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Multiprocessor Scheduling with Machine Allotment
and Parallelism Constraints

H. Shachndiand T. Tamit

Abstract. Modern computer systems distribute computation among several machines to speed up the exe-
cution of programs. Yet, setup and communication costs, as well as parallelism constraints, bound the number
of machines that can share the execution of a given application, and the number of machines by which it can
be processedimultaneouslyWe study the resulting scheduling problem, stated as follows. Given a set of

jobs andm uniform machines, assign the jobs to the machines subject to parallelism and machine allotment
constraints, such that the overall completion time of the schedulm@espahnis minimized. Indeed, the
multiprocessor scheduling problefwhere each job can be processed lsynglemachine) is a special case of

our problem; thus, our problem is strongly NP-hard.

We present &1 + «)-approximation algorithm for this problem, whetes (0, 1] depends on the minimal
number of machine allotments and the minimal parallelism allowed for any job. Also, we show that when the
maximal number of machines that can share the execution of a job is some fixed constant, our problem has a
polynomial time approximation schepfer other special cases we give optimal polynomial time algorithms.
Finally, through the relation of our problem to the clagsiemptivescheduling problem on multiple machines,
we shed some fresh light on what is known in scheduling folklore apdier of preemption

Key Words. Multiprocessor scheduling, Makespan, Machine allotments, Parallelizable jobs.

1. Introduction. A continuing trend in modern computer systems is to distribute com-
putation among several physical processors. This enables us to speed up the execution of
heavy applications. Ideally, the work required by such applications could be shared by
any number of processors. However, setup and communication costs and the maximal
level of parallelism within each application, bound the number of machines to which it
can ballotted and the number of machines by which it can be procesisadtaneously

The resulting scheduling problem can be stated as follows. Supposg;tiest need
to be scheduled om machines; each machini);, 1 <i < m, runs at specific ratey;;
eachjobJ;, 1 < j < n,is associated with a processing tirfjeanallotment parameter
a;, and aparallelism parameterp;. Thus, the execution af; can be shared by at most
a machines, and at mogj{ machines can procesk simultaneouslyOur objective is
to schedule the jobs on the machines, such that the allotment and parallelism constraints
are satisfied, and the overall completion time of all jobs (ontlaespajis minimized.
We call this problemscheduling with parallelism and machine allotment constraints
(SPAQ. Indeed, thenultiprocessor scheduling problehwhere each job can run on a
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2 Throughout the paper, sometimes we call this probtem-preemptive scheduling
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singlemachine (namelyp; = a; = 1, V1 < j < n), is a special case of our problem;
thus, our problem is strongly NP-hatd.

Note that the allotment parametay, bounds also the number of machines that can
process); simultaneously. Thus, without loss of generality, we assumevthat; < a;.
We also study in this paper the special case of SPAC inwhjcp; = g; (i.e., parallelism
constraints do not affect the schedule). We refer to this case as the protdehediiling
with machine allotment constrain(SAQ.

Denote bywopt(l) the length of an optimal schedule of an instahclote thatw* =
Zi t;/ > ui is a lower bound fowept(l ). When each job can be allotted (possibly, to
run in parallel) toany number of machines, this lower bound is obtained by a simple
greedy algorithm, based on McNaughton’s rule [14]: it starts by scheduling the first job
on the first machine; then it proceeds to the next job (whenever the currerdj joias
allocated; processing units), or to the next machine (when the current machine runs for
w* time units). The resulting schedule incurs at most m — 1 allotments of jobs to
machines. However, we cannot predict how the machines will share the execution of the
jobs. Thus, even iEJ & > n+ m— 1, we may not be able to obtain the lower bound.

The next example shows how allotmgpdrallelism constraints come into play in
finding a schedule which minimizes the makespan.

ExampPLE 1.1. Consider a system with two identical machiigs M,, whose rates are

up = Uz = 1, and four jobs witht; =t, = 8,ts =4, = 2, andp; = 1,V1 < j < 4.

Figure 1(a) presents the schedule produced by a greedy algorithm. The makespan of this
schedule i), tj/ Y ui = % = 11. Assume now thath = a, = ag = 1 anday = 2.

Note that the overall number of allotments allowed in the system is equal to the number
of allotments incurred by the greedy algorithm; however, since only the executian of

can be shared by two machines, the best possible schedule has the length 12 (Figure 1(b)).

Note that the problem gbreemptivescheduling on parallel machines can also be
described as a special case of SPAC (take= 1 anda; = m, V1 < j < n); while
non-preemptive scheduling is strongly NP-hard, an optimal preemptive schedule can be
found in polynomial time. We address here a natural extension of preemptive scheduling,
in which we bound the number of machines that can share the execution of each job.
Thus, foreachjold;, pj = 1and 1< & < m. To the best of our knowledge, this problem
is studied here for the first time. Though our answer is partial (nhamely, we consider only
instances in which either the jobs or the machinesdeatical), our results show that,
in fact, the presence of machine allotment constraints alone can distinguish between in-
stances which are solvable in polynomial time, and instances which are strongly NP-hard.

M; I R M, A J |
M, Ji I Jz My Jy Jg |
0 8 11 Time 0 8 10 11 12 Time
() (b)

Fig. 1. Scheduling with parallelism and machine allotment constraints.

3 Generally, in SPAC we allow preemptions while processing a Jpbon some machine. However, when
Vi, pj =& =1, such preemptions are redundant.
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We study our scheduling problem in batiniform andidentical machine environ-
ments. For many fundamental scheduling problems, similar solvafgipgyroximability
results were obtained in these two environments (e.g., the makespan problem is optimally
solvable in both environments when preemptions are allowed [14], [13], [9] and has a
polynomial time approximation schefl®TAS in both environments when preemptions
are not allowed [11], [12], [6]). Interestingly, our study shows a clear distinction be-
tween these two environments, with respect to the solvability of the SPAC problem (see
Section 5).

1.1. Motivation As mentioned earlier, the SPAC problem has important application
in scheduling on multiprocessors, and in distributed computing. In distributed systems,
load balancing and computation speedup are achieved by partitioning large applications
to run on several machines; this is done through process migration (see, e.g., [21]).
Therefore, the resources required by each jbbare classified as either (jiachine
dependente.g., peripheral devices), which can be allocated;tonce it is scheduled

to run on aspecificmachine, or (iilmachine independef¢.g., shared data), which can
migrate with segments of the job from one machine to another, along its execution.
The limited amount of machine-dependent resources sets a bmuod,the number of
machines that can share the executiorjofi.e., the number of machines to whidh

can be allotted throughout the schedule); the limited amount of machine-independent
resources sets a boung, on the number of machines that can yrin parallel.

Another application is production planning. Production processes [5] typically involve
the usage of consumable resources (i.e., special materials) which cannot migrate from
one machine to another, and mobile resources (e.g., human supervision), which allow
flexibility in the choice of machines. The maximal amount of consumable resources
determines the allotment parameter of a production process; the available amount of
mobile resources determines its parallelism parameter.

1.2. Related Work The problem of scheduling a set of jobs on parallel machines with
the objective of minimizing the makespan has been studied extensively (comprehensive
surveys appear, e.g., in [10] and [3]). The non-preemptive scheduling problem is known
to be strongly NP-hard [7], and admits a PTAS: the papers [11] and [1] give PTASs
for identical machines, and [12] and [6] give PTASs for uniform machines. When pre-
emptions are allowed, the makespan problem can be solved optimally in polynomial
time. A greedy algorithm (McNaughton’s rule [14]) is suitable for identical machines.
For uniform machines, the first optimal algorithm was presented in [13]; an optimal
algorithm which also minimizes the number of preemptions is given in [9]. When the
allotment or parallelism parameter of a job is greater than one, the job qamddkelized
to run simultaneously on several machines. Previous work on parallelizable jobs (see,
e.g., [2] and [20]) assume that the processing of ajols partitionedevenlyamong
the machines which process this job. In contrast, in SPAC we alayypartition of
the processing of; among several machines (as long as parallelism constraints are not
violated). Recently, it was shown in [19] that for instances where each job can be alloted
to any number of machines (i.e.,<l p; < manda; = m, V), the SPAC problem can
be solved optimally.

Otherrelated works deal with a special case ottass-constrained multiple knapsack
(CCMK) problem [17], [18], in which a set of unit-sized itemsrafdifferent typegu;
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items of typei) need to be placed in bins; each bin has a limited capacity, and a
bound,a;, on the number of distinct types of items it can hold. The objective is to pack
as many items as possible in the bins. The application of this problem to data placement
on parallel disks was studied in [18] and [8]. When each knapsack is represented by a
job with lengtht; and allotment parameteg, and the items of type are represented

by a machineM;, with rateu;, we get an instance of the SAC problem. Thus, some

of the results in [18] and [8] can be adapted to special cases of the SAC problem. In
particular, when the jobs are identical, aEq a > m+n—1, we getfrom [18] that the

SAC problem can be solved optimally. The results in [8] imply that the SAC problem is
strongly NP-hard WheEJ— a, = m(i.e., each machine processes one job segment on the
average), even when all the jobs are identical; for identical jobsndrémal utilization
problem (in which we wish to maximize the number of processing units completed within
a given time interval) admits a PTAS.

1.3. Our Results We describe below our main results. Unless specified otherwise, all
of our results hold founiform machines. Note that although in the SPAC problem we
allow preemptions while processing a job on some machine, the algorithms presented in
this paper do not use such preemptions.

In Section 2 we study the complexity of the SPAC problem. In particular, we show
that SPAC is already strongly NP-hard for instances with no parallelism constraints (i.e.,
the SAC problem) andieakallotment constraints. Specifically, SAC is strongly NP-hard
in the following cases:

1. Onidentical machines, where each job can be allotted to atdeaathines, for any
fixedc > 1

2. Onidentical machines, where tta#al number of allotments is unbounded.

3. Foridentical jobs, where the total number of allotments is at I%anst

These hardness results extend the hardness result in [8], which holds for identical jobs
with >, aj = m.

In Section 3 we presenta mak+1/ pj)-approximation algorithm for the SPAC prob-
lem. Our algorithm proceeds in two steps: (i) Finding an infeasible schedule of optimal
length, where a jolJ; may be processed ly+1 processors. (i) Transforming this sched-
ule into afeasible one. The running time of the algorithi@ {gnax(nlg n, mlg m)). This
algorithm improves and generalizes an algorithm presented in [18] for the CCMK prob-
lem. For identical machines we modify this algorithm to obtain ajitlex 1/ (205 — 1))-
approximation ratio.

In Section 4 we give a PTAS for the SAC problem. Our PTAS can be used for instances
in which the maximal allotment parameter of any job is some fixed constant. First, we
show that the problem is strongly NP-hard in this case, even when the machines or the
jobs areidentical Then we develop a PTAS which is based on the observation that the
makespan may be extended by at most a factor-pfelif (i) small jobs are allotted to
a single machine, and (ii) large jobs can be partitioned only to processing segments of
certain lengths.

Section 5 explores the relation between the solvability of the classic preemptive
scheduling problem, and the amount of machine allotmi@atzllelism allowed in the
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schedule. We discuss instances in whigh< a;, Vj. We call such instancgzarallel-
dominated

We show that the SPAC problem is strongly NP-hard for these instances, even when
the jobs are identical andj, a; = p; + 1, and solvable by a®(mlg m) algorithm, when
the jobs are identical andj, a; > p; + 1. This implies, for example, that the preemptive
scheduling problem (in whicp; = 1, for all 1 < j < n) becomes strongly NP-hard,
when the execution of each job can be shared by at mastnachines. Our results in
Section 5 yield an interesting distinction between the solvability of our problem in the
uniform and the identical machines environments. In particular, SPAC can be solved
optimally in polynomial time fomparallel dominatednstances when the machines are
identical; however, as mentioned above, on uniform machines the problem is strongly
NP-hard.

2. Hardness of the SAC Problem. In this section we derive hardness results for
the SAC problem. The case wher¢, & = 1 is known to be strongly NP-hard. When
Vj,a > 1,some preemptions are allowed for each of the jobs, and we may expect that the
problem becomes easy to solve (as the classic makespan problem with preemptions). We
show that the SAC problem is strongly NP-hard even for instances with no parallelism
constraints, “weak” allotment constraints, and with identical macHijobs. In other
words, unles®® = NP, it cannot already admit fully polynomial time approximation
schemdgFPTAS for these instances.

We consider three classes of instances of the SAC problem. For each, we explain why
it may seem to be “easy-to-solve” and follow this with a proof of hardness. The three
classes are:

1. Identical machines, where each job can be allotted to at ¢eamstchines, for any
c>1.

2. ldentical machines, where thatal number of allotments is unbounded.

3. ldentical jobs, where the total number of allotments is at I%mst

We derive our hardness results using reductions frgmarBition, which is strongly
NP-hard [7]. An instance of 3-partition is defined as follows.

Input A finite setA of 3q elements, a bounB € Z*, and a sizes(x) for eachx € A,
such that each(x) satisfiesB/4 < s(x) < B/2 and such tha} ", _, s(x) = gB.

Output Is there a partition ofA into g disjoint sets,S;, S, ..., §;, such that, for 1<
i<q, ZXES s(x) = B? (Note that the above constraints on the element sizes imply that
every such§ must contain exactly three elements fréx)

2.1. Identical Machines and Any Number of Splits per.JoldVe first consider instances
with identical machines and any number of allotments per job. We show that there is
no constant, such that if each job could be allotteddadentical machines, then SAC
admits an FPTAS.

THEOREM2.1. The SAC problem is strongly NP-haelen ifvl < j <n, a > c, for
any given c> 1 and the machines are identical
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PrROOF Letc > 1be aninteger. Given an instance of 3-partition, we construct an input,
I, for the makespan problem with identical machines¥he: j < n, a > c, such that
wopt(l) = 1if and only if A has a 3-partition.

The input for the makespan problem consistsnoE (¢ — 1)3q + g machines with
the same ratesr; = Uy = - - - = Uc—1)3g+q = B; andn = 3q jobs witht; = (c—1)B+
s(Xj),a = ¢, V1 < j < 3q. Thus, we have that ; tj = > ui = (c — 1)3qB + gB.
Sincer t = Ui, wopr(l) > 1.

Assume thaiA has a 3-partition to the se®, S, ..., §;. This induces the following
schedule of , whose makespan equals 1. For aft1j < 3q, J; is processed for a single
time unit on arbitrary vacarmt— 1 machines out oMy, ..., M_1)34. Thatis,(c—1)B
processing units are allocatedde- 1 segments oJ;. In addition, ifx; € S (k is the
index of the triple to whiclx; belongs in the partition), then the lastt{) segment of;
is allocateds(x;) processing units oM c_1)ag+«-

Thus, to each job we allocate exactly= (c — 1)B + s(x;) processing units on
different machines. Sincél < k < q, Zjea s(xj) = B, each of the lastj machines
allocates exactly; = B processing units, and the makespan equals 1.

Assume that a schedule whose makespan equals 1 exidts\@ show thatA has
a 3-partition. For each machini;, letn; denote the number of jobs scheduledin
and letJ,, J,, ..., J, be the list of these jobs, such that, without loss of generality,
i1 <iz <--- <ip. The following graphG = (V, E), is induced by the schedule:

V: there is a vertexJ;, for each job, 1< j < 3q.
E: each machind/; contributes tcE the edges of the path,, Ji,, ..., J,

N

Note that each machine contributes exaotly- 1 edges t&E. Therefore, the graph
G hasd_"  nj — m edges. Recall thal; can be executed by at magt machines. In
other words,J; can appear on at moat paths, meaning that; ni < > a;. Therefore,
the number of edges iB is at mostZj a —m=3gc— (c—1)3q — g = 29. Having
n = 3q vertices and at mostPedgesG consists of at least connected components.

Assume thaG hast connected component®;, Do, ..., D,. Consider a component
Dk = (Vb,, Ep,). Vp, is a set of jobsDy is connected, therefore, for each machivig,
the path contributed biy; is either completely contained or not containedkis) . Thus,
Ep, determines the subset of machines which process the jolis in

CLAM 2.2. For each component DV1 < k < ¢, there exists an integegr> 0 such
that ZjGVDk tj = ((c — D|Vp,| + 1) B.

Proor Recall that " t; = >, u;; thus, in any schedule with makespan equals 1, no
machine is idle. It means thatl the processing units d&p, are allocated td/p,. The
rate of each machine B. Thus, the total number of processing units allocated to the
jobs inVp, is a multiple of B. Sincevj,t; > (c — 1)B, there exists an integeg > 0
such thatheka t; = ((c — D|Vp,| +re)B. O

We now prove that = q, that is,G consists of exactlg connected components.

CLAaM 2.3. The graph G has exactly q connected components
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PrOOF  From Claim 2.2 there exist positive integess. . ., r, such that(c—1)|Vp, |+
roB+---4+ ((c—1)|Vp,| +ry)B = ((c — 1)3g + q)B. There are § jobs, therefore,
Zﬁzl |Vp, | = 30, and we get thaZle r« = q. Since the’s are positive integers and
¢>qwemusthavg =qgandry =---=rq= 1. O

Now, given thaiG consists ofD; U D, U - - - U Dy, define the following partition: for
alll<j<3q,je&ifandonlyif j € Vp,. By Claim 2.3r, = 1, V1 <k < g, thus,
Zjev.;k t; = ((c— D|Vp,| + 1) B, meaning thanE& s(xj) =Bforalll<k<q. O

2.2. ldentical Machines and Any Total Number of Split$-or the preemptive scheduling
problem on identical machines, an optimal schedule can be obtained using at most
m — 1 preemptions (For example, the greedy algorithm “splits” only the last job on each
machine.) It means that the total number of allotments of jobs to machines is at most
n+ m — 1. In our second hardness result we show that, for any giyaven if the
machines are identical, and ttegal number of allotments may be larger theqm + n),

the makespan problem is strongly NP-hard.

THEOREM2.4. The SAC problem s strongly NP-haaven ifzjf‘:1 min(m, &) > c(n+
m), and the machines are identichllhis holds for any ¢ 1.

PROOF  For a giverc, we show a reduction from theartition problem with |A| =

3q > 15c. We construct an input,, for the makespan problem with identical machines

ande min(m, &) > c(n+m), such thawept(l) = 1ifand only if A has a 3-partition.
The inputl consists o = q machines with the same rateg:=u, = --- = Uy =

g?B + g; andn = 4q jobs:

e 3q jobs withtj = gs(x;), 8 = 1, V1 < j < 3g. We call these jobmtegral.
e (jobs withtj =q,a = q,¥3q < j < 4q. We call these jobadditional

Note that)"; u; = q*B+0? = }_; t;. In addition, for this instanc&,j_, a; = 9+ 3q;
m-+n = q+ 4q9. Thus,Zi min(m, a)) = g + 3q > c(5q), for anyq > 5c. Since
2ot =20 ui, wopr(l) > 1.

We show thatA has a 3-partition if and only ifvopt(l) = 1. Assume thatA has
a 3-partition to the set§;, S, ..., §. The following is a schedule whose makespan
equals 1.

1. One processing unit of each machiMe, 1 < i < m, is allocated to each of the
additional jobs (i.e., overal; allocateqy processing units). Thus, the execution of
each additional job is shared amosg= g machines.

2. Theremaining?B processing units d¥l; are allocated to the integral jobd, , J.,, Ji,}
such that§ = {x;,, X, Xi,}.

Sincevi, Zjes s(xj) = B, the total number of processing units allocatedMyin the
second step ig?B. Therefore, the above is a schedule whose makespan equals 1.

4 We take the minimum betweem and a; since we gain nothing if a job can be allotted to more than
machines. This makes our result stronger.
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Assume that there exists a schedule whose makespan equalk. 1 for

CLAM 2.5. In any such schedulexactly q processing units of each machine are
allocated toadditionaljobs

PrROOF Letn; denote the number of processing unitshgf that are allocated to the
additional jobs. The remaining — n; processing units are allocated to integral jobs.
The integral jobs cannot split, thus, in any such schedyle; n; is a multiple ofg?.
Sinceu; = 2B + g and the total processing time of the additional jobg’isve get that

n; =qforalli. O

Now, given thatg processing units of each machine are allocated to additional jobs,
we conclude that the remainirgf B processing units of each machine are allocated to
integral jobs, and a 3-partition & is induced by the schedule. O

2.3. ldentical Jobs WhenZi & = mand the jobs are identical, the SAC problem is

strongly NP-hard: this can be shown by a simple reduction from 3-patrtition (as mentioned

in [8]). We show that SAC remains strongly NP-hard, even if the jobs are identical, and
3

the set of possible partitions is larger, more precis@y,aj > am, fora = 3.

THEOREM2.6. The SAC problem is strongly NP-hard even if the jobs are identical and
Y8 = jm.

PrOOF Given an instance for 3-partition, we construct an inpufor the makespan
problem Wichi a > %m, such thatwept(l) = 1 if and only if A has a 3-partition. In
this reduction we adapt some ideas from the hardness proof given in [8].

The inputl consists ofm = 4q machines with the following rates: for the firag 3
machinesy; = K —s(xj),1 < i < 3q, whereK > 3gBis a large constant; for the
otherq machineqy; = 3K + B, 3q < i < 4q. There aren = 3q identical jobs with
t = 2K,a = 2,V1l < j < 3q. For this instancezj t = >, u = 69K, and, as
needed)"; & = 6q = 3m. Since)_; tj = >_; Ui, wopr(l) > 1.

We show thatA has a 3-partition if and only ifvopt(l) = 1. Assume thatA has
a 3-partition to the set§, S, ..., §. Let S = (X, Xk,, X}, V1 < k < @. The
following is a schedule whose makespan equalgll< k < q, the four machines
Mk, Mi,, My, Mzqqi process the three jobd,, Ji,, J,. Specifically, M, allocates
K — s(x) processing units tal,,1 < i < 3, andMsy,« allocatesK 4+ s(xy) to
Jg. 1 <i < 3.8inces(Xy,) +S(Xi,) +S(Xk,) = B, anduzg4k = 3K + B, the completion
time equals 1. Note also that the allotment constraints are preserved: forany< 3q,
if X; € &, thenJ; is processed by the two machinels and Mz k.

Now, given a schedule whose makespan equals 1, we find a 3-partitierDefnote
by slowthe set of the first§ machinegdMy, ..., May}. Note that for any paiiV;,, M;,,
of slow machines, the total number of processing units providedQyand M;, is
less than K. Sincet; = 2K, if some J; is scheduled only on these two machines it
cannot be completed on time. Singg = 2 for 1 < j < n, this implies that each
job, Jj, is processed by at mosheslow machine. In addition, since there ag3 n
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slow machines, and no idle time is possible (sidceu; = Zj tj), each slow machine
processes exactly one job. Assume, without loss of generalityythati < 3q, M; is
the slow machine allocated th (for the whole duration of the schedule). For each such
job, sincea; = 2, the remainingk + s(x;) processing units are allocated by a single
machine. Consider a machihg, i > 3q. SinceK was selected such thit >> s(x),

for anyx € A, it follows thatM; processes exactly three jobs (singe= 3K + B, and
the remainders of any four jobs require more thiaprocessing units). Lel,, J,, and

Ji, be the three jobs scheduled bl «. We getthat K + B = 3K + (s(X,) +S(X,) +
S(Xk,)), Mmeaning thak, , xx,, andxy, form a triple for the partition. Since all the jobs
are scheduled, the whole schedule of the jobs on thejlasichines, induces a valid 3-
partition of A. O

3. Approximation Algorithm for the SPAC Problem

3.1. Uniform Machines In this section we present an approximation algorithm for
the SPAC problem on uniform machines. Denoteulgys1(1) the length of an optimal
schedule of an instande First, we show that an optimal schedule can be obtained by
relaxing the parallelism constraff each job by one. Specifically, if for ajl, we run

Jj in parallel onp; + 1 (instead ofp;) machines, we can obtain a schedule of length
wopt(l). Then we transform the above infeasible optimal schedule into a feasible one,
whose makespan i8 < max (1 + 1/pj)wopt(l).

3.1.1. Relaxing the Parallelism Constraint

THEOREM3.1. Given an instance | of the SPAC problatenote by t the instance in
which the parallelism parameter of each job is increased by(beur—;-,oj+ =p;+1,Vj);
then we can find in @nax(mlg m, nlg n)) steps a schedule for", whose makespan is
at most the minimal possible makespan for |

Given the instancé™ derived froml , we present a polynomial time algorithm which
finds a legal schedule dft. The algorithm, denoted by, proceeds by scheduling
on at most;oj+ = pj + 1 machinesyl < j < n. The length of the schedule generated
for 1 by A, is at most the length of an optimal scheduld of

We renumber the machines in nonincreasing order by their speeds;ie.u, >
-+ > Un, and the jobs in a nonincreasing order by theacessing ratiosi.e.,t1 /o1 >
ty/p2 > -+ > tn/pn. FOreach 1< ¢ < n, let 5, = Zle pj. Let

¢
ZF:l t; Zj:l t;
max ———

Q) w = max Ex , — .
2ica Ui (bp=m) Y2y,

To prove the theorem, we show that the makespan of any scheduls afleastw, and
thatA; generates for+ a schedule of lengty. Note that, as illustrated in Example 1.1,
w is not tight; that is, for some instancegpt(l) > w.

5 Whenpj = aj, we relax at the same time the parallelism and the allotment constraint of
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We first show thatv is a lower bound on the length of any legal schedulé.of

LEMMA 3.2. For any instancel , wopt(l) > w.

ProOF Consider a schedule of length When no machine is idle at any time during
the schedule, the total processing potential of the machine3is u;. Thus,wopr(l) is

at least the left term in the right-hand side of (1). The execution tindg &f minimized
when it runs in parallel on the, fastest machines for the whole duration of the schedule.
Similarly, we cannot do better than scheduling the fiistbs on thes, fastest machines

for the whole duration of the schedule. Thus, the right term in (1) is a lower bound for
wopt(l). O

We now turn to describing and analyzing the algoritdm.A, adapts some ideas from
the approximation algorithm presented in [18] for the CCMK problem. In each stage we
represent byQ; the potentialof the machindVi;, that is, the number of processing units
that M; can still allocate. Initially,Q; = wu. A, maintains a listL, of the machines,
sorted by their potential in nondecreasing order. ThaQisy; < Qi < --- (where
L[K] denotes the machine at positikin L). The listL is updated along the execution of
the algorithm. Specifically, wheM; allocates processing units to some job, its potential
decreases, and its positionlinrmay be updated. Ondd; has allocated; w processing
units, it is removed fronk.. Given a pair of machingsl;,, M;,, we say thaiM;, is weaker
(Stronger) than\/liz! if Qi1 = Qiz (Qi1 = Qiz)'

The jobs, sorted in nonincreasing order by their processing ratios, are scheduled one
after the other. The jolj; is scheduled on the first (i.e., weakest) consecutive sequence
of pj + 1 or less machined,[ky], ..., L[ko], whose total potential is at least All the
potential ofL[ky], ..., L[ko — 1] and some of the potential &ffk.] is allocated toJ;,
such that the total number of processing units allocatel tet;. We show that such a
sequence of machines always exists. The selection of this sequence is done as follows. We
first examinel [1], which is the weakest machine. @ 1 > t; we schedule); on L[1]
and update the potential of this machine; else, we test wh&her+ Q.2 > t;, and so
on until either we find a sequence of machines with sufficient potentigl)( or the total
potential of the firsp; +-1 machines is less thén In the latter case we proceed to examine
the nextwindowof p; + 1 machinesl[2], ..., L[p; + 2], and so on, until our window
coversp; +1 machinesL[K], ..., L[k+ pj], suchthat; > Qk_1+ -+ QLikip -1
andt; < Quq + --- + Quktp) (€€ Figure 2). At this stage we can clearly allocate to
Jj all the potential of the machinegk], ..., L[k+ p; — 1], and complete the execution
of J; by also allocating to it some of the potential of the macHitile + p;].

t; <
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Fig. 2. The window scanning the lidt.
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In fact, A; only determines the amount of processing units allocated to each job by
each of the machines. The order of the jobs on each machine is arbitrary. Note that
Jj is allotted to at mosp; + 1 machines. (Thus, at mogf 4+ 1 machines process it
simultaneously

Let Jp be the first job such that, whely is scheduled, the lidt contains at mospy,
machine indices, or the total processing potential ofdheeakest machines is at least
tp. We distinguish between two phases4f.

1. Thejobsly, ..., J,_1 are scheduled.
2. Thejobsly, ..., J, are scheduled.

We show that in each phase the corresponding set of jobs is scheduled legally. Note
that jobs scheduled in the first phase are scheduled usingdkimg-windoweach on
exactly pj + 1 machines. For this phase, we need to show that we never fail to find a
subset ofp; + 1 machines that can complede. Specifically, we show below that for
eachj < b, whenJ; is scheduled, the total potential of the stronggst 1 machines
in L is at least;. For the second phase & we show that for each < j <n, Jj is
allocated; processing units from at mogt + 1 machines.

For simplicity, assume that whenever we use the moving-window to schedule a job,
the listL is scanned from left to right. That is, the index of the weakest machii$, is
the leftmost, and the index of the strongest machine is the rightmastTine window
moves from left to right until for somk (which denotes the index ib of the weakest
machine in the window), we get that the+ 1 machined [k — 1], ..., L[k + pj] can
complete the execution df. WhenJ; is scheduled, the machinkegk], . . ., L[k+p; —1]
are removed fronh, and the machin&[k + p;] is possibly moved to a new position in
the listL, according to its remaining potential. Note that this new position[&f+ p; ]
in L is left to its original position.

We can view the removed sequence of machinestasein L. Each jobJ; creates
a hole ofp; machines inL, and one additional machine (tiig; + 1)th) is moved left
to the hole. By analyzing these holes we conclude thahever fails to schedule jobs
during its first phase.

LEMMA 3.3. Each joh J;, scheduled by4, during the first phaseis scheduled on
exactlyp; + 1 machines and is allocate¢l processing units

PrROOF  Assume that for some joly, the moving window procedure fails to complete
Jg. That is, the window reaches the rightmost positio jibut the total potential of the
pg + 1 strongest machines covered by the window is lessthan

Let us examine the sequence of holes creatdd lny the timeJy is scheduled. We
first show that when we fail to schedulg, its partial schedule creates at the right end
of L a hole, which is the union of holes created by previously scheduled jobs.

CLAIM 3.4. Thereexistsaset§ {Ji, ..., Jg}, such that the hole created by Unites
the holes created by the jobs iniBto a single hole positioned at the right end of L

Proor  Consider the hole ik that contains they + 1 machines on whictly is
scheduled and all the holes that are united when tpgse 1 machines are removed.
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Let H denote this united hole. Since each jBbj < g, creates a hole gf; consecutive
machinesirL, then for each such job, eith&lt or noneof thesgo; machines is contained
in H (we ignore the p; + 1)th machine.J; may only partially use this machine, in which
case the machine is not removed fram

Let S be the set of all the jobs];, that contributeo; or pj + 1 machines toH.
By definition, the holeH unites the holes created by the jobsSnnto a single hole.
In addition, sincely is not completedH must include the strongept; + 1 available
machines, and in particular the rightmost one. Therefbrés positioned at the right
end ofL. O

We conclude that!; allocates to the jobs iBat least all the potential of the ; s j
strongest machines.

CLam 3.5. The total potential of thg _, _s pj fastest machines is at leakt ; st;.

PROOF Letps = >, spj- Recall that for any 1< £ < n, o, = Zf;l oj. Let J

be the job such thab,_; < ps < p,. Note that < g sinceS C {Jy,..., Jg}. By
the definition ofw, w - Sy = ZJ Tt andw - Y0, Ui > Zlet,-. That is, the
first o,_1 machines are strong enough to complete the firstl jobs, and the firsp,
machines are strong enough to complete the fijebs. Since the machines are sorted
such thaty; > uj 1, we conclude that for any integer@ x < p, the firstp,_; + x
machines can complete the filst- 1 jobs and an(x/p,)-fraction from J,. Formally,

w- P U = YT 4 x(/ o).
In particular, forx = ps — p,_1, we have that

Ps -1
73] wzul ZIJ+(PS—P£ 1)—~
i=1 j=1
For a setY, of jobs J, J,, ..., consider the vectoby consisting ofp;, entries with

the valuet;, / pi,, followed by p;, entries with the valug,/pi,, and so on. For the sgt
of all the jobs in our instance, consider the vedtpiconsisting of the firsps entries
of v7. Since the jobs are sorted such tt]atoJ > tj41/pj+1, and sinceS is a subset
of 7, v > US That is, for any index, v} > vk. Therefore ZI SR SRS

However,} /5, v} = ZJ 14 4 (ps — Pe—1)(te/pe), and 315 vl = >_jesti- Thus,

Z, 1tJ + (ps— Pe—1)(te/pe) = ZJ esli-
From (2), we get that thes strongest machines can complete the jobS.in O

This contradicts our assumption that fails to schedulely; € S during the first
phase. O

We turn to show that all the jobs that are scheduled during the second stdgeuaf
scheduled legally.

LEMMA 3.6. Each job J;, scheduled by4, during the second phasis scheduled on
at mostp; + 1 machines and is allocateg processing units
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PrOOE A, reaches the second phase if, for the next job to be schediyletie listL
contains at most, machine indices, or if the total processing potential ofdhe/eakest
machines is at lea$s.

In the analysis of the second phase, we need to show that all the jobs are completed,
and that at mosp; 4+ 1 machines participate in the scheduleJpfFor showing that all
jobs are completed, note that when the algorithm starts, welnvg' , u; > Z?:l t,
that is, the total processing potential is at least the total processing requirement of the
jobs. This is due to the fact that during the first phase no job is allocated morg than
processing units. This guarantees that when we scheklgeeedily, we never run out
of processing potential.

Clearly, at mospy, machines participate in the greedy schedul&oT he last machine
on whichJ, is scheduled may have additional processing potential. This madWine
now the weakest machine (since it belonged to the set of weakest machineskhefase
scheduled, and all the weaker machines in this set are now omitted.fom.,L[1] = ¢.
We now proceed to schedule the remaining jobs. In order to show that fgr arly, at
mostp; + 1 machines share the executionJpfwe first prove the following claim.

CLAaM 3.7. After Jis scheduledorany j > b, thelist L contains at mogi; machines
or the total potential of the; machines I[2], ..., L[p; + 1] is at least .

PROOFE  Assume thady, is scheduled or machines. Clearlyk < pp; thus, the potential

of the strongest machine among theseachines is atleatf/x > ty/pop > t;/pj, forany

j > b. Following the schedule ak,, the listL is updated, and the weakest 1 machines

are removed, the remaining potential of the nesthj machine become®,[y;. Since

the machines L are sorted in nondecreasing order by their potential, the potential of
each of the machinds[2], ..., L[p; + 1] (assumingL| > p;) is at least; / pj, meaning

that the total potential of thegg machines is at least. O

Consider a johJ;, j > b. If, following the schedule ofl, the listL contains at most
pj machines, then, clearly; will be scheduled on at mogj machines; otherwise, note
that if the p; machined_[2], ..., L[p; + 1] are strong enough to compledg then any
set of p; machines, not including[1], is strong enough foy; .

We show that4, never uses more thai + 1 machines for processing. OnceJ,
is scheduled, we turn to schedulg,;. Consider the subset of thg; + 1 weakest
machines. It consists @f[1] and additional, 1 machines. From the above discussion,
the total potential of the additionah1 machines is at leati, 1, therefore (even iQyy
is small), the total potential of the weakest.; + 1 machines is at leas; 1, and we
can allocate taly,; exactlyt, 1 processing units, by using at mgst.; + 1 machines.
Again, the last machine may have remaining potential. The same argument holds for all
the remaining jobs. That is, every jab will be allocated exactly; processing units,
using at mosp; + 1 machines. O

Proof of Theoren8.1. From Lemmas 3.3 and 3.6 we get tHatassigns to each of the
jobs, J;, t; processing units, on at most + 1 machines. In addition, from Lemma 3.2,
the length of the scheduleis < wopt(l).
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We now turn to compute the running time of the algorithm. We show.thatan be
implemented irD (max(mlg m, nlg n)) steps:O(mlg m) 4+ O(nlg n) steps are required
for sorting the lists and calculating. Given that the lists are sorted, the total time for
scheduling the jobs i® (m+n)+ O(n g m). The first phase of the algorithm, in which we
schedule the jobs using the moving-window, can be implement@dim + O(nlg m)
steps. The idea is to start scanning the list for each Jpbfrom a fixed point, which
depends od;. Recall that in this phase, eachjdb j > 1, is processed by exacipy+1
consecutive machines. This set of machines must contain the strongest machine among
those, whose potential is at mast(o; + 1). SincelL is sorted, finding this machine can
be done (e.g., using skip-lists [16], [15]) D(Ig m) steps. We can now find i®(p;)
steps the set gf; + 1 machines that will proces. Finally, after we schedulg;, we
need to reposition théo; + 1)th machine inL, according to its remaining potential.
Sincel is sorted, this can be done (g m) steps.

Let P; denote the set of jobs scheduled in the first phase. Each of thesg;jeb®;,
uses up the potential of a set pf machines (which are then omitted frok). This
implies that) ; ., pj < m, and, therefore, the total time required for positioning the
window and sc‘heduling the jobs By is O(nlgm) + O(m).

From Claim 3.7, during the second phase of the algorithm we schedule the jobs
greedily. Hence, this phase requi®sm + n) steps. This completes the proof. O

3.1.2. Amax (1 + 1/p;)-Approximation The algorithmA; yields the following ap-
proximation algorithm,A;, for the SPAC problem. Given an instante,

1. UseA, to find a schedule of lengti for | *.
2. ForeachjobJ;, j=1,...,n
If J; is scheduled og; 41 machines or ip; + 1 machines procesk simultaneously:
e Let Mg be the machine which allocated the minimal number of processing units
to Jj .
e Omit J; from the set of jobs scheduled dus.
¢ Any other machineM;, which processed; for x time units, will now process,
for x(1+4 1/p;) time units.

In other words, we transform the infeasible schedule into a feasible one by splitting,
for each job,J;, the processing aJ; on the least-contributing machine among the other
pj machines that process. As shown below, this extends the makespan of the schedule
by a fraction which depends on the minimal parallelism parameter of any job.

THEOREM3.8. w4, (1) < max(1+ 1/p))wopt(l).

ProoF  We first show that each jolj;, is allocated at least processing units. Clearly,
the machineMs allocated toJ; at mostt; /(p; + 1) processing units. Thus, the othgr
machines allocate tg; at leasto;t; /(p; + 1) processing units. The execution gfon
each of these machines is “stretched” by a facterllV p;. Hence, the total allocation of
processing units td; on these machines is increased to be at least/(o; + 1)) (1 +
1/p) =t.

To bound the resulting makespan, note that, in the worst case, there exists a machine
that has to compensate for all the jobs that it executes, meaning that its processing time



Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 665

}py‘—l

w

My

Fig. 3. The schedule of;.

is stretched fromw to at most maxw(1 + 1/p;). By Theorem 3.1,4, generates a
schedule of lengthw < wept(l), thus, the makespan obtained by our algorithm is at
most max(1+ 1/p;)wopt(l). O

In particular, if the allotment and parallelism limits of each job are at ledst some
b > 1, thatis,;; > bforalll < j < n, the above approximation algorithm yields the
makesparl + 1/b)wopt(l).

3.2. ldentical Machines We show that for the special case where the machines are
identical, the algorithmd, is a max(1 + 1/(2p; — 1))-approximation to the optimal.
Assume without loss of generality that all machines have theuatel. Thus,w =
max{zj t;/m, max (t; /pj)}.

When A4; is executed on an instance with identical machines, sinee wp:, we
schedule greedily all the jobs. Thus, each jdh,is scheduled on a set of consecutive
machines (see Figure 3). LBtandT, denote the lengths of the time intervals allocated to
Jj onthe “extreme” machines (e.¢4; andM; , ,, in Figure 3). Note that i) is scheduled
on p; + 1 machines, thet) = (o — Dw + Ty + T, and Ty + T, < w (otherwise,J;
is allocated more thawp; > tj processing units). As in the case of uniform machines,
we transform the infeasible schedule into a feasible one, by splitting, for each; job,
the processing ad; on the least-contributing machine among the ofjegnachines that
processJ;. However, as we show below, the “stretching” factor of each machine can be
reducedto ¥ 1/(2p; — 1). Thus, the resulting algorithri,, has a better approximation
ratio.

THEOREM3.9. w4, (1) < max 1+ 1/(2p; — 1)wopt(l).

PrROOF Assume without loss of generality thit < T,. SinceT; + T, < w, we have
thatT; < w/2. In the “stretched” scheduls; is allocatedx; processing units.

Xj = (w(pj —1) +To) <1+ ) =w(oj— D+ T2+ (w(pj —1 +To)

2p -1 20 =1
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Sincet; = w(p; — 1) + T, + Ty, the additional(w(p; — 1) + T2)(1/(2p; — 1))
processing units need to compensate forfthanits that were omitted. Indeed,

wpp —H+To T — w(pj — D+ T2~ (20 — DTy
20 — 1 v 2p; — 1
o woi=D+T - @ - DT
- 2p; — 1
_w =D - @~y
2,0]' -1
pi—1
= —2T,) = 0.
20, — l(w 1) >

Thus,x; > w(p; —1) + T2+ Ty = tj, meaning that; is allocated at leasf processing
units. 0

4. A PTAS for Scheduling with Allotment Constraints. In this section we present a
PTAS for the SAC problem on uniform machines. We assume that the maximal allotment
parameter of any job is some fixed constant. In Section 2 we have shown that SAC is
strongly NP-hard in this case, even for instances with identical machines (Theorem 2.1)
or identical jobs (Theorem 2.6).

Our PTAS consists of two stages. In the first stage we guess a partition of eadf job,
to at mosta; segments. In the second stage we consider each job segment as a separate
job. The resulting instance has at most,ax jobs. We run on this instance a PTAS,

P*, for multiprocessor scheduling on uniform machines (e.g., [12] and [6]). Note that
some segments of the same job may be scheduldef*lyn the same machine: this is
equivalent to sharing the execution §famong fewer machines.

An immediate problem which arises when trying to apply this, is that the number of
possible partitions isxponentialWe show that it suffices to examine only a polynomial
number of possible partitions in order to approximate the optimal schedule. This subset
of partitions can be found and described efficiently.

We first show how to reduce the number of partitions that need to be considered, when
the jobs aradentical Next, we extend this technique to instances wifixad number
of job types. Finally, we show that arbitrary instance can be converted into one in
which small jobs cannot split at all, and nonsmall jobs can be replaced by jobs of a fixed
number of types. Each of these steps extends the makespan by a facter«fAn
additional(1 + ¢)-extension is caused by*.

4.1. Identical Jobs Assume first that all jobs have the same lengttand the same
allotment parameten > 1. Thus, the execution of each job can be shared among at
mosta machines. Giver > 0, let§ = ¢/a.

LEMMA 4.1. Any schedule of | of length C can be transformed into one of length at
most(1 + ¢)C, in which all job segments are larger thérit /a), and their lengths are
multiples ofs?(t/a).
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PROOFE We say that a job segmentamallif is has length smaller thastt/a). We first
describe how the schedule is modified; then we show that the total load on each machine
is increased by at most a factor oftle. For each job));:

1. Add all the small segments df to the longest one and round up the resulting length
to the next multiple ob2(t/a).

2. Round the length of any other segment to the next multiphé @fa).

3. Shorten the longest segment by a multipléf /a) such that the total sum of the
segment lengths is at ledst

Clearly, in the resulting schedule all the segments are largestham), their lengths
are multiples of?(t/a), and the processing time of each job is at l¢ash addition,
since we only group the small segments and add them to the longest one, the allotment
constraint is preserved.

We show that for each machimé; and jobJ;, if M; processed); for t; time units, it
now processeg; for at most(1 + ¢)t; time units; thus, the makespan of the schedule is
at most(1 + ¢)C.

For each job, each nonsmall segment, excluding the longest one, has fength
8(t/a) and its new length is at mogt + 82(t/a) < p + 8p < p(1+ ¢). The longest
segment of a job must have length> t/a. Even if the length of this (long) segment
is not reduced in step 3, its new length is now at mst (a — 1)8(t/a) + §%(t/a) <
p+dt<p+dap= p(l+e). O

Recall, that our PTAS guesses the partition ofitlabs, each into at mostsegments,
and use®* for the guessed partitions. By Lemma 4.1 we conclude that we pay oty
considering only a subset of the possible partitions. We now show that an optimal partition
can be guessed efficiently. That is, the number of possible partitions is polynomial in
Denote byS; the set of partitions of a numbeinto at most numbers which are all
larger thars (t /a), and their values are multipleséfit /a). In the following we compute
the size ofS;, denoted byh;. We use in the computation the next result, given in [4].

LEMMA 4.2. Let f be the number of g-tuples of nonnegative integers such that the sum
of tuple coordinates is equal to, for some d> 1. Then f = (dgﬂzl). Ifd +g < ag,
for somex > 1,then f = O(«%9).

Now, we boundh; in terms ofa.

LEMMA 4.3. The size of Sis hy = O((2e)?), where the symbol e denotes the base of
the natural logarithm

PrROOF Note that we can describe a partition of a given job to at rmastgments by
an(a/8%)-tuple: each coordinate, gives the number of segments of length5%t) /a,
1 <i < a/82; the sum of the coordinates is at mastBy Lemma 4.2, takingl = a,
g = a/82 ande = 1+ 82, we get that the number of such tuples is

<a+ a/s2—1

a/s?— 1 ) = O((L+8H2) = O((2e)?).
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The last equality follows from the standard bourdd+ x)¥/* < e, for0 < x < 1, and
the assumption thatl + §%) < 2. O

Each item in§ describes a partition of a single job. To describe a partition oftjobs
we use a vector of length;, whosei th entry specifies for how many jobs we adapt the
ith partition vector. The number of possible vectors is less tfan

4.2. Fixed Number of Job Types Assume that there are different job types, where

T > 1 is some constant. All thex jobs of thekth type, 1< k < T, have length

and allotment parameteg. Note that the proof of Lemma 4.1 considers the extension
of each segment on each mach&sparately Thus, choosingyx = ¢/ax, we can extend
Lemma 4.1 as follows:

LEMMA 4.4. Any schedule of | of length C can be transformed into one of length at
most(1+ ¢)C, in which all the segments of jobs of thilnkype are larger thars (t /ax)
and their lengths are multiples 6f (ty /ay).

Leths, be theconstanhumber of possible partitions of one job of &th type. In order
to describe a possible partition of th@bs we use a vector of lengitly, +hs, +- - - +hs,,
whose entries specify how many jobs of each type are partitioned in a certain way. The

. . h T
number of possible vectors is less tHgg_, n,* = O(nZ-"x),

4.3. Arbitrary Jobs Given an arbitrary instance, our idea is to distinguish between
small and large jobs. For the subset of large jobs wesdayorder to convert it into one
with a fixed number of job types—for which, as we showed in Section 4.2, we need to
examine only a polynomial number of possible partitions. For the small jobs we show
that we may pay at most a factofrom reducing all their allotment parameters to one.
Any job, J;, for whicha; = 1 need not participate in the “guessing partition” process,
i.e., Jj is given toP* as a single segment.

Let tmax be the maximal length of any job ih. Let a; be the minimal allotment
parameter among the jobs with lengthy. For a givere, we say that a job ismallif its
length is less than(tyax/as)-

LEMMA 4.5. Any schedule of | of length C can be transformed into one of length at
most(1+¢)C, in which all the small jobs are not partitioned at &hat is have a = 1).

PrROOF Given a schedule df, letW; be the total number of processing units allocated

to segments of small jobs o . We reallocat&Vs , Ws,, . . . to the small jobs sequentially,
starting from the first small job on the first machine. When a small job is completed we
move to the next small job; when all th&; processing units are allocated, we complete
the active small job and move to the next machine and to the next small job. Clearly,
since we allocate at lea$t; Wy processing units, all the small jobs are completed. Also,
since we always complete a job on the machine on which its processing starts, we do not
split small jobs. Finally, the makespan can increase at most by a factofaf in the
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original schedule, some machine must have load atigagt;. Thus,C > tmax/a1. The
total load on each machine is extended by at na@isf.x/a;1). Therefore, the resulting
makespan is at mo&t + e(tmax/a1) < C +eC = (1 + ¢)C. O

From Lemma 4.5, for the purpose of guessing a partition of jobs to segments, we
may assume that our instance consistafe jobs. Letanax be the maximal allotment
parameter of any job ih. We replace the large jobs By = amax(@1/¢? — 1/¢) sets of
jobs such that the jobs in each set are identical. Ferdl < amay, 1/ < £ < a;/s?, let
Na.¢ be the number of jobs with; = a andtj € ((€ — 1)e2(tmax/a1), £&%(tmax/a1)]-

Our new instancel,’, consists ofN, ¢ jobs witha; = a andt; = 2&%(tmax/a1). As in
other PTASs that use interval partition (e.g., [12], [6], and [1]), we have

LEMMA 4.6. Any schedule of | oflength C can be replaced by a scheduleobfdngth
1+ e)C

PROOF  Each long job from with &y = a andtj € ((€ — 1)e?(tmax/a1), £&%(tmax/a1)],
contributes tol’ a job with the same allotment parameter and of lenigth A, A <
£2(tmax/a1). This extension ofA can split among the segments &f as follows. For
each machina/; and jobJ;, if M; processes a fractiom of J;,0 < o < 1, M; will
now process a fractiom of the extended job. Summing over all the segments; pive
get that the extended job is fully processed. The jJplis long, thusyt; > &(tmax/as).
Thereforep(tj + A) < a(t) + £2(tmax/ar)) < a(tj + et)) < atj(1+ ¢), and the total
processing time of each job on each machine is extended by at most a factereof 1

We summarize in the next result.

THEOREM4.7. The SAC problem with fixed allotment parameters admits a RVA&se
running time is @n(@ma@/e%) 29

PrROOF The PTAS described above consists of four steps:

1. Distinguishing between small and large jobs.

2. Replacingthe large jobs by jobsbf< amax(ai/?) sets of identical jobs, as described
in Section 4.3.

3. Guessing a partition of the resulting jobs to segments.

4. Running the PTA®* on the resulting sets of segments and small jobs.

By Lemmas 4.4-4.6, and sin&¥ is a PTAS for the multiprocessing scheduling problem,
we get that each stage may extend the makespan by a factor ef Without loss of
generality we assume that< 1; thus, by running these steps wih= ¢/9 we get
a total extension of factor + . As discussed in Section 4.2, in the third step we
examineO(nZsii) = O (n2ma@/e)29™> partitions. Finally,P* can be implemented
in O(n¥*) (see [6]).

Thus, we get that the overall running time is at mogh @maa/) (e +1/e%) \yhich
yields the statement of the theorem. O
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5. Solving SPAC for Parallel-Dominated Instances. In this section we consider in-
stances in whicN'j, p; < & . We call such instancesarallel-dominated\We show that

for these instances the SPAC problem is optimally solvable on identical machines. For
uniform machines the solvability of our problem depends on the differefages p;).

Recall that preemptive scheduling on multiple machines can be viewed as the SPAC
problem on parallel-dominated instances, whgre= 1 anda; = m, V1 < j < n. Our
results imply that when we bound the number of machines that can share the execution
of each job, the preemptive scheduling problem is:

1. Solvable on identical machines with any allotment constraints.

2. Strongly NP-hard on uniform machines and identical jobs, where each job can run
on at most two machines.

3. Solvable on uniform machines where the jobs are identical, and each job can run on
at least three machines.

5.1. An Optimal Algorithm for Identical Machines We now show that SPAC is poly-
nomially solvable on identical machines, for any parallel-dominated instance.

THEOREM5.1. The SPAC problemis solvable in(@+m) steps on identical machinges
for instances wherg; < a;, vj.

PrOOF Assume without loss of generality that all the machines have the same rate
u = 1. Recall thatw = max{zj t;/m, max (t; /pj)} is a lower bound on the length of
an optimal schedule.

Consider the simple greedy algorithid,,, based on McNaughton rule [144,
proceeds by scheduling the jobs one after the other on the machines. It uses each machine,
M;, for w time units, and then moves td; ,4; it moves to the next jobJ;+1, once the
job Jj is allocated; processing units. Thus, each jdpis scheduled on a consecutive
set of machines.

We first show that the parallelism constraints are preserved. Assume by contradiction
that there exists a job; such that at timéy € [0, w], at leastp; + 1 machines process
Jj (see Figure 4).

Mi‘H’j T>

}py‘l

to w

M. i Tl

My

Fig. 4. The schedule of;.
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Suppose that the first machine used for processijrig)M;. At time to, the machines
M, ..., My, process];; each of the machineldi,, ..., M, 1 allocates taJ;, w
processing unitsM; allocatesT; units andM; ., allocatesT, units. Since bottM; and
Mi,,, processJ; at timety, we get thafT; + T, > w. Consequently,); is allocated
(pj — Dw + Ty + T, > pjw processing units. Since > t;/p;, we get that); was
allocated more thatj processing units, in contradiction to the way proceeds.

To see that all the jobs are scheduled within an interval of lemgthote thatA,
proceeds to the next machine only when the current machine is “saturated.” Thus, it can
allocatemw processing units. By definitiony > Zj tj/m. That is,mw > Zi tj.

Note that in the schedule produced By, each job is processed by at mest+ 1
machines. Thus, sindg, p; < &, the allotment constraints are preserved. O

5.2. Parallel-Dominated Instances and Uniform Machine&Ve now show that when
the machines may have different speeds, the SPAC problem is strongly NP-hard on
parallel-dominated instances, even if all jobs are identical.

THEOREM5.2. The SPAC problem is strongly NP-hard even if all jobs are identical
andvj, o < &.

PrROOE Given an instance of 3-partition, we construct an inputor the makespan
problem withVj, p; = 1,8 = 2, such thawept(l) = 1 if and only if A has a 3-
partition. Note that this is an instance of the preemption problem in which the execution
of each job can be shared by at most two machines.

The inputl consists ofm = 4q machines with the following rates: for the first
3q machinesy; = (K + s(x))(1 — (K —s(x))/(83K — B))™%,1 < i < 3q, where
K > 3gBis a large constant. These machines are dersited The otherg machines
arefastwith uyy = 3K — B,3q < i < 4q. There aren = 3q identical jobs with
t=2K,pj=1a =2V1l<j<3q.

CLaiM 5.3. For any slow machineM;, 1 <i < 3q, %ui < K.

PROOF By definition of the 3-partition problenvx € A, B/4 < s(x) < B/2. Thus,

1 B K-B/4\*! 1 B\ 5
1 5 5
QW<§<K+§>O‘§??E) <§<K+E>§‘EK 8 < K.

The last inequality follows from fact tha€ was selected such thaB3< K, therefore,
B < 3B < iK. O

Assume thatA has a 3-partition to the se§, S, ..., §. V1 <k < g, let§ =
{Xk,» Xk» Xks}- The following is a schedule whose makespan equa¥d k k < q, the
four machinesM,, My,, My,, Maq« process the three johk,, J,, J,. Specifically, as
illustrated in Figure 5My, executes),1 < i < 3, for 1— (K — s(xy))/(BK — B)
time units and thus allocates tolt + s(x,, ) processing units. The fast machiltg,«
executesk,1 <i < 3, for (K — s(xy))/(3K — B) time units and thus allocates to it
K — s(xy ) processing units. Sine&Xy, ) + S(X,) + S(Xk,) = B, anduzqk = 3K — B,
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My, idle Jhey

Mk-2 sz idle Jk2
Mg Ty idle
Mszq ik Iy ko kg

Fig. 5. The schedule of,, Jk,, Jk;-

the completion time equals 1. Note that the allotment constraints are preserved: the
execution of); is shared by the two machindg andMsy,« such thak; e S. Also, the
parallelism constraints are satisfiedy, is idle while J,; is executed oMzqk. Finally,

Jy, is allocated exactlyy, processing units, sind8K — B)(K — s(xy))/(3K — B) +

Uy (1 — (K —s(x))/(3K — B)) = 2K.

Now, suppose that we have a scheduld afhose makespan equals 1. We show
that A has a 3-partition. First, note that any jab, has to be scheduled on at least one
fast machine. This is due to the fact that= 1 and, by Claim 5.3y; < t; for any
slow machine; thus, any combination of slow machines can providkg kess thart;
processing units. Sincg is scheduled on at least one fast machine ane- 2, J; is
scheduled on at most one slow machine. tiebe the total time allocated tg on fast
machines, and let be the time allocated tg; on (at most one) slow machine. Denote
by M;, the slow machine processiny (if J; is processed only by fast machines, then
ti; = 0 andM;, is undefined). Lek; be the item with the indek in the input for the
3-partition problem.

LEMMA 5.4. For any joh J;, the processing of;Js shared by one fast machine and
one slow machineM;; such that{ = (K —s(x;,))/(3K —B)and{ =1- (K —
s(x;,))/(3K — B).

PrROOF By definitions oft;, t;;, andM;,,

ty+t, <1,
3)

3K — B)t; + (K (1 K =stw _1t-—2K
BK =Bty +( +S(X|J))< —m> i = 2K.

CLAam 5.5. Foranyjoh J, t;, > (K —s(x;;))/(3K — B).

PROOF  Sincep; = 1,V], foranye > 0, if t; = (K —s(x;,))/(3K — B) — ¢, then
from (3) we get that;, < 1— (K —s(x;))/(3K — B) + ¢, and the overall number of
processing units allocated th is less than K. O

Recall that there areqBjobs and 8 slow machines. We show now that each job is
processed by exactly one slow machine, and that each slow machine processes exactly
one job. This is proved by the following claim:



Multiprocessor Scheduling with Machine Allotment and Parallelism Constraints 673

CLAmM 5.6. Forall j,t, > 3.

PrROOR  Assume by contradiction that < 1 for y > 0 jobs. Denote by, the set of
3g—yremainingjobs,i.e$ = {j | ti; > %}.Thenthejobsirsl are scheduled on exactly
3g — y slow machines, each running a single job in this set. Sitxce A, s(x) > B/4,
we havezjesl s(x;) < Bg—y(B/4). From (3), for any job(3K — B)ts, +uj ti; = 2K;
thus, for each of thg jobs not inS, t; > (2K — %uij)/(SK — B). Also, by Claim 5.5
for each of the § — y jobs in S, ty; > (K —s(x;;))/(3K — B).
Summing up the time intervals allocated to all jobs on the fast machines, we get that

3q
Z t
j=1

K —s(x;,) 2K — Iu;
Z 3K — B +Z 3K -B

jes ¢S

1 B
39— y)K —Bg+y- +2Ky— 3 _ Ly,
> 3K_B((q YK —Ba+y +2Ky j%w.,)

v

1 B
Kg—Bg—Ky+y— +2Ky— ¥ Lu;
3K B (3 q—Ba—Ky+y, +2Ky J_z‘ngU.])

1 B
¢St

The last inequality follows from Claim 5.3 and from the assumption that there are
y > 0 jobs for whicht;, < % However, since the makespan is 1, the total execution time

on the fasg machines cannot excegdThus,y equals zero andj, t;, > % O

It follows that each slow machine processes a different job. Heﬁjcféi s(x;;) =

Zfﬂl s(xi) = gB. Assume by contradiction that for somgy, > (K —s(x;;))/(3K —B).
Summing up the time intervals allocated on the fast machines, we get that

it >3qK—Z,-S(Xij)_3qK—qB_
f 3K—-B  3K-B O

which is, again, a contradiction to the length of the schedule.
Assigningt;, = (K — s(x;;))/(3K — B) in (3), we get thavj,t;, = 1 — (K —
s(xi;))/(BK — B). O

Thus, in any schedule whose makespan equal i, allocated exactly< + s(x;,)
processing units on some slow machimng,, and exactlyK — s(x;;) on some fast
machine. Given that each slow machine processes exactly one job, assume without
loss of generality thatl < i < 3g, M; processes onlyj. Also, note that each fast
machine must have load<3— B since the total load on thgidentical fast machines is
Y K —s(x) = (3K — B)q.
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Denote byfast-segmerthe part of a job that is processed on a fast machine. Consider
a fast machinéM;, i > 3q. SinceK was selected such thlt >> s(x), Vx € A, M;
has to process exactly three fast-segments (Otherwise, there exists a fast mdghine,
which processes at least four fast-segments, but any four fast-segments require more
thanu; = 3K — B processing units). For eacly3< k < 4q, let Jy,, J,, and Ji, be
the three jobs whose fast-segments are schedulédsgp. It follows that X — B =
3K — (s(Xg,) + S(Xk,) + S(Xk,)), meaning that, X,, andxy, form a triple for the
partition. Since all the jobs are scheduled, the schedule of the fast-segments on the fast
machines induces a valid 3-partition Af O

In the case where the jobs are identical, aliidp; < & — 1, an optimal algorithm
exists.

THEOREMS5.7. The SPAC problem has an(@Ig m) optimal algorithm when the jobs
are identical andvj, p; < a; — 1.

PrROOF Assume that for all job$ = t, pj = p,a = a, wherea > p + 2. Let
w = nt/ Zi’“zl ui. By Lemma 3.2w is alower bound fowopt(l ). We give an algorithm,
Aqg, which outputs a schedule bfof lengthw; each job is scheduled on at mas#- 2
machines.

For each machiney;, let Qy, denote thepotentialof M;, that is, the number of
processing units tha#; can still allocate. Initially, for each of the machineQy, =
uiw. GenerallyQm = ujw’, wherew’ is the total length of intervals in [Gv] in which
M; is idle. Given a pair of machingd;, M, we say thaMM; is weaker (stronger) than

My, if Qm, < Qwm, (Qm, = Qm,)-

DEFINITION 5.1. A merged machineM’, is a pair of machinedvi;,, M;, such that
i1 < i, and the machin®f;, is idle exactly from O tavg, M;, is idle exactly fromwg to w,
for somewy € [0, w]. The potential of a merged machineQs, = u;, wo+ U, (w — wo).

Similar to the algorithmA,, described in Section 3.1, the algorith#y maintains
a list, L, of the machines, sorted by their potential in nondecreasing order. That is,
Qupy < Qupy < - - (L[K] denotes the machine at positikin L). The listL is updated
along the algorithm, according to the current available machines.

The jobs are scheduled one after the other. We first describe the schedijle of
and then the schedule df, j > 1. The jobJ; is scheduled on a consecutive set of
machines, selected as follows. First, we exanifi], which is the weakest machine.
If Quy > t we scheduled; on L[1] and update the potential of this machine; else,
we check whetheQ[1; + Qv > t, and so on until either we find a sequence of
at mostp machines with sufficient potentiak(t), or the total potential of the firsté
machines is less than In the former case, we schedule greedily on the weakest
machines until itis completed. In the latter case, we proceed to examine theindztv
of p machinesL[2],..., L[p + 1], and so on, until our window coveys machines,
L{K], ..., L[k + p — 1], such thatQrp—15 + - - - + Qrktp—21 < t@andQupq + --- +
Quk+p—11 = t (see Figure 6). At this stage, we allocateJioall the potential of the
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Fig. 6. Scheduling the first job.

machined_[K], ..., L[k + p — 2], and complete the execution df by also allocating
to it some of the potential of the machinefk — 1] andL[k 4+ p — 1] in the following
way. Note that we have (3, 1., o ULfip) < tandw(Q ., 1 ULpp) = tithus,
WU [k—1] < t/p andwuyk+,—17 > t/p, and there exists somey € [0, w] such that the
execution ofJ; can be completed if it is scheduled afk — 1] in the interval g, w]
and onL[k + p — 1] in the interval [Q wo] (see Figure 6). Thereford; is scheduled on
o + 1 machines, and, in each moment, at mpstachines process it simultaneously.

The machine®y, . . ., QLk+p—2) are removed fronk.. The two machinek[k —1]
andL[k + p — 1] are partially used and form together anerged machineV’, which
is idle in [0, w] and whose potential iIQw = ULk—1ywo + ULk+p—17(w — wo). This
merged machine replacé$k — 1] andL[k + p — 1] in L.

For any jobJ;, j > 1: if the total potential of the weakegt machines is at least
t, thenJ; and all the remaining jobs are scheduled greedily starting from the weakest
machine; otherwise, as in the schedulglgfwe scan the list. using a moving-window
that coversg machines, until we find the weakest consecutive sptrafichines that can
complete the execution @k (the merged machine is considered as a single machine in
L). We show that at any stage of the algorithm, thellistontains at most one merged
machine.

Let J, be the first job such that, whelg is scheduled, the total potential of the weakest
p machines is at leagt (that is, Jy, ..., Jy are scheduled greedily). We distinguish
between two phases ofy:

1. Thejobsdy, ..., J,_1 are scheduled.
2. Thejobsly, ..., J, are scheduled.

CLam 5.8. Forall 1 < j < b, before J is schedulegthe list L contains at most one
merged machine composed of idle-segments of two maghheand M,, such that
wu, <t/pandwuy, >t/p.
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Fig. 7. Scheduling a joly;, j > 1.

PrOOF The proofis by induction ofj. For j = 2, we showed that the claim holds after

Jy is scheduled. For the induction step, assume that the claim holds joxdil. Let M;,

and M;, be the two machines composing the merged machine béfoescheduled.

We show that the schedule df must include some intervals on bath, and M;,. As

illustrated in Figure 7(a),(b), the only possible way to schedulés to select a set of

machines that encircle the “hole” created by the machines that were previously used,

and omitted fromL (the hole is shaded with lines). This follows from the fact that

is scheduled on the first possible consecutive set of machinesAssume thatk is

scheduled only on machines that are weaker thign(Figure 7(c)). By the induction

hypothesisvu, < t/p and thus the execution df is done solely on machines whose

rates are less tharip. Clearly, no combination of sugh machines can complet® in

w time units. Similarly, the schedule df cannot be done solely on machines which are

stronger tharM;, (Figure 7(d)), sincevu, > t/p. We note that ifvu, = t/p and thep

machines followingVi;, in L have the raté/wp, then we may not schedulig on M;,, but

in this case the schedule df will be concatenated to that df_; and the claim holds.
Given thatthe window contains bolify, andM;,, we get that the new merged machine

must replace the old one. The new merged machine is composed of two machines, such

that the slower one has rate at mogtand the faster one has rate at laagttherefore

the claim holds also before the schedulelgf;. O

We turn now to consider the number of machine allotments of djob > 1. If J; is
scheduled greedily, then at mgsmachines in_ share its execution. By Claim 5.8, at
most one of these machines may be a merged machine; hence, we deisisaheduled
on at mostp + 1 machines (no merged machines are composed during the second
phase). Assume thak is scheduled in the first phase, using the moving-window. Let
L[K], ..., L[k+p—1] be the set op machines suchth&@ k_y+- -+ QLk4p-2) <t
andQypq + - - - + Quk+p-1 = t. Asin the schedule oJ;, we now allocate td; all the
potential of the machines[K], ..., L[k + p — 2], and complete its execution by also
allocating to it some of the potential of the maching& — 1] andL[k + o — 1]. This
allocation is done such that the idle intervald §k — 1] andL [k + p — 1] form a merged
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machine. Overall, at mogt+ 1 machines froni participate in the execution d. By
Claim 5.8 at most one of these machines may be a merged oneJ; tisuscheduled on
at mostp + 2 machines.

Also, the parallelism constraint df is preserved: ifJ; is scheduled in the first phase,
then it runs orp — 1 machined [K], ..., L[k + p — 2] in the interval [Q w]; also, J; is
scheduled o [k — 1] andL [k + p — 1] in non-overlapping time intervals. Finally, if one
of the machines is “merged,” thelj is scheduled on the corresponding two machines
in two distinct time intervals. It follows that at any timg, is processed in parallel by at
mostp machines. The argument is similar for jofjsthat were scheduled greedily.

Finally, we show that we never fail to schedule a job, that is, the set of stropgest
machines irL can always complete the execution of a job. Recall#hat nt/ Z{“:l ui.
Therefore, foreach ¥ j < n,w > jt/ZiJil Ui (assuming thati; > uy > - -+ > up).
This implies that for anyj, the set of firstj jobs can be completed by the fastest
machines. In terms ofly, the window never has to move beyond fhastest available
machines.

The algorithmA4y can be implemented in tim@(max(mIg m, n)). O(mlg m) steps
are needed for sorting the machines. Next, the total time for scheduling the jobs is
O(m + n). Recall that the schedule of each jgbis done on machines that encircle in
L the hole created by the machines that prockss. Hence, we do not need to scan
the list L from the beginning for each job. Also, when the window coversghe- 1
machines that will share the executiondfthe calculation of the new merged machine
and the updates ih take O(1). O

CONCLUDING REMARK.  Determining the minimal differena@; — p;) required by any
efficient algorithm forgeneralinstances remains an open question. In particular, can
we optimally solve the classic preemptive scheduling problem wheg; = 3 and for
largerconstantvalues ofa; ?
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sentation.
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