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SUMMARY

We consider variants of the classic bin packing and multiple knapsack problems, in which sets of
items of different classes (colours) need to be placed in bins; the items may have different sizes and
values. Each bin has a limited capacity, and a bound on the number of distinct classes of items it can
accommodate. In the class-constrained multiple knapsack (CCMK) problem, our goal is to maximize
the total value of packed items, whereas in the class-constrained bin-packing (CCBP), we seek to
minimize the number of (identical) bins, needed for packing all the items.

We give a polynomial time approximation scheme (PTAS) for CCMK and a dual PTAS for CCBP.
We also show that the 0—1 class-constrained knapsack admits a fully polynomial time approximation
scheme, even when the number of distinct colours of items depends on the input size. Finally, we
introduce the generalized class-constrained packing problem (GCCP), where each item may have
more than one colour. We show that GCCP is APX-hard, already for the case of a single knapsack,
where all items have the same size and the same value.

Our optimization problems have several important applications, including storage management for
multimedia systems, production planning, and multiprocessor scheduling. Copyright © 2001 John Wiley
& Sons, Ltd.

KEY WORDS: polynomial time approximation schemes; class constraints; multiple knapsack; bin
packing; algorithms

1. INTRODUCTION

1.1. Problem statement

In the well-known bin packing (BP) and multiple knapsack (MK) problems, a set, I, of items
of different sizes and values has to be packed into bins of limited capacities; a packing is
legal if the total size of the items placed in a bin does not exceed its capacity. We consider
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the following class-constrained variants of these problems. Suppose that each item has a
size, a value, and a class (colour); each bin has limited capacity, and a limited number of
compartments. Items of different colours cannot be placed in the same compartment. Thus,
the number of compartments in each bin bounds the number of distinct colours of items it
can accommodate. A packing is legal if it satisfies the traditional capacity constraint, as well
as the class constraint.

Formally, the input to our packing problems is a set of items, /, of size |/| =n. Each item
uecl has a size s(u)€Z™", and a value p(u)eZ*. Each item in 7 is coloured with one of
M distinct colours. Thus, /=1, Ul --- Uly, where any item u € [; is coloured with colour i.
The items need to be placed in bins, where each bin j, j=1,2,..., has volume v; and ¢;
compartments.

The output of our packing problems is a placement, which specifies for each bin ;j which
items from each class are placed in j (and accordingly, the classes to which j allocates
compartments). A placement is legal if for all j>1, bin j allocates at most ¢; compartments
(i.e. bin j has items of at most ¢; colours), and the overall size of the items placed in j does
not exceed v;. We study two optimization problems:

The class-constrained multiple knapsack problem (CCMK), in which there are N bins (to
which we refer as knapsacks). A placement determines a subset S=S5;US,--- USy, of I, such
that S; C/; is the subset of packed items of colour i. Our goal is to find a legal placement
which maximizes the total value of the packed items, given by Zf‘i 1 D ues, P(1);

The class-constrained bin-packing problem (CCBP), in which the bins are identical, each
having size 1 and ¢ compartments, and the items have sizes s(u)<1. Our goal is to find a
legal placement of all the items in a minimal number of bins.

We also consider a generalized version of class-constrained packing (GCCP), where each
item, u, has a size s(u), a value p(u), and a set C(u) of colours, such that it is legal to
colour # in any colour in C(u). Thus, if some bin allocates compartments to the set C; of
colours, then any item u €/l added to this bin needs to satisfy C(u)NC;#0. (In the above
CCMK and CCBP problems, we assume that Vu €, |C(u)|=1). In another generalization of
class-constrained packing considered in this paper, the colour of each item depends on the
knapsack in which it is placed. That is, each item u €/ has a size s(u), a value p(u) and an
N-vector, €,, where €,(/) is the colour of u when it is placed in the knapsack K;, 1<j<N.

1.2. Motivation

1.2.1. Storage management in multimedia systems. The CCMK problem is motivated by a
fundamental problem in storage management for multimedia-on-demand (MOD) systems (see,
e.g. References [1, 2]). In a MOD system, a large database of M video program files is kept
on a centralized server. Each program file, i, is associated with a popularity parameter, given
by o; € [0, 1], where 2?11 o; = 1. The files are stored on N shared disks. Each of the disks is
characterized by (i) its storage capacity, that is, the number of files that can reside on it and
(i1) its load capacity, given by the number of data streams that can be read simultaneously
from that disk. Assuming that {o,...,0p} are known, we can predict the expected load
generated by each of the programs at any time. We need to allocate to each file disk space
and fraction of the load capacity, such that the load generated due to access requests to that
file is satisfied.
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The above storage management problem can be formulated as a special case of the CCMK
problem, in which s(u)= p(u)=1 for all uc/: a disk j, with load capacity ¢; and storage
capacity c¢;, is represented by a knapsack , with capacity /; and ¢; compartments for all
j=1,...,N. The ith file, ] <i<M, is re resented by a set [;, the size of which is proportional
to the ﬁle popularity. Thus, n=|I|= 3"/, /; and |/;| = o;|{|. T A solution for the CCMK prob-
lem induces a legal assignment of the files to the disks: K allocates a compartment to items
of colour i, iff a copy of the ith file is stored on disk j, and the number of items of colour i
that are packed in K; is equal to the total load that file i can generate on disk ;.

1.2.2. Production planning. Our class-constrained packing problems capture also a production
planning problem arising in computer systems and in many other areas. Consider a set of
machines, the jth machine has a limited capacity, v;, of some physical resource (e.g. storage
space, quantity of production materials). In addition, hardware specifications allow machine
J to produce items of only c¢; different types. The system receives orders for products of
M distinct types. Each order, u, is associated with a demand for s(«) units of the physical
resource, a profit, p(u), and its type i€ {1,...,M}.

We need to determine how the production work should be distributed among the machines.
When the goal is to obtain maximal profit from a given set of machines, we have an instance
of the CCMK. When we seek the minimal number of machines required for the completion
of all orders, we have an instance of the CCBP. When each order can be processed under a
few possible configurations we get an instance of GCCP.

1.2.3. Scheduling parallelizable tasks. Consider the problem of scheduling parallelizable
tasks on a multiprocessor, i.e. each task can run simultaneously on several machines (see,
e.g. References [4, 5]). Suppose that we are given N parallelizable tasks, to be scheduled
on M uniform machines. The ith machine, 1<i<M, runs at a specific rate, [;. Each task,
T;, requires v; processing units and can be allotted (possibly simultaneously) to at most ¢;
machines. In other words, 7; can ‘split’ into at most c; sub-tasks, and each sub-task can be
processed on a different machlne The set, M;, of machines allotted to 7} is fixed for the dura-
tion of the schedule. The work required by 7; needs to be partitioned among the machines in
M;. Note that the case where ¢;=1 Vj, is the classic multiprocessor scheduling problem. Our
ObJeCtIVG is to find a schedule that maximizes the total work done in a given time interval
of some length w. This problem can be formulated as an instance of the CCMK, in which
a task 7; is represented by a knapsack K; with capacity v; and ¢; compartments; a machine
with rate /; is represented by wl; items, such that s(u)= p(u)=1, for all uel.

1.3. Related work and our results

There is a wide literature on the bin packing (BP) and the multiple knapsack (MK) problems
(see, e.g. References [6—10] and detailed surveys in References [11-13]). Since these prob-
lems are NP-hard, most of the research work in this area focused on finding approximation
algorithms. The special case of MK where N =1, known as the classic 0—1 knapsack prob-
lem, admits a fully polynomial time approximation scheme (FPTAS). That is, for any ¢>0,

9For simplicity, we assume that o;|/| is an integer (otherwise we can use a standard rounding technique [3]).
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a (1 — ¢)-approximation for the optimal solution can be found in O(n/¢?), where n is the
number of items [14, 15]. In contrast, MK was shown to be NP-hard in the strong sense [16],
therefore it is unlikely to have an FPTAS, unless P=NP. It was unknown until recently,
whether MK possessed a polynomial time approximation scheme (PTAS), whose running
time is polynomial in n, but can be exponential in 1/e. Chekuri and Khanna [10] resolved
this question: They presented an elaborated PTAS for MK, and showed that with slight gen-
eralizations this problem becomes APX-hard. Independently, Kellerer [17] developed a PTAS
for the special case of the MK, where all bins are identical.

It is well known (see, e.g. Reference [18]) that bin packing does not belong to the class of
NP-hard problems that possess a PTAS. However, there exists an asymptotic PTAS (APTAS),
which uses (14 &)OPT(/)+ k bins for some fixed k. Vega and Lueker presented an APTAS,
with k=1 [19]. Alternatively, a dual PTAS, which uses OPT(/) bins of size (1+¢) was given
by Hochbaum and Shmoys [20]. Such a dual PTAS can also be derived from the recent work
of Epstein and Sgall [21] on multiprocessor scheduling, since BP is dual to the minimum
makespan problem.

Other related work deal with multi-dimensional packing problems:!l Frieze and Clarke [22]
gave a PTAS for the case N =1; Chekuri and Khanna presented in Reference [23] a PTAS
for the case where N >1 and the knapsacks have d equal-sized dimensions. Note that for the
special case in which / contains a single item in each colour, the CCMK reduces to a special
case of 2-dimensional packing: the knapsack K; has size v; x ¢;, and each item u €/ has size
s(u) x 1. This cardinality-constrained packing problem, in which the number of items packed
in each knapsack is constrained, was studied in Reference [24] and recently in Reference
[25]. For N =1, an FPTAS for the cardinality-constrained 0—1 knapsack problem is given
in Reference [26]. Indeed, an instance of our class-constrained packing problems (e.g. the
CCMK) may contain many items in each colour. In terms of 2-dimensional packing, it means
that the jth knapsack is of size v; x ¢;; however, the size of an item ue/; is s(u)x 1 if u
is the first item of /; in K;, and s(u) x 0 if K; already holds items from /;. Thus, we have
not been able to adopt any of the approximation techniques developed for multi-dimensional
packing for solving our class-constrained packing problems.

Shachnai and Tamir considered in Reference [27] a special case of the CCMK, in which
s(u)= p(u)=1, for all uel, and showed that it is NP-hard. The paper presents an approxi-
mation algorithm that achieves a factor of ¢/(c + 1) to the optimal, when ¢;>c, VI <j<N.
Recently, Golubchik et al [28] derived a tighter bound of 1 — 1/(1 + /c)? for this algo-
rithm, with a matching lower bound for any algorithm for this problem. They gave a PTAS
for CCMK with unit sizes and values, and showed that this special case of the CCMK is
strongly NP-hard, even if all the knapsacks are identical. Other hardness results are given in
Reference [29]. It is shown that the problem is strongly NP-hard even for instances where
the total number of compartments can be arbitrarily large and all the sets are of the same
size, that is, Vi, |[;|=||/M.

In this paper we study the approximability of the CCBP and the CCMK problems.

e We give a dual PTAS for CCBP which packs any instance, /, with a fixed number of
distinct colours, into at most OPT(/) bins whose size is at most 1 + &.

Il Also known as vector packing.
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e We derive a PTAS for CCMK which is suitable for instances with a fixed number of
distinct colours. The running time of our PTAS depends on the number, ¢, of bin types
in the instance.** Specifically, we distinguish between the case where ¢ is some fixed
constant and the general case, where ¢ can be as large as N. In both cases, the profit is
guaranteed to be at least (1 — ¢)OPT(/).

e We show that the 0—1 class-constrained knapsack (CCKP) admits an FPTAS. For the
case where all items have the same value, we give an optimal polynomial time algorithm.
Our FPTAS is based on a two-level dynamic programming scheme. As in the MK
problem [10], when we use the FPTAS for CCKP to fill the knapsacks sequentially
with the remaining items, we obtain a (2 + ¢)-approximation for CCMK. Our results for
the CCKP are suitable also for instances in which M, the number of distinct colours,
depends on the input size.

e We show that the generalizations of class-constrained packing are APX-hard, already for
instances where all items have the same size and the same value, and (for GCCP) there
is only one knapsack.

When solving the CCBP, we note that even if M >1 is some fixed constant, we cannot
adopt the technique commonly used for packing (see, e.g. References [19, 20, 30]), where
we first consider the large items (of size >¢), and then add the small items. We show (in
Appendix A) that in the presence of class constraints, one cannot extend even an optimal
placement of the large items into an almost optimal placement of all items. The best we can
achieve when packing first the large items, is an APTAS, whose absolute bin-waste depends
on M. Such an APTAS is given in Reference [31]. We show that CCBP admits also a dual
PTAS. Our dual PTAS is obtained by using a different technique, which first eliminates most
of the small items. Note that the CCBP problem is dual to the following problem of scheduling
a set of jobs on m identical machines. We are given a set of n jobs of M different types;
each machine can process at most ¢ types of jobs (each type requires a different configuration
of the machine). We need to schedule all the jobs on the machines, so as to minimize the
makespan.

Our results contain two technical contributions. We present (in Section 2.1) a technique
for eliminating small items. This technique is suitable for any packing problem in which
handling the small items is complex, and in particular, for class constrained packing. Using
this technique, we transform an instance, /, to another instance, /’, which contains at most one
small item in each colour. We then solve the problem (CCBP in our case) for /” and slightly
larger bins, which is much simpler than solving for / with the original bins. Indeed, a similar
technique of grouping and rounding small items is used in Reference [21, 32]; however, our
technique is tailored for instances with many types of items. It has the advantage that the fotal
inaccuracy depends only on ¢ and independent of M. Our second idea is to transform any
instance of CCMK to an instance which contains O(lgn/e¢) distinct bin types. This reduction
in the number of bin types is essential when guessing the partition of the bins to colour sets
in our problem,’ and it may be useful for solving other variants of the MK problem in future
studies.

**Bins of the same type have the same capacity, and the same number of compartments.
ttSee in Section 3.6.

Copyright © 2001 John Wiley & Sons, Ltd. J. Sched. 2001; 4:313-338



318 H. SHACHNAI AND T. TAMIR

The rest of the paper is organized as follows. In Section 2 we give the dual PTAS for the
CCBP problem. In Section 3 we consider the CCMK problem, and give PTASs for a fixed
number of bin types (Section 3.5), and for an arbitrary number of bin types (Section 3.6). In
Section 4 we consider the class-constrained 0—1 knapsack problem. Finally, in Section 5 we
give the APX-hardness proofs for generalized class-constrained packing.

2. A DUAL-APPROXIMATION SCHEME FOR CCBP

In this section we derive a dual-approximation scheme for the CCBP problem. Let OPTg(/)
be the minimal number of bins needed for packing an instance /. We give a dual PTAS for
CCBP, that is, for a given ¢>0, we present an algorithm, 4;;, which packs I into OPTz(/)
bins; the number of different colours in any bin does not exceed ¢, and the sum of the sizes
of the items in any bin does not exceed 1+ &. The running time of A4} is polynomial in n
and exponential in M, 1/¢>. We assume throughout this section that the parameter M >1 is a
fixed constant.

Our algorithm operates in two stages. In the first stage we eliminate small items, i.e. we
transform / into an instance /’ which consists of large items, and possibly one small item in
each colour. In the second stage we pack I’. We show that packing I’ is much simpler than
packing /, and that we only need to slightly increase the bin capacities, by factor 1 + . We
show that a natural extension of known packing algorithms to the class-constrained problem,
yields a complicated scheme. The reason is that without elimination, we need to handle the
small items of each colour separately. The elimination technique presented below involves
some interaction between small items of different colours.

Various techniques can be used to approximate the optimal solution for I’. We adopt the
technique presented by Epstein and Sgall [21]. Alternatively, we could use interval partition
[19, 30].

Note that when there are no class constraints, our elimination technique can be used to
convert any instance / into one which contains a single small item.

2.1. Eliminating small items

We now describe our elimination technique, and show that the potential ‘damage’ when
solving the problem on the resulting instance, is small. For a given parameter, 6 >0, denote
by small the subset of items of sizes s(u)<o. Other items are considered /arge. Our scheme
applies the following transformation to a given instance /.

1. Partition / into M sets by the colours of the items.

2. For each colour 1<i<M, partition the set of small items of colour i into groups: the
total size of the items in each group is in the interval [J,20); one group may have total
size <. This can be done, e.g. by grouping the small items greedily: we start to form
a new group, when the total size of the previous one exceeds J.

The resulting instance, I/, consists of non-grouped-items, which are the original large items
of 1, large grouped-items of sizes in [9,20), and at most M small grouped-items (one in each
colour).

From the way [’ is constructed, we have
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Fact 2.1
For each colour 1<i<M, the total size of the items of colour i/ in [’ is equal to the total
size of the items of colour 7 in /.

Given a packing of I’, we can replace each grouped item by the set of small items from
which it was formed. In this process, neither the total size of the items nor the set of colours
contained in each bin is changed. Hence,

Fact 2.2
Any legal packing of I’ into m bins induces a legal packing of / into m bins.

Now, we need to bound the potential damage from solving the problem on I’ (rather than
the original instance /). We show that any legal packing of / induces a packing of /' into a bit
larger bins. Note that in the transformation from / to /I’ we cannot use a simple replacement,
since small items who belong to the same group in I’ may be packed in different bins. Let
S(A) denote the total size of a set 4 of items.

Lemma 2.3
Given a packing of / in m bins of size 1, we can pack I’ into m bins of size 1+ 20.

Proof

First, replace all the large items of / with their corresponding non-grouped-item in I’. The
remaining items are small, and need to be replaced by grouped items. For these items (only)
we show that such a replacement exists. In fact, we prove a stronger claim. For a bin B, let
Sp denote the set of small items packed in B. For a set C; C{l,...,M} of colours, let SBC‘
denote the subset of Sp of items with colours in C;. Denote by C(/,B) the set of colours of
small items of I placed in B, and by C(I’,B) the set of colours of the grouped items of I’
placed in B. We show that the small items of / can be replaced by all the grouped items of
I’, such that

(i) for any bin B and a set of colours Cy, the items in SBCl are replaced by grouped items
in I’ whose colours are in C;, and whose total size is at most S(S5') 4 26;
(ii) for any bin B, C(I’,B)C C(I,B).

The proof is by induction on m, the number of bins used for packing /.

Base: m=1, that is, all the items of [ are placed in one bin, B. By Fact 2.1, for each
colour 1<i<M, the total size of the items of colour i in I’ is equal to the total size of the
items of colour i in /. Hence, we can replace all the items of / by all the items of I'.

Induction step: Assume that the claim holds for any instance with m’ <m bins. Given an
instance with m bins, let By,B; be two arbitrary bins, which contain small items from / of
total size S(Ss, )+ S(Ss,). Consider an instance with m — 1 bins, derived from our instance
by replacing B; and B, by one new bin B,.,, which contains all the small items of B; and
B;. By the induction hypothesis, we can replace the small items of / by the grouped items
of I’, such that (i) and (ii) hold. The solution for the new instance induces a solution for the
original instance: bins other than B, and B, are filled as in the new instance. The grouped
items that are placed in By, split between B, and B, as follows.

1. Let C; =C(,B)\C(I,B,); place all the Cy-coloured grouped-items from B, in Bj.
2. Let C, =C(I,B,)\C(I,By); place all the C,-coloured grouped-items from By, in B;.
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3. Let C3=C(,B;)NC(,B,); place arbitrary Cs-coloured grouped-items from By, in B,
until it first reaches the capacity S(Sp,); place the remaining Cs-coloured grouped-items
from Bp., 1n Bs.

By the induction hypothesis, By contains C;-coloured grouped-items of size at most S(Sgcll )+
20, thus, the overflow in B; after step 1 is at most 20. Similarly, the overflow in B, after
step 2 is at most 2. In addition, the total overflow in B; after step 3 is at most 29, since
the size of each grouped-item is at most 26 and we stop filling B; as soon as its contents
exceed S(Sp, ). Finally, the overflow in B, after step 3 is at most 29, since by the induction
hypothesis the total size of the items in By, is at most S(Sg, ) + S(Ss,) + 20. |

In particular, for an optimal packing of 7, we have:

Corollary 2.4
Let OPTs(/,v) be the minimal number of bins of size v needed for packing an instance /,
then OPTp(/’,1+420)<OPTg(/,1).

Note that our proof induces a replacement of the small items of / by grouped items, such
that the tofal overflow (when summing over all bins) is at most 2. However, we cannot
predict how this overflow will split among the bins.

2.2. Packing the grouped instance I’

2.2.1. The PTAS of Epstein and Sgall. Epstein and Sgall [21] presented PTASs for multi-
processor scheduling problems on m uniform machines. When each job is represented by an
item and each processor is represented by a bin, their general approximation schema can be
modified to yield a dual PTAS for bin packing. Specifically, for a given parameter ¢ >0, the
dual PTAS packs any instance / into the optimal number of bins, with the size of each bin
increased at most by factor 1+ ¢ (This can be done using binary search on m, the minimal
number of bins, as in Reference [20]).

The PTAS in Reference [21] is based on partitioning the set of jobs, /, into O(1/6%)
subsets. The jobs in each subset have the same length (the original lengths are rounded).
The short jobs are replaced by a few jobs of short, but non-negligible length. This partition
can be represented as a configuration vector of length O(1/6*). Any vector whose entries are
at most the entries of this vector is a configuration vector of some set S C/ of jobs. The
algorithm constructs a graph whose vertices are a source, a target and one vertex for each
possible configuration vector. There is an edge connecting the two configurations »n’ and n”
if a schedule of #»’ on i machines can be extended to a schedule of #»” on i + 1 machines.
The weight of an edge (n’,n”) reflects the cost of moving from the configuration »’ to the
configuration »”, that is, the time needed for the (i + 1)th machine to process the jobs in
n —n.

Having the weights defined in such a way, the problem of finding a good schedule is
reduced to the problem of finding a good path in the graph. We seek a path of length m
from the source (whose configuration represents an empty set of jobs), to the target (whose
configuration represents the set of all jobs). The evaluation of a path depends on our objectives.
For example, when minimizing the makespan, a good path is a one that minimizes the maximal
weight of some participating edge; when minimizing the sum of the completion times, a good
path is a one that minimizes the total weight of the participating edges. The time complexity
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of the algorithm depends on the size of the graph, which is dominated by the total number
of configurations. For a given d, the graph has size O(n/) where f =81/5%.

When this scheme is used for bin-packing, each configuration represents a set of items. An
edge connecting the two configurations »n’ and n” implies that a placement of »’ in i bins
can be extended to placement of n” in i + 1 bins. The weight of the edge is the total size of
items in n” —n’, that are to be placed in the (i + 1)th bin. For a given value of m, if there is
a packing of [ into m bins of size 1, then there is a path of length m from the source to the
target with all edges having weight at most 1 4+ J (recall that we use binary search to find
the minimal value of m).

2.2.2. The algorithm Ags. A natural extension of Epstein—Sgall’s algorithm for the CCBP
problem is to refine the configurations to describe the number of items from each size set and
from each colour. Such extension results in a graph of size O(n/) where f=M((2M +1)*/5%.
The value of f increases from 81/6% to M(2M + 1)*/6* since the small items of each colour
are handled separately. In addition, the total size of small items of each colour is rounded to
the nearest multiple of /9. Thus, if rounded items of ¢ colours are packed into the same bin,
we may get in this bin an overflow of ¢d/9. Given that there is only one small item in each
colour, as in /', we can use the actual sizes of the small items. This decreases significantly
the possible number of configurations and prevents any potential overflow due to rounding.

Hence, given an instance /', consisting of large items and at most M small items, each
of different colour, we derive a simplified version of the PTAS in Reference [21]. In this
version, denoted by Ags:

1. Each set of items S C/I’ is represented by a unique configuration of length O(M/5?),
which indicates how many items in S belong to each colour and to each size class. Note
that there is no need to round the total size of the small items: we only need to indicate
which small items are included in the set (a binary vector of length M). In terms of
Reference [21], this means that we do not need to accumulate the size of small items in
each configuration, and no precision is lost because of small items.

2. To guarantee that each bin contains items of at most ¢ colours, we connect in the
configuration graph only vertices representing configurations which differ by at most ¢
colours. In other words, there is an edge connecting the two configurations »n’ and n”
only if n”” — n’ is positive in entries that belong to at most ¢ colours.

We summarize in the next Lemma:

Lemma 2.5

Let m be the minimal number of bins of size v needed for packing /', then, for a given 6 >0,
Ags finds a packing of I’ into m bins of size v(1 + &). The running time of Ags is O(n')
where f = M/5.

2.3. The algorithm A}

Let 6 =¢/4; v=1+26. The algorithm A} proceeds as follows.

1. Construct I’ from /, using the algorithm in Section 2.1.
2. Use Ags for packing I’ into bins of size v(1 4 ). Let m be the number of bins used.
3. Ungroup the grouped items to obtain a packing of / in m bins of size v(1 + 9J).
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Theorem 2.6
The algorithm A} uses at most OPTp(/) bins. The sum of the sizes of the items in any bin
does not exceed 1+ ¢. The running time of A5 is O(n/) where f=16M/:.

Proof

We first show that the sum of the sizes of the items in any bin does not exceed 1 + &:
Combining Fact 2.2 and Lemma 2.5, we conclude that each of the m bins is filled up to
capacity v(1 + o). Clearly, for any ¢<2, 0<1/2 (otherwise, we can choose a smaller value
for §), thus, v(1 +0)=(14+20)(1+0)<1+45=1+c.

Next, we show that the number of bins used by 4} is at most OPTs(/,1): By Lemma 2.5,
I’ is packed by Agg in m bins of size v(1+ J), such that m <OPTg(I’,v). Then, we use these
m bins to pack /. From Corollary 2.4, OPTp(I’,v)<OPTp([,1). Therefore m<OPTz(/, 1).
Finally, setting 0 = ¢/4, the running time of A} follows directly from the running time of Ags.

I

We note that our assumption that M is fixed is needed only in the second step, when
packing I’. Hence, this assumption can be relaxed when our technique, for eliminating small
items, is used for other purposes.

3. APPROXIMATION SCHEMES FOR CCMK

3.1. The PTAS of Chekuri and Khanna

Chekuri and Khanna [10] developed a PTAS for MK. Let P(U) denote the value of a set
U C1, and let OPT(/) be the value of an optimal solution when packing /. The PTAS in
Reference [10] is based on two steps: (i) Guessing items: identify a set of items U C/ such
that P(U)>=(1 — ¢)OPT(/) and U has a feasible packing. (ii) Packing items: given such U,
find a feasible packing of U’ C U, such that P(U’)=(1 — &)P(U).

For the sake of completeness, we summarize the implementation of the guessing items step
as given in Reference [10]. For a guessed value P satisfying (1 — ¢)OPT(/)<P <OPT(/),
discard all the items u € I with p(u) <eP/n; then, divide all the profits by ¢P/n, and round each
down to the nearest power of (1+¢). The resulting instance, I, has A< [log, , n/e| = O(Inn/e)
distinct profits. Thus, we assume that the items of / are partitioned into 4 sets I',...,I" with
items in each set having the same profit. Let & be a subset of items which gives a solution
with profit P, and let 2/ be the subset of items in & in the jth profit class.

We proceed to guess an A-vector, k, of integers, 1<k;<h/¢*; k; reflects the contribution
of 2/ to the overall profit in some optimal packing, in multiples of &2P/h, i.e.

2 2

KoL <pan<w sl
We seek a vector k= (k,...,k;,) satistying Z;’zl k;<h/e*. As shown in Reference [10], the
number of such vectors is O(n°1/)); thus, k can be guessed in polynomial time. Given the
contribution of each profit set /7 in an optimal packing, we select for the set U the items of
I’ with smallest sizes whose total profit accumulates to the required contribution. These small
items can clearly replace any set of items with the same contribution from %/. Thus, U is
feasible.
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3.2. Our PTAS for CCMK—an overview

In the following we adopt the guessing approach in Reference [10], for obtaining a PTAS
for CCMK. For some #>1, assume that there are ¢ types of bins, such that bins of type j
have the same capacity, v;, and the same number of compartments, ¢;. Let ¢ = max; ¢; be the
maximal number of compartments in any type of bins. We denote by B; the set of bins of
type j; let m; = |B;| be the number of bins in B;. Our schema proceeds in three steps:

1. Guess a subset U C/ of items that will be packed in the bins, such that P(U)>(1 —¢)
OPT(/), and U has a feasible class-constrained packing in the knapsacks.
2. Guess a partition of the bins to at most

c (M
r=2</>=0(M6) (1)
/=1

colour sets, i.e. associate with each subset of bins the set of colours that can be packed
in these bins. We call a subset of bins of the same type and colour set a block; thus,
the resulting number of blocks is 7 <tr.

3. Find a feasible packing of U’ C U in the bin blocks, such that P(U")=(1 — &)P(U).

As in Reference [10], the overall scheme is more involved since we iterate between the
guessing and packing steps. This is due to the fact that OPT(/) is not known in advance.
However, the maximal number of guessing-packing iterations is bounded by the maximal
number of guesses for a value P, such that

(1 —¢)OPT(I)<P<OPT() 2)
To bound this number, we show a y-approximation for the problem for some constant 0 <y <1.

Claim 3.1
Let ¢,, = min; ¢; be the minimal number of compartments in any type of bins, then the CCMK
problem has a polynomial time c,,/2M -approximation algorithm.

Proof
The following algorithm, .7, is a c¢,,/2M -approximation algorithm for CCMK:

1. Ignore the colours and find a 1/2-approximate solution for MK for the input / (such an
algorithm is given in Reference [33]).

2. For each knapsack, K;, find the ¢; most valuable colours in the resulting packing and
remove all the items which are not in these colours.

Let z; be the optimal profit for the non class-constrained problem, and let z, be the profit
obtained in step 1 of .o7. Let z* be the optimal profit for the class constrained problem, and
let z be the profit obtained by .«/.

Note that since we pack in each knapsack items of at most ¢; colours, ./ produces a valid
packing. In addition,

1 cﬂ‘l C

c‘l m
ZZ2 02 21 2 2
TMTT2MT T 2M

Thus, o7 is a ¢,,/2M-approximation algorithm for the CCMK problem. |

*
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Having a ¢,,/2M -approximation for OPT(/), we can find a value of P satisfying (2) using
a binary search over the resulting range.

Corollary 3.2
The number of guessing-packing iterations for finding P which satisfies (2) is at most

[log(2MJe)].

In Sections 3.3, 3.5, and 3.6 we describe in detail the implementation of each of the steps
in our PTAS. The implementation of the second and the third steps varies, depending on ¢,
the number of bin types. As a result, the time complexity of our PTAS depends also on that
parameter.

3.3. Guessing items

We now show that the first step, of guessing items, can be generalized to the class-constrained
version. This generalization is straightforward: after reducing (to /4) the distinct number of
profits in / (as detailed in Section 3.1), we further partition each profit set // into M colour
sets 1{,...,1j,, with the items in each set having the same profit and the same colour. For
a subset of items, %, whose packing gives the profit P, denote by &/ the subset of items
in & in the jth profit class and in colour i. We now guess an s x M-matrix, K = {k;;},
of integers, 1<k;;<hMJe*; k;; reflects the contribution of ] to the overall profit in some
optimal packing, in multiples of &*P/Mh, i.e.

&2P

kv

<P <(ki,; + 1)82—}) (3)
~ i ~ L] Mh
We seek a matrix K = {k; ;} satisfying Zi.’:] ¥ ki, <Mh/¢*. Given the contribution of each
profit-colour set 7/ in an optimal packing, we select for U the items of I/ with smallest sizes
whose total profit accumulates to the required contribution.

In order to show that the above algorithm finds in polynomial time a set U C [ as required
in the guessing step, we need to show the following claims:

Claim 3.3
Solving the problem for the rounded profit instance /' rather than /, can decrease the optimal
profit by a factor of at most (1 — ¢).

Proof
The proof follows from the fact that for any subset U of I, U is transformed into a set

U’ C I’ whose profit satisfies

P(U) _P(U")eP

(1= )P(U)S T <

<P(U)

In particular, this holds for an optimal subset of packed items. O

Claim 3.4
There exists an h x M-matrix, K, of integers, 1<k, ; <hM/¢?, such that the set U induced by
K has a feasible class-constrained packing and P(U)>(1 — &*)P.
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Proof
Let 2 be the subset of items as defined above. Recall that U is the subset of items induced
by the matrix K; then, from the right inequality in (3) we get that

P=P(2)= ZEP(@/)gZEk,,Mh +&P=P(U)+ &P
Jj=li= j=li=1
This yields the claim. U

Claim 3.5
The number of possible guesses for the matrix K is n

Proof
Note that the total number of matrices K is the number of ~ZM-tuples whose coordinates sum
to hM/e?, given by

O((MJe) In(1/))

hM—I—hﬂfl

M —1
Now, for any n>1>0, (})<(en/I)". Hence, we get that

hM hM
M + — — 1 < (33) :ehMln(Be/z:z) — O((Me) In(1/e))

2
hM ~1 ¢
This completes the proof. U
Combining Claims 3.3-3.5, we have

Corollary 3.6
For a given P, a set U such that P(U)>=(1 — ¢)P and U has a feasible class-constrained
packing in the knapsacks can be found in nOM/& (1) gyesses.

3.4. Reducing the number of distinct item sizes

Using the restricted number of distinct profit values we can also reduce the number of distinct
sizes in the set U to O(Inn/e?). This stage is similar to the corresponding step in Refer-
ence [10], and is based on the shifting technique introduced in the PTAS for bin-packing in
Reference [14]. Let 4 be a set of a items with identical profits, identical colours and arbi-
trary sizes. We order the items in A4 in non-decreasing order by sizes and divide them into
g=(1+1/¢) groups A4,,...,4, with 4;,...,4,_, containing |a/g| items each and 4, containing
the remaining items. We discard the items in 4,_; and for each i <g—1 we increase the size
of every item in A4; to the size of the smallest item in A4,,,. Since 4 is ordered by size, no item
in A; is larger than the smallest item in 4;,; for 1<i<g. Thus, if 4 has a feasible packing
then the modified instance also has one. We discard at most an ¢ fraction from the profit (of
the items in 4,_;) and the modified instance has at most 2/¢ distinct sizes (g — 2 sizes of the
items in A4,...,4,_, and at most ¢ distinct sizes of the items in 4,). Applying this to each
profit-colour class in U, we can now assume that U consists of s <O(M Inn/e?) classes, i.e.
Uy U---UU, and the items in Uy are of the same size, the same profit, and the same colour.

Copyright © 2001 John Wiley & Sons, Ltd. J. Sched. 2001; 4:313-338



326 H. SHACHNAI AND T. TAMIR

3.5. Instances with a fixed number of bin types

Assume that 7>1 is a fixed constant. In the second step we partition the bins into blocks.
We need to determine m;;, the number of bins of type j associated with the /th colour set.
Thus, the number of guesses is O(n’) (since we need to determine the size of 7 blocks, and
each block can consist of at most # bins).

The third step of our scheme is implemented as follows. Let n; = |U;| be the number of
items in the class Ui, 1<k<s. We first partition U; to 1<T'<T subsets, where 7’ is the
number of distinct blocks in which the items of U, are placed. Clearly, the items of Uy can
only be placed in blocks that include the colour of the items in Uy in their colour set. Denote
by n;, the number of items in the class Uy that are placed in the block 4. For i=1,...,2T/,
let o = [ien;/2T].

Claim 3.7
By considering only partitions of U, in which Vb, 3i, n;, =0}, we can decrease the optimal
profit gained by items of U, at most by factor (1 — ¢).

Proof
First note that if en;/27 <1 then clearly all possible integer values for n; are considered. If
eng /2T >1 then V1 <i<2T/e,

y 1) y 1)
k ko= ieng | [ (i = 1eny Slsﬂ 11— (i — Deny
2T 2T 2T

eny 2en;  eng

= _— < — =
b+ 27 =~ 2T T )
Consider any partition of U; into the blocks. For any block b, if there is no i such that
ni., =0} then we can remove the less-profitable items until we reach some c*. By (4) we
remove at most eny/T items. Thus, we remove a total of at most en; items—with an overall
loss of at most a factor of ¢ from the total profit of U. |

Therefore, we can assume that ny;, is one of 27/¢ values. We can now describe the partition
of Uy as a list of pairs (b,7), where 1<b<T and 1<i<2T/e. The number of such subsets
of pairs for Uy is at most 297°/9) and as we need to consider all the classes, U,..., Uy, the
overall number of guesses is 257 /¢ = 20((M nn/e)T*/e)) —  OMT?[&),

By the guessing items step of our scheme, the set U has a feasible packing. In particular,
there exists a partition of the U;’s among the 7 blocks which corresponds to a feasible
packing. We show that we can pack U’ C U such that P(U’)>=(1 —¢)P(U). In fact, for each
block, b, we have guessed a set of items that has a feasible packing in b. Since the bins in
each block are identical, we can use, for each block separately, any known PTAS for bin
packing (see, e.g. Reference [30] whose time complexity is O(n/e?)) and take for each block
the m;; most profitable bins. Since such a PTAS packs all the guessed items in at most
(1 + &)m;; bins, we discard at most ¢ of the profit. If m;;<[1/e] then we can use a PTAS
for a constant number of bins (given in Reference [22]). Thus, for a given partition of the
U’s to the blocks, we can find a packing with profit at least (1 —¢&)P(U) in O(Tn/e*) steps.

We summarize in the next result
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Theorem 3.8
The CCMK with a fixed number of distinct colours, M >1, and a fixed number of bin types,

t>1, admits a PTAS, whose running time is O((7/e?)nO(M/e)n(1/e)+MT*/"))

Proof
The proof follows from a combination of (i) number of guesses of the value of P; (ii) the
number of guesses of the matrix K; (iii) the number of guesses of the partition of U to bin
blocks and (iv) the complexity of the PTAS for bin packing, for each guess.

Thus, we get that the overall running time is at most

2M T
[log (8>-‘ 0 (nO((M/s)ln(l/s))nO(MTZ/s3)8;’)

which yields the statement of the theorem. |

3.6. CCMK with arbitrary number of bin types

Suppose that the number of bin types is t=O(lgn). Recall that m; = |B;| is the number of
bins of the jth type. We need to determine for all 1 <<t 1</<r the number m;; of bins of
type j associated with the /th colour set. A naive implementation of this step of our scheme
results in O(n?°¢") guesses. Thus, we limit the possible partitions of the bins to blocks as
follows. For i =0,...,2r/e, let p! = [iem;/2r].

Claim 3.9 ‘
By considering only partitions of m; in which V/, 3i, m;; =/, we can decrease the optimal
profit gained by items packed in the bins of B; by a factor of at most (1 —¢).

Proof
First note that if em;/2r <1 then clearly all possible integer values for m;; are considered. If
em;/2r>1 then, as in the proof of Claim 3.7, V1 <i<2r/e,

Bl =Bl <

Consider any partition of m; among the » colour sets. For any colour set /, if there is no i
such that m; ; = B/ then we can add bins of type j until we reach some ﬁ,{ . From (5) we add
at most em;/r bins. Thus, summing over all colour sets, we add a total of at most em; bins.
Once the placement is completed we can pick for each j the m; most profitable bins with an
overall loss of at most a factor of ¢ from the total profit. |

&m;
r

(5)

Hence, we can consider only partitions in which the number of bins allocated to the /th
colour set is a multiple of em;/2r, and the total number of bins of type j is at most (14 ¢)m;.
Since m;; is one of 2r/e values, we can describe the partition of m; as a list of pairs (/,i),
where 1</<r and 1<i<2r/e. We get that the number of guesses is 2°0°/9). The overall
number of guesses, when taking all bin types, is 20("/9)logn) — yOC*/2)

In the third step we adapt the packing steps in Reference [10], with the bins partitioned to
blocks, as defined above.

Indeed, in the general case, ¢ can be as large as N. The packing steps in Reference [10]
assume that there are O(log(n/¢)) subsets of bins such that the capacities of bins from the
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same subset are in the range [v,v(1 + ¢)) for some v. In the following we show that the set
of bins can be partitioned in a way that fits this assumption.

Lemma 3.10

Any set of bins with ¢ bin types can be transformed into a set with O(log(n/¢)) subsets of
bin types, such that the bins in each subset have the same number of compartments and their
capacities are in the range [v,v(1 + ¢)) for some v, and for any U C/ that has a feasible
packing in the original set, there exists U” C U that has a feasible packing in the transformed
set, and P(U")=(1 —¢&)P(U).

Proof
Let vyax denote the maximal capacity of a bin. Consider the set of bins whose capacities are
in the range [eVmax/n*M*, Umax]. We partition this set of bins into subsets, 4%, 4',..., such that

A’ consists of the bins whose capacities are in the range

[ZZ‘E}T(] + &), ZI;HAX(] + s)«’“}
Distinguishing between bins by number of compartments, we partition each 4/ into at most
c subsets, A/,...,A.. We now have at most c¢lg(n**/¢) different subsets if bins.

Now, for any U C/ that is packed in the original set of bins, we can add w<M bins, one
for each colour 1<i<M, and pack, for each colour, i, all the items in colour i, previously
packed in bins of sizes smaller than evn../n*™*, in a single bin with a single compartment.
The total capacity of the w added bins is at most &Umay/nCMe™ D < gvmay/n*M. Therefore, we
can transform the given instance to an instance where all the bins, except for w<M, are of
sizes in the range [evmay/m*™, e ], arranged in the sets {4/} defined above.

Since the set U is unknown in advance, we have to guess w<<M and the partition of the
extra capacity of the small bins (which is at most &vpyy/n***) among the w new bins. The
capacity of each of the new bins will be a multiple 1<k <n of the minimal size & /n*M*.
Thus, the overall number of guesses is n* <n%M).

Finally, after the items of U are packed in the transformed set of bins, we need to eliminate
the extra w bins. Clearly, we can remove any set of w bins with larger capacities and at least
one compartment. Consider the set of bins of T” =log(n*/#/¢) types with largest capacities.
The number of bins in the set is at least 7", and

2M 1
T"—f—nglogn—Hogg—i—M

< +8)2TMlogn+(1 —l—s)logé
<(1+e)1”

That is, we increase the number of bins in this set at most by factor (1 + ¢). Since the
smallest bin size in this set is &vma /M, we can select the T” most profitable bins. The set
of items, U”, packed in the bins that were not omitted from the instance, has profit at least
(1 —¢e)P(U). [

We can now proceed to apply the above PTAS to the resulting set of bins. Thus,
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Theorem 3.11
For any instance / of the CCMK, in which M >1 is fixed, there is a PTAS which obtains a
total profit of (1 — &)OPT(/) in time O(nOM/®)(1/e)tr/etin1/2)e")) \where r is given in (1).

Proof

We get the overall complexity of our PTAS by combining the following steps: (i) guessing
a value of P; (ii) guessing the matrix K; (iii) guessing the partition of U to bin blocks;
(iv) guessing the partition of the extra capacity among the new bins and (v) packing the
items [10]. Thus, we have that the overall running time is at most

{10g (22‘/[)-‘ O(nO((M/.s)ln(l/s)+r2/s+M+ln(1/8)/68))

which yields the desired result. O0

4. THE CLASS-CONSTRAINED 0-1 KNAPSACK PROBLEM

In this section we consider the class-constrained 0—1 knapsack problem (CCKP), in which
we need to place a subset U of / in a single knapsack of size v> max{s(u)|ucl}. The
objective is to pack items of maximal value from / in the knapsack, such that the sum of
the sizes of the packed items does not exceed v, and the number of different colours in the
knapsack does not exceed c.

Throughout this section we assume that the numbers ¢ and M are given as part of the input
(Otherwise, using an FPTAS for the classic 0—1 knapsack problem, we can examine all the
(Af ) possible subsets of ¢ colours). We handle separately instances from three categories:

1. Instances with uniform value, in which all the items have the same value (regardless of
their size or colour). In the context of production planning (see in Section 1.2), such
instances reflect systems in which the revenue is proportional to the number of items
produced (regardless of their types and demands for resources).

2. Instances with colour-based values, in which the items in each colour have the same
value (and arbitrary sizes), i.e. for 1 <i<M, the value of any item in colour i is p;.
This class reflects systems in which the revenue depends on the product type, regardless
of its demand for resources.

3. Instances with arbitrary values, independent of the item sizes and colours.

For uniform-value instances we present a polynomial time optimal algorithm. Note that the
problem becomes NP-hard when we have to pack the items into two (or more) knapsacks.
Formally,

Theorem 4.1
The CCMK problem is NP-hard for uniform-value instances.

Proof

We show a reduction from the Partition problem, which is known to be NP-hard [34]. The
partition problem consists of a finite set 4 of 2k items with integral sizes aj,ay,...,as. The
problem is to determine, if there exists a subset A" of 4 such that |4'|=k and >, , a;=

ZjeA\A' a;.
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Given an instance for partition, 4={a,az,...,a}, let ij.ilaj:ZS (if the sum is odd
then clearly no partition exists). We construct an input for the CCMK with two knapsacks
with =S and ¢=+k. The items to be packed are of M =2k colours. There are 2k items, one
in each colour: the ith item has size @; and value p;, =1, 1<i<M. It is easy to verify that
there is a packing with value 2k if and only if there exists a desired partition. |

When dealing with uniform-value instances, packing a subset of items of maximal value is
equivalent to packing the maximal number of items. Intuitively, we would like to pack small
items first: indeed, when ¢>M the colour constraints can be ignored, and the resulting problem
can be solved optimally, by a greedy algorithm which adds to the knapsack the smallest
available item, until no item can be added. However, when ¢ <M, the greedy approach ceases
to be the optimal. In fact, as we show in Appendix B, a simple greedy algorithms can perform
poorly.

For non-uniform values, we present an FPTAS for the CCKP. Our FPTAS has different
time complexity when applied to instances with colour-based values, and to instances with
arbitrary values. Note that for instances with non-uniform values the problem is NP-hard.
Indeed, when ¢ =M =n, i.e. there is one item in each colour and no colour-constraints, we
get an instance of the classic 0—1 knapsack problem. Note that the above also implies that
the problem is NP-hard for instances with colour-based values.

As in the FPTASs for the non class-constrained problem [14], and for the cardinality-
constrained problem [26], we combine scaling of the profits with dynamic programming (DP).
However, in the class-constrained problem we need two levels of DP recursions, as described
below.

4.1. An optimal solution using dynamic programming

Assume that we have an upper bound, P, on the optimal value of the solution to our problem.
Given such an upper bound, we can formulate an algorithm, based on dynamic programming,
to compute the optimal solution. The time complexity of the algorithm is polynomial in P, n
and M.

For each colour i € {1,...,M}, let n; denote the number of items of colour i in the instance
I. Thus, n= Zf\i i Let fi(a,/) denote the smallest size sum of items with total value a of
¢ distinct colours out of the colours 1,...,i, where i=1,...,M; a:O,...,Is; (=1,...,c.

4.1.1. Dynamic programming for instances with colour-based values. When packing in-
stances with colour-based values, in any optimal solution, we can replace the packed items
of colour i by the smallest items of colour i, for all 1 <i<M. Thus, we consider below only
solutions in which we pack the smallest items of each colour. For each 1<j<n;, let s;(j)
denote the size sum of the j smallest items of colour i. Recall that p; is the value of the
items of colour i.

The dynamic programming recursion is defined as follows. We initialize

0 a=0 and /=0

+o0o  otherwise

fo(a,/): {
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and fi(a,0) = +oo V1<i<M, Va>0. Then, for i=1,...,M, the entries of f; can be computed
from those of f;_; by using for /€ {1,...,c}, a€{0,...,P} the formula

ﬁ*l(as/)
min (ficila—jpit = 1) +s:1()))

1<j<ni,a<jpi

fila,/)= min

The first line refers to the case where colour i is not included in the packing. The second
line refers to the cases where colour i is included and j items of colour i are packed.
The value of an optimal solution for the problem is given by

max  {a: fu(a,/)<v}
a=0,...,P;/=0....,c

The time complexity of the algorithm is 0(2?11 n;Pc)= O(nPc).

For the special case of uniform-value instances, we can assume w.l.o.g., that Vu € I, p(u) =1.
Since we pack at most 7 items, we can bound the maximal profit by P =n, and we get an
optimal O(n*c) algorithm.

4.1.2. Dynamic programming for arbitrary values. When the items have arbitrary values, the
algorithm consists of two stages. In the first stage we calculate for each colour i the value
hi1(a), which denotes the smallest size sum of items with total value a, out of the first &
items of colour i (the items in each colour are given in arbitrary order); 4;(a) is calculated
for k=1,...,n;, and a=0,...,P.

For each colour i=1,...,M, the DP algorithm calculates 4; as follows. We initialize
hi,0(0)=0 and A, ¢(a) =+oc for a>0. Denote by pj,s; the value and size of the kth item of

colour i, respectively.

For k=1,...,n;, the entries of 4;; can be computed from those of 4;;_; by using the
formula
hik—1(a) if a<pl
hii(a) = . ) ) ]
min(h; ,—1(a), hir—1(a — p})+s;) otherwise

The time complexity of computing the table /; is O(Pn;), which gives a total of O(Pn)
for the calculation of all the tables 4;,V1 <i<M.

In the second stage of the algorithm, we calculate the tables f;, V1<i<M. The table f;
can be calculated using the tables 4;,V1 <i<M. We initialize

0 a=0 and /=0
fo(d,/):

+o0o otherwise

and fi(a,0)= +oo V1 <i<M, Ya>0. Then, for i = 1,...,]\/{, the entries of f; can be computed
from those of f;_; by using for /€ {1,...,c}, a€{0,...,P} the formula
Jimi(a,?)

min (fioi(a— ',/ — 1)+ by, (a))

1<d’<a

fi(a,/)= min
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The first line refers to the case where colour i is not included in the packing. The second
line refers to the cases where colour i is included in the packing and contributes a’ to the
total value.

The value of an optimal solution for the problem is given by

max  {a: fu(a,/)<v}
0,....,c

The time complexity of the recursion is O(McP?). Adding the time needed to construct the
tables 4;, which is O(Pn), we have a total of O(McP? + nP).

4.2. FPTAS for non-uniform values 0—1 knapsack problem

By using the pseudo-polynomial algorithm above we can devise an FPTAS for instances with
non-uniform values. First, we need an upper bound on the value, z*, of an optimal solution.
Such an upper bound can be obtained from the ¢/2M-approximation algorithm, .«/ (given in
Section 3.2). Let z be the profit obtained by .«/. Then, clearly, (2M/c)z is an upper bound on
the value of z*.

We scale the item values by replacing each value p; by ¢g;= [ pin/ez], where 1 — ¢ is the
required approximation ratio. Now, we need to scale accordingly the upper bound, P, on the
profit.

Lemma 4.2
P=(2Mjc)[n/e] + n is an upper bound for the scaled problem.

Proof

Recall that (2M/c)z is an upper bound for the non-scaled instance. Since we pack at most n
items, the rounding of the ¢;’s can add at most n to the total scaled value. Thus, if we can
achieve profit larger than P in the scaled problem, the same items achieve profit larger than
(2M/c)[n/e]ze/n=(2M/c)z in the non-scaled instance. |

Finally, we apply the DP scheme and return the optimal ‘scaled’ solution as the approximate
solution for the non-scaled instance. (In colour-based instances, the scaled values are used in
the calculation of f; in arbitrary-value instances, the scaled values are used in the calculation
of the tables %;). As in References [14, 26] this scaling technique yields an FPTAS for CCKP.

Theorem 4.3
The above algorithm is an FPTAS for CCKP, whose running time is O(Mn?/¢) for instances
with colour-based values, and O((1/¢)M?n*(1 + M/(c¢))) for instances with arbitrary values.

Proof

We first show that the returned solution value is at least (1 — ¢)z*. Let R* and R} be an
optimal item set for the original and for the scaled problem, respectively. The sizes of the
items and the knapsack are not influenced by the scaling, thus, R! is a feasible solution for
the original problem. For a set U, let ¢(U)=3_ .., q(j) be the total ‘scaled’ values of the
items in U. R} is optimal for the scaled problem, thus,

q(R?)=q(R") (6)
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By definition, for any value p;, we have,
zg zg
g —1 <Zq
(g - D<pi<—q (7)
Using Equations (6) and (7) we get that
* * ze * * * Z8 bk *
PR = p(R)< = (q(R) = (4(R) — [R)) < IR} | <ze <=7

The time complexity is obtained by setting P =(2M/c)[n/e] + n in the time complexi-
ties of the pseudo-polynomial algorithms. For instances with colour-based values, the time
complexity of the algorithm is O(ncP)= O(Mn*/c). For arbitrary values we get O(McP? +
nP)=O((1/e)M>*n*(1 + MJce)). O

For the CCMK problem it is now natural to analyse the greedy algorithm, which packs the
knapsacks sequentially by applying the above FPTAS for a single knapsack to the remaining
items. Recently, it was shown in Reference [10] that this algorithm is a (2 + ¢)-approximation
for the MK problem. The main idea in the proof is that for any knapsack, K;, the set of
items that are packed in K; in some optimal placement and are not packed at all by greedy,
is available for greedy when it fills K;. The same argument can be used when analysing this
algorithm for the class-constrained case. Thus, the result in [10] carries over to the CCMK
problem.

Theorem 4.4
Greedy(e) yields a (2 + ¢)-approximation for CCMK.

Since MK is a special case of CCMK, it follows from Reference [10] that the bound is
tight; also, the performance of the algorithm cannot be improved by ordering the knapsacks
in non-increasing order by their capacities.

5. GENERALIZED CLASS-CONSTRAINED PACKING

Recall that in GCCP, each item u €/ is associated with a set C(u) of colours. Denote by
C(K;) the set of colours to which the knapsack K; allocates compartments (|C(K;)| <c;). Then
u can be packed in K; iff C(u) N C(K;)# 0. We show that the GCCP problem is APX-hard,
that is, there exists & >0 such that it is NP-hard to decide whether an instance has a maximal
profit P, or if every legal packing has profit at most (1 — ¢ )P. This hardness result holds
even for a single knapsack, and for instances, /, in which all the items have the same size
and the same value. Moreover, for each item u €/, the cardinality of C(u) is a constant (at
most 4).

We use an approximation-preserving reduction from the maximum 3-bounded 3-dimensional
matching problem (3DM-3), defined as follows.

Input: A set of triplets T C X xY xZ, where |X|=|Y|=|Z|=n; the number of occurrences
of any item of XUYUZ in T is at most 3. The number of triplets is |T|>n.

Output: A 3-dimensional matching in 7" of maximal cardinality, i.e. a subset 7’ C T, such
that any item in X,Y,Z appears at most once in 7/, and |7”| is maximal.
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Kann showed in Reference [35] that 3DM-3 is APX-hard, that is, there exists g >0 such
that it is NP-hard to decide whether an instance has a matching of size », or if every matching
has size at most (1 — & )n.

Theorem 5.1
The GCCP problem is APX-hard, even for a single knapsack and instances with uniform
value and size.

Proof

Given an instance of 3DM-3, we construct the following instance / for the generalized class-
constrained 0—1 knapsack problem. The knapsack has capacity 3n, and n compartments. There
are 3n items: for each item i of X we have an item x;, and similarly y; for each j€Y and
zi for ke Z. All the items u €/ have the same size s(u)=1, and the same value p(u)=1.
Let ¢ be the cardinality of 7', and denote by ey,...,e; the triplets in 7. The colour sets of the
items are as follows.

Cxi)={xi}U{es|ices}
COp=_{ytuleljces}
Clzr)={zr} U{es |k ces}

Note that the reduction is polynomial, and since the 3DM instance is 3-bounded, |C(u)|<4
for each uel.

Clearly, colours of type x;, y;,zx can contribute at most one to the total profit, while colours
of type e, can contribute at most three. For a given packing, each colour of type e, which
contributes three to the profit, induces a triplet in 7, and since each item can be packed only
once, the set of these triplets form a matching in the 3DM-3 instance.

Let #* be the size of an optimal matching, and let p* be the maximal profit from packing /.

Claim 5.2
For any & >0, if p*=3n then t* =n, and if p*<(1 — &)3n then t*<n(1 — (3/2)¢&).

Proof

First, if p* =3n, then by the above discussion, each of the n compartments must be allocated to
a colour of type e, and a matching of size n is induced. Thus, #* =n. Assume that r*>n —x,
for some 0<x<n. Then we can pack three items of each of the n — x colours of type
e, participating in the matching, and at least x additional items of other colours—one of
each colour. Thus, p* >3(n —x) 4+ x=3n — 2x. In particular, for x =(3/2)ne;, we get that if
p*<(1 —¢)3n then * <n(1 — (3/2)¢). |

Thus, if for any ¢, >0 we could decide whether a given instance, /, has maximal profit P,
or if every packing has profit at most (1 — ¢ )P, then, taking ¢; =(2/3)gy we could contradict
the APX-hardness of 3DM-3.

Remark 5.1
Note that the GCCP instance constructed in our reduction has M =3n + ¢ distinct colours.
The question whether GCCP is APX-hard when M is a constant remains open.
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5.1. Class-constrained packing with knapsack-dependent colours

In this section we consider another generalization of class-constrained packing, in which the
colour of each item depends on the knapsack in which it is placed. That is, each item u €/
has a size s(u), a profit p(u) and an N-vector, ¢,, where ¢,(¢) is the colour of u when
it is placed in the knapsack K,,1</<N. This generalization is motivated from production
systems in which the configuration required for processing a task may be different on different
machines.

Theorem 5.3
The class-constrained packing problem with knapsack-dependent colours is APX-hard, even
for instances with uniform value and size, and identical knapsacks.

Proof
Given an instance of 3DM-3, we construct the following instance / for the class-constrained
problem with knapsack-dependent colours. Let ¢ be the cardinality of 7. There are N =t
knapsacks with v, =3, ¢,=1, VI</<t. For each item i of X we have an item x;, and
similarly y; for each je€VY and z; for k € Z. There are 2t additional items, arranged in pairs
whw?, VI<h<t.

All the items u € I have the same size s(u)=1, and the same value p(u)=1.

Denote by ey,...,¢e; the triplets in 7. The colour vectors of the items are as follows.

e, ifices
&(={" " VI</<N, 1<i<n
otherwise

if jee,
cy](/)— . VIK/ZEN, 1<j<n
otherwise

if kee,
c. (/)= O VIS/<N, 1<k<n
otherwise
E

(£)=wy VIS/SN, 1<h<t

That is, the /th triplet of 7" has a unique colour, e¢,, and an item in this triplet is coloured
with e, if and only if it is placed in K,; otherwise, the item is coloured with a unique colour.
In addition, each pair of the additional items has a unique colour (independent of the knapsack
in which it is placed).

Note that the reduction is polynomial, and since the 3DM instance is 3-bounded, each item
has at most 4 distinct colours.

Let ¢* be the size of an optimal matching, and let p* be the maximal profit from packing /.

Claim 5.4
For any 0<x<n, p*=2t+n—x if and only if t* =n — x.

Proof
Since each knapsack has a single compartment, it can accommodate three items if and only
if they compose a triplet in 7. Also, since we can always place in a knapsack one pair of the

Copyright © 2001 John Wiley & Sons, Ltd. J. Sched. 2001; 4:313-338



336 H. SHACHNAI AND T. TAMIR

‘additional’ items, in any optimal packing each knapsack contains at least two items. Thus,
there is a maximal matching of size n —x iff in an optimal packing there are n —x knapsacks
with three items in each and ¢ — (n — x) knapsacks with two items in each. That is, t* =n —x
iff p*=3n—x)+2(t—(n—x))=2t+n—x. |

In particular, for x =¢on, we get that
pr €2t +n—¢n,2t +n] if and only if * €[(1 — &)n,n] (8)

Let ¢ =¢&n/(2t + n). Note that 1<3n, since the number of occurrences of any item in
XUYUZ in T is at most 3. Thus, ¢ is a fixed constant.

Assume that for any ¢>0 we could decide whether a given instance, /, has maximal profit
2t + n, or if every packing has profit at most (1 — &)(2¢ 4 n). In particular, this holds for &;.
However, since (1 —¢&;)(2t +n)=(1 —gn/(2t + n))(2t + n) =2t + n — gn, using (8) we can
contradict the APX-hardness of 3DM-3. |

APPENDIX A: APPROXIMATING CCBP BY PACKING LARGE ITEMS FIRST

For any 0 <& < 1/2, we show the existence of instances of CCBP, for which an optimal packing
of the large items (i.e. u €/, such that s(u)>¢) cannot be extended to a (14 ¢)-approximation
to the optimal. We assume that 1/¢ is an integer.

Consider the following instance of the CCBP problem (demonstrated in Figure Al, for
e=1/4).

e /=1ULUIL (that is, M =3). I; consists of two items of size 1/2 and 2/¢ — 4 items of
size ¢/2; I, consists of one item of size ¢, and 5 consists of one item of size &.
e The bins have capacity 1 and two compartments, i.e. ¢ =2.

11:

-

11 11 11 12
12 13 13

(@ (b)

Figure Al. Packing large items first.
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An optimal packing of / uses two bins (see Figure Al(a)): in each bin we pack one item
of size 1/2 and 1/¢ —2 small items of /;, and the single item of I, or /5. The size sum of the
items in each bin is therefore 1/2 + (1/e — 2)e/2 + e=1. A possible optimal packing of the
large items of I (of size >¢) is presented in Figure A1(b). The first bin is filled with the two
large items of /; and the second bin contains the two items of /, and /3. Since there is no
available compartment for /; in the second bin, and no additional place for all the small items
of I; in the first bin (even if we allow an overflow of ¢), we need to ‘open’ an additional
bin for the small items, resulting in a 3/2 ratio.

APPENDIX B: PERFORMANCE OF GREEDY FOR THE CCKP

We show that a natural greedy algorithm can perform poorly when solving the class-cons-
trained 0—1 knapsack problem, even for instances with uniform value. Consider the following
algorithm, .o7;.

1. Sort the items by sizes (small items first).

2. Repeat as long as possible: if the knapsack contains items of less than ¢ colours, add
to the knapsack the smallest available item, otherwise, add the smallest available item
from one of the ¢ colours that are included in the knapsack.

Claim Bl
/1 has an unbounded approximation ratio.

Proof

For some o> 1, consider an instance consisting of items of M = 2¢ different colours: ¢ colours
with one item of size ¢<v/(ac) and additional item of size v; and ¢ colours with « items of
size v/(ac) each. The optimum packs co items of the last ¢ colours, while the algorithm .o7
packs the ¢ smallest items of the first ¢ colours, resulting in approximation ratio of a. []
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