
note by X iB, X lN the number of type-B and type-N items in the bin, whose sizes
are in the interval (l;,l;i+1]. XlB,XlN are in the range [0, L%J). Let the vector
(XB, ..., Xg, Xf’, ey ng) denote the configuration of the bin.

Definition 3.1 A configuration is y -feasible if

LY XP X< 1.

2. If X iB is positive for at least one index 1 <i < §, then let j be the maximal index
for which Xj? > 0. Then Z{;f XP0 + (Xj? -l <y.

3.0 XN <1—y.

For any bin Bin whose packing forms a y -feasible configuration, the first condition
in Definition 3.1 implies that the total size of the items in the bin is bounded by

S S
Y pi= > X+ XNl =Y XE+ XN +eH <1
JjE€Bin i=1 i=1
5 1
2 B N 2
TP Z(Xi X =146 —<l+e

i=1

Similarly, the second and third conditions in Definition 3.1 imply that the total size
of all but the largest type-B items packed in the bin, is at most y + ¢, and the total
size of type-N items packed in the bin is at most 1 — y 4 ¢.

Therefore, it is sufficient to solve the instance with all item sizes rounded down to
sizesin {l, ..., ls}. By definition of 27 -BP, in such a solution there exists a y € [0, 1]
such that all bins’ configurations are y-feasible. Given a solution of 27 -BP for the
rounded instance, by replacing each rounded item with the item originating it, we
get a feasible solution for I’ in bins of size 1 + 2¢. One ¢ is added to the bottom
of the bins—where type-B items are located, and one ¢ is added to the top of the
bin—where type- N items are located.

“We are getting to the end”, Ms. Schedule continued, feeling that the principal is
losing his patient. “All I need in order to complete the dual-PTAS is a dynamic-
programming algorithm that solves 27-BP exactly for the rounded instance. Let
b;, (n;) be the number of type-B (type-N) items in I’ whose sizes are in the interval
Uiy i1l

Note that all item sizes in the rounded instance are multiples of &2, thus, the total
size of any subset of items is a multiple of £2. This implies that any feasible solution
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for 27-BP fulfills Condition Cor for y = ke?, for some integer 0 < k < Ll/szj.
Let BINS,, (b1, b2, ...,bs,n1,n2, ..., ng) be the minimal number of bins required to
pack, for all 1 <i < S, b; items of type-B and n; items of type-N having size /;,
in y-feasible configurations. Let C, denote the set of all y-feasible configurations.
Observe that, by a standard dynamic-programming recursion,

BINS, (b1,b2,...,bs,n1,n2,...,ng)
= 1+ minBINS, (b ~XP by — X2, .. bs—XE ny— XY ny
Y

- X, ong—XY).

I minimize over all possible vectors (X, x5, ... xB xV xVV, ... XV) that
correspond to a y-feasible packing of the first bin (counted by the constant 1), and
the best way to pack the remaining items (this is the recursive call). Thus, given
¥, the dynamic-programming procedure builds a table of size max; (n;, b;)>5, where
the calculation of each entry requires O(|C, |) time, which is a constant. By repeat-
ing the DP for all [1/£2] possible values of y, and selecting the minimal value of
BINS) (b1, b2, ...,bs,n1,n2,...,ng), we get an optimal two-type packing of the
rounded instance. This packing induces a packing of I’ in OPT7gp(I’) bins of size
1+ 2¢, as we need.”

“Wonderful!”, said the principal, “I must notify the PTA? that we have a PTA-
Scheme for the minimum makespan”.

4 Minimizing Total Flow-Time: P|Kj ,, s-prec|)_C;

Before the bully jobs arrived, one of Ms. Schedule favorite rules was SPT [21]. She
used it when she wanted to minimize the total flow-time of the jobs. Ms. Schedule
kept in her cupboard a collection of dolls that she called dummy jobs and used them
from time to time in her calculations. Whenever Ms. Schedule wanted the jobs to
use SPT rule, she first added to the gang some of her dummy jobs, so that the total
number of (real and dummy) jobs divides m. The dummy jobs did not require any
time in the slides (i.e., their sliding time was 0) so it was never clear to the little
jobs why the dummies were needed, but Ms. Schedule explained them that they help
her in her formal proofs. When applying SPT rule, the jobs sort themselves by their
sliding time (from shortest to longest), and are assigned to slides one after the other,
according to this order. In other words, the jobs are assigned to heats. The m fastest
jobs form the 1st heat, the m next jobs form the 2nd heat and so on. The internal
assignment of jobs from the same heat to slides doesn’t matter to Ms. Schedule.

After the bully jobs joined the kindergarten it was clear to everyone that these jobs
must be assigned to early heats, even if they are slow. For a single slide, it was not
difficult to find a schedule achieving minimum total flow-time.

Theorem 4.1 The problem 1|K}, ,, s-prec| ) C; is polynomially solvable.

2Parent-Teacher Association.
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Proof An optimal schedule is achieved by double-SPT. That is, assign first the bully
jobs according to SPT rule, and then assign the nice jobs by SPT rule. Since any
feasible schedule consists of a schedule of the bullies followed by a schedule of the
nice job, even the little jobs were able to verify (using exchange arguments, were only
internal-set exchanges are possible) that this is an optimal schedule. g

On the other hand, for more than one slide. Ms. Schedule couldn’t come up with
an efficient assignment rule. She told the principal that this is one of the problems she
will never be able to solve. The principal couldn’t accept it. “I know you are having a
difficult quarter with these bullies, but you should try harder. I suggest to simply ex-
tend the assignment rule for a single slide”, he told Ms. Schedule, “this double-SPT
algorithm should work for every number of machines. Let me show you the follow-
ing for instances with a single nice job. As you will see, these selfish precedence-
constraints are totally different from the regular ones”.

Theorem 4.2 P2|K 1, prec| ) C; is NP-hard, but P|Ky 1, s-prec|)_C; is poly-
solvable.

Proof “For the hardness of P2|Kj, 1, prec|)_ C;” said the principal, “I will use a
reduction from the bi-criteria problem P2| Fj,(Cpax/ > C ;). In this problem, it is
desired to minimize the total flow-time as the primary objective and minimize the
makespan as the secondary objective. This problem is known to be NP-hard [2]. Since
the single nice job can only start its execution after all preceding jobs complete their
execution, it is easy to see that this bi-criteria problem can be reduced to our problem.”

“And now, let me show you my optimal algorithm for P|K}, 1, s-prec|)_ C;”, the
principal continued.

Aprin: The Principal’s Optimal Algorithm for P|K} 1, s-prec| >.C ki

1. Add dummy bullies to have zm bully jobs for some integer z.

2. Assign the bullies in SPT order. Fork =1...z, The jobs (k—1)m+1, ..., km
form the k-th heat. Each machine is getting one job from each heat. The short-
est bully in every heat (i.e.,jobs I, m+1,..., (z—1)m + 1) is assigned to M.

3. Assign the nice job to M.

“To complete the proof I will show you the following claim”, the principal con-
cluded.

Claim 4.3 A, produces a feasible assignment that achieves minimum total flow-

time.
O

Proof Let C IB denote the completion time of the bullies assigned to M;. According
to the algorithm, the nice job starts its execution at time C f. The schedule is feasible

since the last bully job starts its execution not later than C f , as otherwise, by migrat-

@ Springer



138 Theory Comput Syst (2012) 50:124-146

ing to M the total completion time of the bullies can be reduced—contradicting the
optimality of SPT for the total flow time of the bullies.
Any schedule generated by A,,;, fulfills the following properties:

1. The shortest job from every heat is assigned to machine Mj. A single job from
every heat is assigned to every other machine.
2. The nice job is assigned as last to machine M.

To prove the optimality of A,,;,, we show that any schedule fulfilling these proper-
ties is optimal. More specifically, a schedule that does not fulfill the above properties
is either not optimal, or can be can be changed (vie job migrations and swaps) into a
schedule fulfilling the properties without hurting its total flow time. Let s” be a sched-
ule in which one of the above properties does not hold. Assume that the nice job is
assigned to M in s’. If property 1 holds but not the second, then by simple exchange
argument it is possible to see that the optimal schedule is achieved when the shortest
job from each heat is on M: inter-heat exchanges do not affect the total flow-time of
bully jobs and can enable an earlier start time of the nice job.

In order to analyze the case in which property 1 does not hold, we need the fol-
lowing observation.

Observation 4.4 Let n = zm and b = 1. Any optimal schedule can be transformed
into an optimal schedule in which the number of bully jobs on any machine is ex-
actly z.

Proof Let s be a schedule such that some machine M ™ is assigned at least z+ 1 bully
jobs. Since the total number of bully jobs is zm, there must be a machine M~ with at
most z — 1 bully jobs. Let J; be the first job on M. Consider the schedule in which
J1 is moved to be first on M ~. The flow time of all jobs remaining on M *, that is, at
least z jobs, is reduced by p;. The flow time of all jobs on M —, that is, at most z — 1
jobs, is increased by p;. The total flow time of the bully jobs is therefore reduced
by at least p;. Consider the nice job. If it is the last job on M ™, then it might not
benefit (at all or partially) from the migration of Ji, because its start time might be
limited due to bullies on other machines. If it is not on M ™ then its start time might
be delayed by at most p1. Thus, the flow time of the nice job might be increased by at
most pp. All together, the total flow time in the resulting schedule is not worse than s.

By repeating such migrations as long as some machine is assigned more than z
bully jobs we get a schedule obeying the above property, having a lower or not higher
total flow time. d

“With this Observation, I can consider the case in which Property 1 does not hold
for s, said the principal. W.l.0.g, we can assume that there are exactly z bullies on
every machine in s’—otherwise, s’ is not optimal. Let j be the smallest index such
that the jobs from heat j do not split among the machines. Specifically, there is at
least one machine M) with no job from heat j and there is at least one machine M,
with at least two jobs from heat j. If the jobs on M, are not arranged in SPT order,
then s’ can be improved by inter-machine exchanges (as in the proof of SPT). Thus,
we assume that two jobs from heat j are located in positions j and j + 1 on M,.
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Fig. 4 (a) An optimal schedule. The bully jobs (in grey) are not scheduled according to SPT, ) C; = 65.
(b) The best schedule under the constraint that bully jobs obey SPT, > C j =606

Consider a schedule in which the second of these jobs, J,, exchanges location with
the job Jj in position j on Mj. Since Jj, belongs to heat at least j + 1, it holds that
A = pp — ps > 0. By Observation 4.4, there are z — j — 1 bully jobs after J, on M,
and z — j bully jobs after J, on Mj. Thus, exchanging J, and Jp, reduces the total
flow-time of the bully jobs by A. If the nice job is assigned to M,, then its starting
time is delayed by A and the total change in the flow-time of all jobs might be 0.
Also, the schedule is feasible since the starting time of the nice job is delayed. If the
nice job is not assigned to M, then its starting time might need to be delayed by at
most A due to the delayed starting time of the last bully job on M,. In this case the
total flow-time is reduced by some value in [0, A].

We conclude that if s” does not fulfill property 1 then it is possible to swap pairs
of jobs such that the resulting schedule is feasible, it has a reduced (or not increased)
total flow time, and it fulfills property 1. O

“Now that we have a proof for a single nice job” said the principal, “we only
need to extend it by induction for any number of nice jobs”. Ms. Schedule was not
impressed. She drew Fig. 4 on the whiteboard in the principal’s office and said: “For
more than a single nice job, your algorithm is not optimal”. The principal looked at
her doubtingly, but she continued, “as you can see, the total flow-time of the bully jobs
is not necessarily minimal in an optimal schedule. Interestingly, while for a single
nice job there is a distinction between regular and selfish precedence-constraints, for
many nice jobs, the problem is NP-hard in both settings.”

Theorem 4.5 The problem P2|K}, ,,, s-prec|)_ C; is NP-hard.

Proof Ms. Schedule was using a reduction from the bi-criteria problem
P2||Fp(Cpax/ Y. C 7). “As you claimed ten minutes ago”, she told the principal,
“this problem is known to be NP-hard [2]. It clearly remains NP-hard if the number
of jobs and their total length are even integers. Consider an instance Z of 2k jobs
having lengths a; <ay < --- < ay, such that Zi a; = 2y”. “For this instance”, the
principal broke in, “the minimum total flow time is

T =k(ay +a2)+ (k—1D(az +aq4) +--- + (a2k—1 + az),

and it is obtained by SPT”. “You are right”, Ms. Schedule nodded. “However, there
are many ways to achieve this value. The hardness of P2||F,(Cpax/ Y C;) tells us
that in particular, it is NP-hard to decide if among these optimal schedules there is a
balanced one—with makespan y.”
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Fig. 5 (a) A general and (b) an optimal solution for the reduced instance

“Given Z, I will build the following input for P2|Kj ,, s-prec| ) C;: There are
b =2k + 1 bully jobs whose lengths are ay, ..., az and y. In addition, there are
n = y nice jobs of length 1”. The following claim completes my hardness proof.

Claim 4.6 The instance I has a schedule with total flow-time T and makespan y, if
and only if the solution for P2|Ky, ,, s-prec| Y C; has value T + %yz + %y.
O

Proof Consider an optimal schedule for P2|K} ,, s-prec| ) C;. The bully jobs on
each machine are processed in SPT order (otherwise, use exchanges to improve the
schedule), therefore, the bully job of length y is the last bully job on some machine.
Assume that the two machines complete processing the jobs originated from 7 at time
y —t and y + ¢ for some ¢ > 0 (see Fig. 5(a)). The long bully job is scheduled in time
interval [y —¢,2y — t], else the first machine is idle for a while after it completes
the jobs of Z and the schedule cannot be optimal (it can be improved by switching
the content of the machines starting at times y — ¢ and y + ). Also, y — t nice jobs
are processed one after the other starting at time y + ¢ on the second machine and ¢
nice jobs are processed one after the other, after the long bully jobs, starting at time
2y —t on the first machine. Otherwise, again, the schedule cannot be optimal (it can
be improved by balancing the completion times of the machines). Let Cz denote the
total flow-time of the bully jobs originated from Z in the optimal schedule. The total
flow-time is therefore C7 + Qy —t) +[(y +t+ D+ (y +t+2)+ ...+ Y]+
[Qy —t+ D+ + Q2 =Cr+ty —t =D +3y*+3y.

Assume that 7 has a schedule s with total flow-time T and makespan y. Con-
sider the schedule in which the jobs of Z are scheduled as in s, the long bully job is
scheduled as last on one machine, and all nice jobs are schedule as last, one after the
other, on the second machine (see Fig. 5(b)). This schedule fits the above description
of an optimal schedule with = 0. Given that Cz = T, the long bully job completes
at time 2y and the nice jobs at times (y + 1), (y +2), ..., 2y, the total flow-time is
T+3y2+3y.

For the other direction, assume that the optimal solution for P2|K} ,, s-prec| x
> Cj has value T + %7/2 + %y. Thatis, Cz +t(y —t —1) + %)/2 + %y =T+
%yz + %y, implying Cz 4+ t(y —t — 1) = T. By the discussion Ms. Schedule had
with the principal, we know that C7 > T'. Also, ¢t < y, thus, the only way to fulfill the
above equation is by having r =0 and C7 = T'. This induces a schedule of Z having
total flow-time 7 and makespan y . O
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5 Selfish Precedence-Constraints with Release Times

One significant difference between regular and selfish precedence-constraints is the
influence of release times. If a job i is not around yet, other jobs can start their pro-
cessing, even if i precedes them. However, if i is released while a job j such that
i <g j is processed, then i pushes j a way and starts being processed right away
(assuming that no job who precedes i was also released). Job j will have to restart
its processing on some other time (independent of the partial processing it already
experienced). This affect of release times is relevant for any precedence-constraints
topology, not only for complete bipartite graphs.

Example Let J = {J1, 2, 3}, p1 = pp =2,p3 = 1,r1 =1rp, =0,r3 = 3, and
J3 <5 J1, J3 <5 Jo. Then it is possible to process Ji in time [0, 2]. Indeed J3 <, Ji,
but J3 is not around yet along the whole processing. J> may start its processing at
time 2, but will be pushed away by J3 upon its release at time 3. J3 will be pro-
cessed in time [3, 4], and J> will be processed in time [4, 6]. Two processing units
are required for J, even-though it was allocated one already.

Ms. Schedule noticed that when recess begins, the nice jobs were always out in the
playground on time, while the bully jobs tended to arrive late to the playground.® She
therefore decided to consider the case in which for every nice job j € N, r; =0, while
bully jobs have arbitrary release times. She denoted this type of instance by r;(B).
Recall that upon an arrival of a bully job, he must start sliding right away (unless
there are other bullies sliding, because, as we already know, bully jobs respect each
other). Ms. Schedule decided to consider the minimum makespan problem for this
setting.

5.1 Hardness Proof for a Very Simple Instance

It is known that 1|prec, 7 j|Cpqx is solvable in polynomial time for any precedence-
constraints graph [15]. This is not the case with selfish precedence-constraints: The
problem is NP-hard already for K}, ,. In fact, already for the special case of K ,,
which is an out-tree of depth 1, and when all nice jobs are available at time ¢ = 0.

Theorem 5.1 The problem 1|K ,, s-prec, rj(B)|Cpax is NP-hard

Proof Ms. Schedule used a reduction from the subset sum problem. Let A =
{ar,as,...,a,} be a set of items and let k be the target subset sum. It is NP-hard
to decide whether A has a subset A’ such that ZjeA, aj =k [10]. Given A, k, con-
struct the following instance of 1|K; ;, s-prec, rj(B)|Cyqx. There are n nice jobs,
N={Ji,...,Jy}.Forall1 < j <n, pj =a; and r; = 0. The single bully job, J;, 1,
has length p,,; =1, and is released at time 7,1 = k. Thus, J,41 <y J; for all
1 < j <n and these are the only precedence-constraints.

It is easy to verify that there exists a schedule for which Cux = 1 + Z'j’-zl aj if
and only if there exists a subset A’ C A such that ) jeardj = k. O

3Because they were busy pushing and calling names everybody on their way.
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|B1| N, | B, | N, l Bk_1| N, | B, N,

Fig. 6 The structure of any feasible schedule

5.2 APTAS for 1|Kp ,, s-prec, rj(B)|Cpax

Ms. Schedule decided to develop a PTAS for a single slide for the problem she is
facing. Her first observation was that any feasible schedule of this type alternates
between sliding time of bullies and nice jobs (see Fig. 6). Formally, the schedule
consists of alternating B-intervals and N-intervals. A B-interval begins whenever a
bully job arrives and no other bully is sliding, and continues as long as some bully
job is around. The N-intervals are simply the complement of the B-intervals. During
N-intervals, nice jobs may slide. In particular, during the last N-interval (after all
bullies are done) nice jobs who are still in line can slide. The finish time of this last
N-interval, Ni, for some k < b, determines the makespan of the whole schedule. If
all nice jobs completed their processing before By then Ny is empty and the schedule
is optimal. Given the release times and the sliding times of the bullies, the partition
of time into B- and N-intervals can be done in a straightforward way—by assigning
the bully jobs greedily one after the other whenever they are available.

“Given the partition into B- and N-intervals”, thought MS. Schedule, “my goal is
to utilize the first k — 1 N-intervals in the best possible way. In fact, I need to pack
the nice jobs into the first k — 1 N-intervals, leaving as few idle time of the slide as
possible. The slide might be idle towards the end of an N-interval, when no nice job
can complete sliding before a bully shows up. Given ¢ > 0, my PTAS consists of the
following steps:

1. Assign the bully jobs greedily. This determines the B- and N-intervals. Let k be
the number of B-intervals.
2. Build the following instance for the multiple-knapsack problem:

e k — 1 knapsacks of sizes | N1, [N2|, ..., |Nk—1].
e n items, where item j has size and profit p; (sliding time of nice job j).

3. Run a PTAS for the resulting multiple-knapsack problem [3], with ¢ as a parame-
ter.

4. Assign the nice jobs to the first k — 1 N-intervals as induced by the PTAS. That
is, jobs that are packed into a knapsack of size |N;| will be scheduled during N;.
Assign the remaining nice jobs, which were not packed by the PTAS, to Nj with
no intended idle.

Let Carg denote the makespan of the schedule produced by the PTAS. Let C*
denote the optimal minimum makespan.

Claim 5.2 Let ¢ > 0 be the PTAS parameter, then Carc < (1 4+ €)C*.

Proof Let Cp denote the completion time of the last bully job. That is, Cp is the
finish time of interval By. If the makespan of the PTAS is determined by a bully job
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(i.e., all nice jobs were packed into the first k — 1 N-intervals and Nj is empty), then
CarLg = C* = Cp and the PTAS is optimal.

Otherwise, let P(N) denote the total length of nice jobs in the instance. Let
S*, S denote the total length of nice jobs assigned to |Ni|, |Nz|,...,|Nk—1] in
an optimal schedule and by the multiple-knapsack PTAS respectively. Then C* =
Cp+ (P(N)—S*)and Cqrg = Cp + (P(N) — S). This implies that minimizing the
makespan is equivalent to maximizing the total length of nice jobs packed before By.
This is exactly the objective of the multiple knapsack problem, where the profit from
packing an item equals to its size. Since S is determined using a PTAS for the multi-
ple knapsack problem [3], we have S > (1 — ¢)S*. The implied approximation ratio
of the PTAS for 1|Kp ,, s-prec, r; (B)|Cnax is

Carg _ Cp+(P(N)—S) - Cp+(P(N)—(1—-¢)S)
C*  Cp+(P(N)=S8%~" Cp—+(P(N)=S5%
eS*

=14 <l+e.
Cp+(P(N)—S8*) —

The last inequality follows from the fact that $* < Cp and $* < P(N). O

6 Selfish Precedence-Constraints of Unit-Length Jobs

Summer arrived. The jobs prepared a wonderful end-of-year show. The parents
watched proudly how their jobs were simulating complex heuristics. No eye remained
dry when the performance concluded with a breathtaking execution of a PTAS for the
minimum makespan problem. At the end of the show they all stood and saluted the
jobs and Ms. Schedule for their efforts.

Ms. Schedule decided to devote the summer vacation to extending her research on
selfish precedence-constraints. During the school year, she only had time to consider
the complete bipartite-graph case, and she was looking forward for the summer, when
she will be able to consider more topologies of the precedence graph.

That evening, she wrote in her notebook: The good thing about bully jobs is that
they do not avoid others be processed simultaneously with them. Among all, it means
that the scheduler is more flexible. If for example we have two jobs and two ma-
chines, they can be processed simultaneously even if one of them is bully. With reg-
ular precedence-constraints, many problems are known to be NP-hard even if jobs
have unit-length or if the precedence-constraints have limited topologies. For ex-
ample, P|p; = 1, prec|Cyqx is NP-hard [23], as well as P|p; = 1, prec| ZCj [17].
These hardness results are not valid for selfish precedence-constraints. Formally,

Theorem 6.1 The problems P|p; = 1, s-prec|Cpax and P|p; = 1, s-prec| ch
are polynomially solvable.

Proof Let n, m be the number of jobs and machines, respectively. Consider any fopo-
logical sort of the selfish precedence-constraints graph. Since the graph is induced by

a partial order relation, such a sort always exist. An optimal schedule simply assigns
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the first m jobs in the first heat, that is, schedule them in time [0, 1]. The next heat
consists of the next m jobs in the topological sort, and so on. The makespan of this
schedule is [n/m7], which is clearly optimal. This schedule is also optimal with re-
spect to total flow-time, as it is a possible output of algorithm SPT on the same input
without the selfish precedence-constraints. The schedule is feasible: if i <; j then i
appears before j in the topological sort. Therefore, i is not assigned to a later heat
than j. They may be assigned to the same heat, which is acceptable by job i. |

7 Summary and Discussion

A new school year was about to begin. The jobs had wonderful time in the summer
and were very excited to return to 1st-grade at Graham school. Ms. Schedule summa-
rized her results for the 1st-grade teacher, Ms. Worst-case, who was full of concerns
towards getting the bully jobs to her room.

“I focused on selfish precedence-constraints given by a complete bipartite graph”,
Ms. Schedule started, “essentially, this models the bully-equilibrium problem we
have at school. I first analyzed the price of bullying for the two objectives I found
most important: minimum makespan and total-flow time. Next, I analyzed the well-
known heuristics List-Scheduling and LPT, and I developed a PTAS for the minimum
makespan problem. I then considered the problem of minimizing the total flow-time.
I have a hardness proof for instances with many nice jobs and an optimal algorithm
for instances with a single nice job. I suggest that you consult with the principal
regarding this problem. He is not as dumb as he seems.

If the bully jobs keep being late also in Ist grade, you can use my PTAS for
minimizing the makespan when bullies have release times. Finally, while for regular
precedence-constraints, many problems are NP-hard already with unit-length jobs
and very restricted topologies of the precedence graph, I showed that with selfish
precedence-constraints, and any precedence graph, minimizing both the makespan
and the total flow-time can be solved in linear-time.

I trust you to consider the following open problems during the next school year:”

e The only objectives I considered are minimum makespan and total flow-time. It
would be very interesting to consider instances in which jobs have due dates, and
the corresponding objectives of minimizing total or maximal tardiness and late-
ness. For regular precedence-constraints, these problems are known to be NP-hard
already for unit-length jobs and restricted topologies of the precedence-constraints
graph [17, 18].

e As I've just told you, the hardness of minimizing the total flow depends on the
number of nice job. Can you find the precise value of n for which the problem
becomes NP-hard? This value might be a constant or a function of m, b, or the
sliding times. Also, as the problem is closely related to the bi-criteria problem
P2||Fp(Cimax/ Y C}), itis desirable to check if heuristics suggested for it (e.g., in
[6, 7]) are suitable also for our setting.

o It would be nice to extend my PTAS for 1|Kp, ,, s-prec, rj(B)|Ciqx for parallel
slides. Note that for this setting, a late-arriving bully pushes a way only a single
nice job (of his choice, or not, depending on your authorization).
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e Asis the case with other scheduling problems, it would be nice to extend the results
to uniformly related or unrelated machines, and to consider additional precedence-
constraints graphs, such as chains and in/out-trees.

e Another natural generalization for the total flow-time objective, is when jobs
have weights. For regular precedence-constraints, the problem 1|prec|) w;C; is
known to be NP-hard, and several approximation algorithms are known [4, 16].

A more general open problem is the following: Given are jobs and a precedence-
constraints graph. The edges of the precedence-constraints graph are weighted, the
weight of an edge (i, j) specifies the minimal gap between the starting times of i
and j. In regular precedence-constraints w(i, j) = p;. In other words, if i precedes
J then j can start being processed at least w(i, j) time units after i starts being
processed. “I believe”, said Ms. Schedule,“that this problem reflects natural scenar-
ios arising in real-world applications such as production systems. The most relevant
problem I found is scheduling with precedence delays [9, 19], which refers to the
case where w(i, j) > p;. Some experimental results for solving the problem via IP
and branch and bound are considered in [22]. In my work with the bully jobs, I con-
sidered the case w(i, j) = 0. I recently found out that this case was studied in [14] for
instances in which the precedence-constraints graph consists of chains. What happens
when 0 < w(i, j) < p;, i.e., some overlap is allowed?”.
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