Algorithmica (2001) 29: 442-467 . .
DOI: 10.10075004530010057 Al go rithmica

© 2001 Springer-Verlag New York Inc.

On Two Class-Constrained Versions of the
Multiple Knapsack Problem?

H. Shachnd&iand T. Tami?

Abstract. We study two variants of the classic knapsack problem, in which we need to place items of
different typesn multiple knapsacks; each knapsack has a limited capacity, and a bound on the number of
different types of items it can hold: in tr@ass-constrained multiple knapsack problé@MKP) we wish to
maximize the total number of packed items; in thie placement problerFPP) our goal is to place the same

(large) portion from each set. We look foparfect placemenin which both problems are solved optimally. We

first show that the two problems are NP-hard; we then consider some special cases, where a perfect placement
exists and can be found in polynomial time. For other cases, we give approximate solutions. Finally, we give

a nearly optimal solution for the CMKP. Our results for the CMKP and the FPP are shown to provide efficient
solutions for two fundamental problems arising in multimedia storage subsystems.

Key Words. Knapsack, Packing, Approximation algorithms, Resource allocation, Fairness, Utilization,
Multimedia on-demand.

1. Introduction

1.1. Problem Statement In the well-knownmultiple knapsack problefMKP) [18],

M items of different sizes and values have to be packedhhimapsacks with limited
volumes. In this paper we study two variants of the MKP, in which itemigl afistinct
typeshave to be packed inth knapsacks, each having a limited volume and a limited
number of compartments; items of different types cannot be placed in the same com-
partment. Specifically, the input is a univetdewhich consists oM distinct types of
items, given as the subsets, ..., Uy; there argU;| items of typel, 1 < i < M, and

U =U;UU,- ..U Uy; all items have the same (unit) size and the same value, that
is, forallu € U, s(u) = w(u) = 1. There areN knapsacks: thgth knapsackK;,

has the volumé/j, and a limited number of compartmen@;, in which the items can

be placed, 1< j < N. Thus, in thejth knapsack we can place items of at mGst
different types. The output of our optimization problems acementwhich specifies

for each knapsacK; to which types of elements; allocated compartments, and how
many items of each type are placeddin. A placement idegal if K; allocated at most

C; compartments, and the overall size of the items placédd} idoes not exceeW;, for

1 A preliminary version of this paper appearedrroceedings of FUN with Algorithmssola d’Elba, Italy,
June 1998.
2 Department of Computer Science, The Technion, Haifa 32000, I§heelas, tam)i@cs.technion.ac.il.

Received June 1, 1998; revised December 5, 1998. Communicated by N. Megiddo.
Online publication October 6, 2000.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 443

all1 < j < N. A placement determines a subkEt=U’; UU’,U...U U’y of U,
such thafU;| is the number of items packed frads.
The two optimization problems studied in this paper are:

The class-constrained multiple knapsack problem (CMKP),in which our objective
is to maximize the total size of the packed elements, givel B, [U’; .

The fair placement problem (FPP), where the objective is to maximize the value of
O<c<1lsuchthatyl<i <M, |U’j|>c-|Uil.

Throughout the paper we assume gt [U;| = 3"/, Vj, thatis, the total number
of items inU equals the total sum of the knapsack volumes. In particular, we loak for
perfect placemenin which both problems are solved optimally. Indeed, such a placement
yields the maximal utilization of the knapsack capacities, i.e., the total occupied volume
isV = ZjN:lV,-, and maximal fairness, i.ec,= 1.

The assumptiofU| = V simplifies the presentation of our results; moreover, any
input for the storage management problem that motivated our study, satisfies this as-
sumption. It is important to note, however, that our results hold for general inputs for
the CMKP and the FPP, i.e., for any relation betwgghandV. We elaborate on that
in the Appendix.

1.2. Storage Management in Multimedia System®ur two variants of the knapsack
problem are motivated by two fundamental problems arising in storage management
for multimedia-on-demand (MOD) systems. MOD services are becoming common in
library information retrieval, entertainment, and commercial applications. MOD systems
are expected to manage with the enormous storage and bandwidth requirements of mul-
timedia data. In addition, MOD servers should support strict timing requirements: each
user can choose a program he wishes to view and the time he wishes to view it. The
service should be provided within a small latency and guaranteeing an almost constant
transfer rate of the data.

In an MOD system a large databaseMbivideo program files is kept on a centralized
server. Each program file is associated with a popularity parameter, given by
[0, 1], whereZiM:l pi = 1. The files are stored oN shared disks. Each of the disks
is characterized by (i) its storage capacity, that is the number of files that can reside
on it, and (ii) its load capacity, given by the number of data streams that can be read
simultaneously from that disk. Assuming tHa, ..., pw} are known, we can predict
the expected load generated by each of the programs at any time.

We wish to define a static allocation of storage and load to each file, so that the load
generated due to access requests to the file can be satisfied. Our allocation should enable
simultaneous transmissions of as many video programs as possible. Indeed, it should
reflect the popularities of the programs, by allowing many transmissions of popular
programs, and only few transmissions to the less popular ones. In other words, we would
like to achieve fair allocation of the storage and load capacity. Another objective is to
maximize the utilization of the load capacity of the system.

The problem of assigning files to disks, so as to maximize utilization (fairness), can be
formulated as an instance of the CMKP (FPP): a dligkth load capacity.; and storage
capacityC; will be represented by a knapsalk with volumeL; andC; compartments.

A file i will be represented by a skt with size |U;|, which is proportional to the file

444 H. Shachnai and T. Tamir

popularity. Specificallyju | = Zszl L; and|U;| = pi|U|.2 A solution to any of our two
variants of the knapsack problems will induce a legal static assignment.

1.3. Related Work Previous work on the MKP and other knapsack related problems
assume that (i) all items of the same type have to be placed in the same knapsack, and
(ii) there is no limit on the number of different types of items that can be placed in one
knapsack (see, e.g., [3], [7], [15], [20] and detailed surveys in [18] and [19]).

The special case of the MKP whexe= 1, known as the classic 0-Khapsack prob-
lem, admits a fully polynomial approximation scheme (FPAS). That is, foreany0, a
(1 — &)-approximation to the optimal solution can be founddin/s?), wheren is the
number of items [6], [7]. In contrast, the MKP is NP-hard in the strong sense, therefore
it is unlikely to have an FPAS, unle$s= NP[19].

The CMKP is closely related to tHectional knapsack problenthis problem can be
optimally solved in polynomial time (by a simple greedy algorithm [5]). Indeed, the sets
Ui, ..., Uy can be replaced by items of the sizefUs|, ..., |[Uu|, where each item
can splitamong several knapsacks. In our generalized version of the fractional knapsack,
each knapsack has a limited capacity and a limit also on the number of items it can hold.
We show below that this problem is NP-hard.

Other related work deals withultiprocessor schedulin®]-[11], also known as the
minimum makespaproblem: givenn processors anth jobs with designated integral
processing times, the goal is to schedule the jobs on the processors, such that the over-
all completion time of the schedule is minimized. We can represent a knapsack by a
processor, and each set of items of $id®y a job requiringk units of processing time.
Hence, there are = N processors anch = M jobs. The compartment constraint can
be represented in the scheduling problem by allowing at @pftbs to be scheduled on
processojf, V1 < j < N.Note, that minimizing the makespan is equivalent to maximiz-
ing the utilization of the knapsack volumes. Previous research on the scheduling problem
assumes no bound on the number of jobs which can be allocated to each processor, i.e.,
C = M,V1l<i < M (asurvey appears in [12]). In this case the makespan problem
admits a polynomial time approximation scheme [9].

MOD systems have been studied intensively in recent years [1], [8], [16], [17], [21].
However, the assignment problem received only little attention in this context. Specif-
ically, most of the previous work discussed the problem of load balancing on disks, in
which the goal is to have the total load on the system distributed evenly aialigks.

The first solution proposed for the load balancing problem was disk striping (see, e.g.,
[2] and [4]), in which the data of each file is distributed over multiple disks. Thus, the
heavy load caused by a popular program is shared among these disks.

In [22] dynamic algorithms were suggested for balancing the load in the system. The
paper also addresses the problem of determining the number of copies of each file that
should be kept in the system; the goal is to have the total storage capacity allocated
to f; reflect its popularity. This criterion can yield poor results when used for solving
our optimization problems: intuitively, the algorithm will allocate multiple copies to a
popular file, however, these copies may be stored on disks, whose load capacities are

3 For simplicity, we assume that|U | is an integer (otherwise we can use a standard rounding technique [14]).

On Two Class-Constrained Versions of the Multiple Knapsack Problem 445

small. Consequently, these disks will be overloaded and the system will often reject
requests for that file. This is due to the fact that the placement of files on the disks uses as
parameters only the file popularities and storage capacities of the disks, while the load
capacities are ignored (a detailed example is given in Section 2.3.2).

1.4. Our Results We now summarize the results presented in this paper:

e The CMKP and the FPP are NP-hard.

e For some instances a perfect placement always exists and can be found in polynomial
time. Three simple conditions for the existence of a perfect placement are given. For
each condition, we show how the CMKP and the FPP can be optimally solved, when
this condition is satisfied.

e Whenthe conditions are not met, we derive approximate solutions for our two knapsack
problems. The approximation ratio depends on the “uniformity” of the knapsacks.
Specifically, giverr > 0 ande > 1 such thatyj, r < V;/Cj < « -1, we give an
algorithm which achieve€l/«)-approximation for both the CMKP and the FPP.

e We show that if the number of compartments in each knapsack is abldasisome
b>1,ie,C = bVl <j <N, thenthe CMKP can be approximated to within
factorb/(b + 1).

The rest of the paper is organized as follows. The hardness results are given in
Section 2.4. In Section 3 we discuss several cases in which a perfect placement exists
and can be found in polynomial time. A nearly optimal solution for the CMKP is given in
Section 4. In Section 5 we describe how our theoretical results can be applied to storage
management in MOD systems, and in particulahéterogeneoudisk subsystems. In
Section 6 we give possible directions for future work.

2. Preliminaries. Given N knapsacks with the volumasg, ..., Vy, thepacking po-
tential of the knapsacks, denoted By is the total number of items that can be placed in
the knapsacks, i.eV, = Zszl V. For a universé&) of unit size items, partitioned to the
setsUy, ..., Uy, a solution to the CMKP or the FPP can be represented asftwoN
matrices:

1. Theindicator matrix I ,a{0, 1}-matrix,l; j = 1iffacompartment oK; was allocated
to items of typel;.

2. Thequantity matrix Q Qi ; € {0, 1, ..., V;}, Q; j is the number of items dfj; that
are placed irK;.

A legal placement has to satisfy the following conditions:

e li; = 0= Q;; = 0. This condition reflects the fact that itemslgfcan be placed
in K; only if a compartment oK; was allocated to items of type

e For each knapsacK;, > ; Qi ; <V, that is, the total number of items placedKn
does not exceed its capacity.

e For each knapsacK;,) ; I;; < Cj, that is, the number of different types of items
placed inK; does not exceed the number of compartments;in

446 H. Shachnai and T. Tamir

The matriced andQ determine a subset of iterils = U; U - - - U U}, which is placed
into the knapsacks.

DerFINITION 2.1. Given a solution for the CMKP (FPP), tipacked quantity of |J
denoted byQ;, is the total number of items packed fradh. Thus, Q; = |U’j| =

YL Qi

2.1. Utilization of a Placement Our first measure for the quality of a placement is
utilization:

DEFINITION 2.2. Theutilization of a placemenis Zile Qi.

The maximal possible utilization of a placemendMsmeaning that all the packing
potential of the knapsacks is exploited. SilEé/':1 Uil =V, it also means that exactly
|Ui| items from the seU; are packed. Other placements may utilize only part of the
overall packing potential:

DErINITION 2.3. A placement is-utilizedif its utilization equalsc - V, for somec €
[0, 1].

Our main questions here are: “Can the maximal possible utilization be found in polyno-
mial time?” “Can we find an efficient approximation?”

The CMKP aims at maximizing the utilization of the packing potential: in Section 4 we
present @ual approximation algorithrfor the CMKP. The notion of dual approximation
was introduced in [13]. It involves approximating teasibilityof a solution for a given
problem, rather than its optimality; traditional approximation algorithms seek feasible
solutions that are suboptimal, where the performance of the algorithm is measured by
the degree of suboptimality allowed.

In a dual approximation algorithm the objective is to find an infeasible solution that
is superoptimal; the performance of the algorithm is measured by the degree of infea-
sibility allowed. The general relationship between traditional (or primal) approximation
algorithms and dual approximation algorithms is discussed in Chapter 9 of [12]. The
dual approximation algorithm we present in Section 4 is superoptimal for the CMKP.
Our algorithm allows a small degree of infeasibility, that is, at most one compartment is
added to each of the knapsacks.

2.2. The Fair Placement Problem Our second criterion for measuring the quality of
a placement is fairness:

DEFINITION 2.4. A placement is-fair, for somec € [0, 1], if, for every setU;, Q; >
c- |Uil.

An optimal placement is 1-fair. In a 1-fair placement, for eacbxactly|U; | items
from the setJ; are packed. Sincgji"":1 |[Ui| =V, italso means that the packing potential
of the knapsacks is fully exploited.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 447

Several questions arise when looking for a fair placement: “Does a 1-fair placement
exist for any instance of the problem?” “Can we find it efficiently?” “When a 1-fair
placement does not exist, can we find (or approximate) an optimal placement efficiently ?”

2.3. Combining Utilization and Fairness

2.3.1. The perfect placement problemWe first explore the relation between the CMKP
and the FPP.

DEFINITION 2.5. A perfect placemens a placement in which all the items of all the
sets are packed, and all the knapsacks are full.

Clearly, any perfect placement is 1-fair and 1-utilized.

We now show that for some instances a perfect placement does not exist. Consider a
simple system consisting of two knapsacks, viith—= C, = 1 andV; = V, = 10, and
two sets of itemstU,| = 15 and|U,| = 5. The only legal placements are:

1. Each setis packed into a different knapsack. Ten iterg ahd five items ofJ, are
packed.

2. Both compartments are allocatedUg, or both compartments are allocated.ig
Clearly, these placements are O-fair.

Note, that by increasin@; to 2 we obtain an instance, for which a perfect placement
exists: now we can place itemsdi into both knapsacks and choo®g 1 = Q21 =5
andQq» = 10.

When a perfect placement does not exist, we would like to find the best possible one.
However, the two goals of utilization and fairness may conflict. Consider an instance
with two knapsacksVv; = 20, C; = 2; V, = 10, C, = 1; and three sets of items:
|U1] =14, |Uz| = 14, |Ug| = 2.

A placement which achieves the maximal utilization is presented in Figure 1(a): 28
items are packed, i.e., this placemer@%sutilized. However, it is O-fai—no element of
Us is packed. Figure 1(b) presents the best possible placement with respect to fairness.
Itis i—g—fair and %—utilized. Generally, ang-fair placement is at leastutilized.

2.3.2. Simple algorithms In this section we show that two simple greedy algorithms

are not suitable for the CMKP and the FPP. The first algorithm (presented in [22],

in the context of MOD systems) can be used for the FPP: the algorithm attempts to

guarantee “fairness” by allocating to each set of items a humber of compartments that

is proportional to its size. Specifically, using an apportionment procedure, the algorithm

first determines the number of compartmehtghat will be allocated tt);, 1 <i < M;

then it selects a subset hfknapsacks that will store items frod. Finally, the volumes

of the knapsacks are split among the sets, so as to achieve maximal fairness.
Torealize that this algorithm is not suitable for any of our knapsack problems, consider

an instance which consists of three sgtis| = 6, |U,| = |U3| = 3, and eight knapsacks,

withC; = 1for 1 < j < 8. The volume of the first knapsack\is = 5, and the volumes

of the remaining knapsacks ave = V3 = --- = Vg = 1; thus the packing potential

of the knapsacks i¥ = 12. The total number of compartments is eight, therefore,

by the “number of compartments” criterion, since half of the items belong, tdour

448 H. Shachnai and T. Tamir

% @ @ Allocation

ceees [«
soces [-] uwm .
88

00000 — =
00006 ‘2.
CEEER O
o088 v

@ @ @ @ @ s Utilization = 26 (b)
@) 10/14-fair
0000

Q0000

Fig. 1. Maximal utilization versus maximal fairness.

compartments should be allocated to this set, whjl@ndU3; should be placed into two
knapsacks each. Clearly, no fair placement exists under these conditions: the set whose
items are stored in the first knapsack is allocated extra volume, while the other two sets
are “discriminated.”

In the FPP our goal is to find placements in whigh, the packed quantity df;,
reflects its size. Note that in the above example, if the number of compartments allocated
to each set of items is not determined prior to the placement, tipenfactplacement
exists: for example, we can place the itemdJafinto K; and K5, items ofU, into
K3, K4, andKs; and items olJ3 into Kg, K7, andKg. Indeed, items ob; are placed
into only two knapsacks, but since one of these knapsacks is ldiged(l the items of
U; can be packed.

The second algorithm is based on thengest Remaining Time Fir§t RTF algo-
rithm [10]. LRTF provides aﬁ‘é‘ —1/n)-approximation for the makespan problem, where
n is the number of machines. When LRTF is adopted to the FPP, we place items from
the largest remaining set into the knapsack with the largest remaining volume.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 449

Note that this algorithm can yield poor, nonfair placements. Consider an instance
with two knapsacksV; = L +1,C; = L andV, = L,C, = 1, for someL > 1;
suppose that there ate+ 1 sets|U;| = L + 1, and in thel. remaining set$U;| = 1.

The optimal placement packs theitems of the small sets int; andL items ofU;
into K,. Thisis an(L /(L + 1))-fair and(2L /(2L + 1))-utilized placement. The LRTF
algorithm first choose®11 = L + 1 and one more item from another set is placed in
K>. Then no available compartments are lefkin The resulting placement is O-fair and
((L 4+ 2)/(2L + 1))-utilized.

Alternatively, consider a variant of the LRTF, which sorts the knapsacks by the ratio
V;/C;. Then items from the largest remaining set are placed into the knapsack in which
the (updated) ratiovj /C; is maximal. Note that this algorithm also yields inefficient
solutions for the FPP. Consider, e.g., two knapsacks With= 7,C; = 1 andV, =
12,C, = 2; and three sets witlJ;| = 10, |U,| = 7, and|U3| = 2. In the optimal
placementJ; is placed inK3, while U; andU; are placed irk,. The above algorithm
initially packs seven items dfl; into K;, and cannot complete the packing of all the
items. In particular, it is O-fair fot;. Using a slightly different rule, which places items
from the set with the largest remaining “unpacked fraction” into the knapsack with the
largest (updatedy; /C; ratio, may increase fairness, with a corresponding decrease in
utilization. Still, a more complicated algorithm, which combines sorting by the ratios
V;/C; with other ideas, can be useful in obtaining approximation algorithms for the
CMKP (we elaborate on that in Section 4).

2.4. Hardness of the Perfect Placement ProblerThe next question we consider is
whether we can detect efficiently if a perfect placement exists.

THEOREM2.1. Given N knapsacks withthe volumas V., Vy, and G compartments
in knapsack jand the sets of items;U. . ., Uy, itis NP-hard to determine if a perfect
placement exists for this instance

PROOF We show a reduction from thgartition problem which is known to be NP-
hard [6]. The partition problem consists of a finite #etand sizes(a) for eacha € A.
The problem is to determine if there exists a sub&ebf A such that) ;_, s(i) =
2ican S0).

Given an instance for partition, consider the placement problem consisting of two
sets|Uy| = |Uy|, and|A| knapsacks witlC; = 1 andV; = s(g;), V1 < j < |A|. For
this problem, every perfect placement induces a desired partition and vice ver€a.

Any perfect placement is both 1-fair and 1-utilized. Therefore, the above reduction is
suitable for the CMKP and the FPP. We conclude that each of these problems is NP-hard.
3. Finding a Perfect Placement

3.1. Simple Conditions for the Existence of a Perfect Placemelnt this section we
present simple conditions for the existence of a perfect placement. The first one considers

450 H. Shachnai and T. Tamir

inputs in which the “number of compartments” constraint can be ignored. Clearly, if,
for all the knapsacksC; > V,, then a perfect placement exists, and can be found in
polynomial time. (Observe, that@; > V; forall 1 < j < N, then we can greedily
place the sets into the knapsacks, until all the items are packed.)

The next simple condition considers tsigesof the different sets.

THEOREM3.1. Let0O < ¢ < 1 be the maximal numbesuch thatforall 1 <i < M,
Uil = (g- U /M. If, for all the knapsack<C; > (V; - M)/(e - V) + 1,then there exists
a perfect placement which uses at mosttMN — 1 different compartments

PrOOF Consider the simple greedy algorithm, which packs the sets of items by filling
the knapsacks one after the other. Specifically, the knagsaifilled until it contains

V, items, we then continue to pack int;;1, and so on. Sincg; |[Ui| = |U] =

V = Zj Vj, the algorithm terminates when the last knapsdc<k, is filled with the

last item ofUy. Thus, all the packing potential of the knapsacks is exploited and all
the items are packed. Intuitively, the conditions indicate that even the smallest sets
are large enough to fill any knapsack. Formalty;| > (¢ - |U|)/M implies that any
subset ofC; — 1 sets includes at leaéCj — 1)|U| - ¢/M = (Cj — D)V - ¢/M items.
Since,Cj > (V; - M)/(e - V) + 1, the subset’s total size is at leagt The additional
compartment is needed for a small number of items of the first set pladeg-or

this set, the size is not predicted, since some of its items were already placed in previous
knapsacks.

If all the items of one set are placed in one knapsack, we use only one compartment
for this set. If it is placed irk different knapsacks, we ugecompartments for this set.
Since the algorithm makes at mds$t— 1 splits, the total number of compartments used
by this algorithm isM + N — 1. O

3.2. Uniform Capacity Ratio In this section we present an alternative condition for
the existence of perfect placement. We require that the volume and the number of com-
partments in a knapsack be correlated—knapsacks with high volume should have many
compartments and vice versa.

DeErFINITION 3.1. For any 1< j < N, thecapacity ratioof K; is V;/C;. The set of
knapsackKsi, ..., Ky has auniform capacity ratiof there exists a constamt > 0,
such that; /C; =r,V1<j <N.

Intuitively, the capacity ratio of a knapsadk gives the average number of items
contained in each compartment when the volumk ois totally utilized. We show that,
for a set of knapsacks with uniform capacity ratioZ[ij:1 Ci>M+N-1,thena
perfect placement exists and can be found efficiently. This holdsrfpdistribution on
the sizes of the setd;, ..., Uy.

THEOREM3.2. If the capacity ratio is uniform an({ij:l Ci>M+N-1thena
perfect placement exists and can be found MO N + max(N Ig N, M Ig M)) steps

On Two Class-Constrained Versions of the Multiple Knapsack Problem 451

PROOE We present a polynomial time algorithm which yields a perfect placement. The
algorithm, denoted byl,, proceeds by placing exactly items of at mosC; different
sets into each of the knapsacks. We assume that the sets are given in a nondecreasing
order of their sizes, i.ejU,| < |Up| < --- < |Upm].

In each step we keep the remainders of the sets in a sorted list, denokedibg
list, R[1],..., RIm], 1 < m < M, is updated during the algorithm, that is, we remove
from R sets that were fully packed, and we move to their updated place sets that were
only partially packedR is thevolume request listhat is, each entry oR represents
the request for volume, which is the number of unpacked items, of somé# s€&he
knapsacks are given in a nondecreasing order of the number of compartments they have,
i.e.,,Ci<Cy<...<Cy.

The main idea in the algorithm is to keep the average size of the requdsialige
enough. Specifically, for each4 k < N, we will show that when the knapsa# is
filled, either the average request size is at leastr a trivial greedy algorithm can be
applied to pack the remaining requests in the remaining knapsacks.

The algorithm uses two knapsack-filling procedures: some of the knapsacks are filled
using thegreedy-fillingprocedure; the other knapsacks will be filled usingrtieving-
windowprocedure. We now describe the two procedures.

GREEDY-FILLING. The greedy-filling procedure fills a knapsack with items, starting
from the smallest sefj[1], and continuing until the knapsacksaturated that is, until

it contains exactlyV; items. The last set may split, that is, only part of its items will
be packed intoK;. A formal description of the greedy-filling procedure is given in
Figure 2.

MovING-WINDOW. The moving-window procedure fills a knapsaglk, with the first
sequence of; sets whose total size is at leadgt We search the lisR using a moving
window of sizeC;. Initially, the window covers the set of the small&tsets. In every
iteration we replace the smallest set in the window by the next $tumtil the number
of items that are contained in the window is large enough to satifratéthe subset of
theC; largest sets includes less thdnitems, then we cannot saturdde. However, we

Greedy-Filling(j)
i <1
repeat
Allocate one compartment d&f; for items of the setly corresponding tdr[i].
Place items oty in Kj: Qi ; = min{R][i], V;}
Vi <V = Qxj
i«<—i+1
until V; =0
Remove fromR the sets that were fully packed inkg.
Update the size of the new smallest set that was only partially packe&jnto
RemoveK; from the knapsack list.

Fig. 2. The greedy-filling procedure.

452 H. Shachnai and T. Tamir

Moving-Window(j)
i <1
a=R[1] +---+ R[Gj].
while (@ < V; and|R| > Cj +1)
a<a—R[i]+ R[C; +i]
i«—i+1
Fill Kj:
Allocate compartments df; to all the sets corresponding to the reque
R[i],...,Rli +C; —1].
Foreactk, i <k <i+C; -2
Place inK; R[K] elements of the corresponding set.
Quj=V,—(Rli]+---+Rli+C; —-2)].
Place inK; Qy ; elements of the séd, corresponding tdR[i + Cj — 1].
Update the lisR:
Remove fromR the setsR[i], ..., R[i + C; — 2].
If the setUy, corresponding tdR[i + C; — 1] is not completely packed,

Move R[i + C; — 1] to its appropriate new place in the sorted kst
RemoveK; from the knapsack list.

sts

Fig. 3. The moving-window procedure.

show below that this never happens. A formal description of the moving-window pro-
cedure is given in Figure 3. Note that the window advances until it cdvesets, such
thatV, > R[i — 1]+ ---+ R[i + C; — 2] andV; < R[i]+---+ R[i + C; — 1]

(see Figure 4). At this stage we can clearly placeKin all the items in the sets

RI[i]...., Rli + C; — 2], and saturateK; by adding some of the items in the set
Rli +C; —1].

THE ALGORITHM A4,,. The algorithm proceeds in iterations. In thi iteration we fill
K; by the following rules:

1. If there are less tha@; sets, or if the subset of thg; smallest sets contains more
thanV; items, then fillK; using the greedy procedure.

2. If the subset of th€; smallest sets contains at magtitems, then fillK; using the
moving-window procedure.

V; <
R
R [i-1] ¢] 40 -2 i+C -1
N

Vi >

Fig. 4. The listR.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 453

We now show that the algorithm terminates with a perfect placement. We distinguish
between two stages in the executionf:

1. Inthe first stage, each knapséatkthat is filled contain€; — 1 or C; sets of items.
This stage includes executions of the moving-window procedure and some executions
of the greedy procedure.

2. The second stage starts when, for the first time, the number of sets pla¢gddn
some 1< j < N, is smaller tharC;. This can clearly happen only when the greedy
procedure is used.

Note that for some inputs, one of the stages may not occur. For each of the two stages,
we show that any knapsadk; that is filled during this stage will contain exactly
items of at mosC; different sets.

We use the following notation:

e CX is the total number of compartments that are available &ftenapsacks are
filled.

MK is the number of sets that are not fully packed aftknapsacks are filled.

NK is the number of empty knapsacks afteknapsacks are filled\k = N — k).

r is the capacity ratio, that i¥j, V; /C; =r.

We now consider the first stage.

LEmMA 3.3. Each of the knapsacks that are filled during the first stagedgfwill
contain exactly Vitems that belong to at most; @ifferent sets

PrROOF We show the following invariant for the ratio between the number of remaining
sets, knapsacks, and compartments, during the first stag<ed the first knapsack
filled in the second stagé:can be any number between 1 axd

CLAIM 3.4. Forevery0 <k <b, Ck > M* + Nk — 1.

PrROOF The proof is by induction ok, the number of knapsacks that were already
filled.

Base k = 0. It is given thathN:l C; = M + N — 1. Thus, using our notation,
CO> MO+ NO—1.

Induction Step Consider théth iteration, in whichKy is filled.

1. After this iterationK is no longer available, therefo@¥ = C*~1 — C,.

2. By the definition of the first stage, we fully pack in this iteration— 1 or Cy sets.
ThereforeMk = M*1—(C,—1) or MK = Mk-1_C,.HenceMk < M*1—(C—1),
thatis,M*1> MK+ C, -1

3. Clearly,NX = Nk-1 -1,

454 H. Shachnai and T. Tamir

By the induction hypothesi€*—! > M1 4 Nk-1 _ 1, therefore

ck = ct-c
> MK NKT 1
> M4+ C—1+N+1-1-C

= MK+ NK—1. 0
CLaim 3.5. Foreveryl < k < b, the average set size when we fil| is at leastr.

PrROOF Using Claim 3.4, aftek — 1 knapsacks are filled, the average set size is

number of remaining items> remaining packing potential
number of remaining sets™ number of remaining sets

r.ck-1 T S(MK1 4 Nk 1) .
Mk-1 — Mk-1 =T.

Recall that at the beginning [, |U;| = Zszl\/,-. Therefore, at any stage, the number

of nonpacked items is at least the remaining packing potential. N¥o! > 1 since at
leastKy is still empty aftetkk — 1 knapsacks are filled. O

We conclude that, for evely < b, the larges€y sets afteck — 1) iterations contain at
leastr - Cy items, which is equal t¥. This means that if the moving-window procedure
is applied, the window never reaches the eng @he largest sets) without saturatikg.
Knapsacks that are filled by the greedy procedure are clearly saturated, since the greedy
procedure is applied when even the smaligssets are large enough to saturie O

We now analyze the second stage of the algorithm. Note that we reach the second
stage when the smalleSt, — 1 sets together contain more thepitems.

LEmMMA 3.6. Each of the knapsacks that are filled during the second stagk, fill
contain exactly Yitems that belong to at most, @ifferent sets

PROOF Let Ry be the set list at the end of the first stage. We first show that, for every
j = b, K; can be saturated by any subseCpf— 1 sets fromRy.

CLAaM 3.7. At the beginning of the second stafm every j> b, any subset of C- 1
sets contains more than Wtems

PrOOF By definition, Ky, is the first knapsack filled in the second stage. Therefore less
thanC, — 1 sets are packed intd,. This can happen only if the subset of g — 1
smallest sets contains more thein = r - Cy, items. Therefore the average size of the
smallestCy, — 1 sets is larger tha@ - C,)/(Cy, — 1). Consider a knapsadk;, j > b.

The knapsacks are sorted such @Bat- Cy, and the sets are sorted in a nondecreasing

On Two Class-Constrained Versions of the Multiple Knapsack Problem 455

order of their sizes, therefore the average size of the sméljestl sets is larger than
(r - Cp)/(Cp — 1). In addition, sinceC; > C,

r-Cp I’~Cj
> .
CG-17¢C -1

This means that the total number of items in the smaflgst 1 sets is larger than

r-C;
(Ci_l)'cj _’1=V-C1=Vi'

Clearly, if the smalles€C; — 1 sets inR, contain more thaW; items, then anyC; — 1
sets inR, contain more thaW, items. O

We now use Claim 3.7 to show that any knapsack filled aftgicontains at most
C; — 1 different sets, and is saturated by additional items packed from one Bgt of

By the greedy-filling proceduresy, is filled until \Vj, items are packed. The last set
packed intoKy, may include some more unpacked items. The fraction left from the split
set is now the smallest set R, (since even before the split it was part of the smallest
available set). In other words, the fractionRgl]. We now turn to fill K,;. Consider
the smalles€y, ; sets. These sets are composeR[df] and additionalCy, 1 — 1 sets. By
Claim 3.7 the additionaly, . ; — 1 sets include more thah,, ; items, therefore (no matter
what the size of the fractioR[1]) the smalles€Cy, ; sets include together more th¥g, ;
items, and the greedy-filling procedure is uség:; items of at mosCy. ; sets are placed
in Ky, 1. Again, the last set may be only partially packed. The same argument holds until
we reach a knapsadk, such that less tha@, sets are left. Sincg [; |U;| = Zszl \%
at the beginning, and since all the knapsacks befpneere saturated, the total number
of nonpacked items equals the total left volume. Hence, we caXfillsing the greedy
procedure. This argument holds for all the remaining knapsacks,Kiqtik saturated
and no sets are left. O

Combining Lemmas 3.3 and 3.6 we conclude that each of the knapBackd <
j < N, is filled by exactlyV; items of at mosC; different sets. Thus, the algorithm
terminates with a perfect placement.

The algorithm is polynomial: each of the filling procedures taRéM) steps. Adding
the preprocessing complexity of sorting the lists, the total complexity of the algorithm
iISO(N-M + NlogN + MlogM). O

3.3. Approximating a Perfect PlacementWhen the knapsacks do not have uniform
capacity ratio, the degree of nonuniformity is measured by the mininsakch that, for
somer > 0,

V4
(1) Vi, r<-2L<a-r.

(Whena = 1 we have uniform capacity ratio, in any other case 1.) In this section
we show how a perfect placement can be approximated. The approximation ratio is
proportional taw.

456 H. Shachnai and T. Tamir

THEOREM3.8. Leta > 1 be the minimal number satisfyirf@). IfC > M + N — 1,
then a(1/«)-utilized placement can be found in polynomial time

ProOOF Consider the following instance, of the placement problem: for each knap-
sackKj, 1 < j < N, the volume ofKj in I"is V/ = [r - Cj]. Let V' = ZJ-N:lVJ-’.
For each set);, the set size ot; in |’, denoted byU/|, is determined by solving the
following MAX-MIN problem:

U’ M
(2 Maximize min||U'_|, such that Z|Ui’| =V, |U/| integer.

! i=1

First, note that any legal placementidfinduces a legal placement for the original
instance. This follows from the next claim:

CLAM 3.9. Foreachl <j <N,V/ <V,

ProOF For each 1< j < N, V, is an integer. Therefore, for the knapsack achieving
the minimal capacity ratioy; =r - C; = [r - Cj] = V. For each knapsacK; such
thatV;/C; > r, there exists some> O suchthaV; = (r +¢)-C; =[(r +¢)-Cj] >
[r-Cjl= Vj/. O

Next, we show that a perfect placement exists, and can be found efficiently. for
Note that the knapsacks indo not necessarily have uniform capacity ratio, however, the
nonuniformity is small enough to show that the algoritidmpresented in Section 3.2 is
suitable forl’. We follow the proof of Theorem 3.2 to show thd, fills each knapsack
with exactly\/j’ items of at mosC; sets. Itis easy to verify that Claims 3.4 and 3.5 hold
for 1. Let Ky be a knapsack filled during the first stagef. By Claim 3.5, the average
set size when we filKy is at least . Indeed V| may be larger than- C;, however, since
the number of items included in the window is an integer and s¥ice [r - C;] is the
smallest integer not smaller thanC;, we conclude that whenever the moving-window
procedure is applied, the window does not reach the erd without saturatingky.
Similarly, for the second stage &f,, Claim 3.7 holds fol " and we conclude that all the
knapsacks are saturated. By Claim 3.9, a legal placemdntisma legal placement for
the original instance. Sind¢’ > (1/a)V, a perfect placement iif induces a placement
that is(1/«)-utilized for the original instance. O

REMARK 3.1. For solving the CMKP, any choice of set sizes that satisfiel)/| <

[Ui | andZi'\":1 |U/| = V'’ can be applied here. The solution of (2) also solves efficiently
the FPP: for each sét, |U/| > (1/a)|Ui| — 1.

In order to achieve a good approximation we would like to haes close as possible
to 1. In Section 5 we show that if compartments can be moved among the knapsacks,
thena = Cy/(Cx — 1), whereKy is the knapsack having the maximal capacity ratio.
This model is relevant to MOD storage subsystems, in which storage resources can be
moved among the disks.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 457

4. Approximation Algorithm for the CMKP. In this section we present a dual ap-
proximation algorithm for the CMKP. Specifically, we show that it is sufficient to add one
compartment to each knapsack, in order to eliminate the gap between the performance
of an optimal, probably exponential time algorithm, and a polynomial time algorithm.
Recall that adual approximation algorithnfinds an infeasible solution that is super-
optimal. Its performance is measured by the degree of infeasibility allowed. The pro-
posed algorithm is allowed to place items@f+ 1 (instead ofC;) different sets into
Ki,1<j=<N.

THEOREM4.1. Given an instance | of the CMKBy adding a single compartment to
each knapsaghkve can find in polynomial time a placemgamhose utilization is at least
the maximal possible utilization for. |

PrOOF Let| be aninstance of the CMKP. Denote by the instance generated frdm
by adding one compartment to each knapsack. We present a polynomial time algorithm
which finds a legal placement int. The algorithm, denoted hyt,, proceeds by filling
K; with at mostV; items of at mosC; + 1 different setsyl < j < N. The total number
of items packed from * by A4, is at least the total number of items packed frbry
an optimal algorithm.

As in the uniform-ratio case (Section 3.2), we assume that the sets of items are given
in nondecreasing order of their sizes, i.e., the sets sdtikfy< |Uy| < --- < |Upm|.
We keep the remaining sets in a sorted list, denote®byhich is updated during the
algorithm. This algorithm also uses the two knapsack-filling procedures: greedy-filling
and moving-window introduced in Section 3.2. However, the moving-window procedure
is slightly changed: now the window coveZg+ 1 sets (instead @;). Also, if the subset
of theC; + 1 largest sets includes less thénitems, then we cannot saturafg, and
we do the best we can: we fi; with theseC; + 1 sets (in the uniform-ratio case this
never happens).

The knapsacks are given in a nonincreasing order by¢hpacity ratigi.e.,V;/Cy >
V,/Cy > -+ > Vy/Cn. The sorted knapsacks are kept in a list denotetd’byAnother
list of knapsacks, denoted by, may be created during the execution of the algorithm.

THE ALGORITHM A;. Generally, the algorithm uses the moving-window procedure to
fill the knapsacks according to their ordeilify that is, in thej th iteration we fillK; and
remove it fromL’.

Note that the moving-window procedure placeinitems of exactlyC; + 1 sets.
Sometimes it is not possible to pack from that amount of sets (see below): in such
cases we mov&; to L” or look for another knapsack for which the moving-window
procedure can be applied. Knapsacks that are movedlframL” are filled using the
greedy procedure, aftér is empty.

The following rules are used whe#y examines; € L".

o If Kj =9, i.e.,L"is empty, fill sequentially all the knapsackslifi, using the greedy-
filling procedure.
o If there are less tha@; + 1 sets inR, moveK; to the end ofL".

458 H. Shachnai and T. Tamir

e If the subset of th€; smallest sets ifik contains at mos¥; items, fill K; with items
from C; + 1 different sets, using the moving-window procedure.

e If the subset of theC; smallest sets irR contains more thaiv; items, look for
the first knapsackkx € L’ for which the subset of the smalleSk sets includes
at mostVy items. If such a knapsack exists, ik using the moving-window pro-
cedure;K; will be examined again in the next iteration. If there is no such knap-
sack inL’, fill sequentially all the knapsacks i’ andL” using the greedy-filling
procedure.

Optimality. Denote byG = {Kg,, Kg,, ..., Kg,} the set of knapsacks that are not
saturated byA,, and denote by, wo, ..., w, the resulting waste of volume in each
non-saturated knapsack, i.e., the volumdgfis not fully exploited and onlyy — w;
items are placed ifKy . We show that there is no legal placementl ah which the
total utilization exceedijj'\‘:1 V, — (w1 + wz+ - - - +wy). To prove this, we distinguish
between four stages of; :

1. Knapsacks frorh’ are filled by their orderih.’, using the moving-window procedure;
some of the knapsacks may be moved to

2. Knapsacks from’ are filled using the moving-window procedure, but not necessarily
according to their order ih’; some of the knapsacks may be moved. to

3. Knapsacks fronk.” are filled, using the greedy-filling procedure (when no knapsack
from L’ can be filled by the moving-window procedure).

4. Knapsacks fron.” are filled using the greedy-filling procedure (whiehis empty).

For the first two stages we show that the total waste of voluméfas at most the
total waste of volume in an optimal placement ofor the last two stages we show that
there is no waste, and all the knapsacks filled during these stages are saturated.

For simplicity, assume that whenever the moving-window procedure is executed, the
list Ris scanned from left to right, that is, the smallest §§1], is the leftmost set and
the largest set is the rightmosti During execution of the moving-window procedure,
the window moves from left to right. There are two possible scenarios:

1. Saturating: in which K; is saturated, meaning that there exists soywéhich is the
index in R of the smallest set in the window, such that
(@ >1andV; > Rli —1]+---+ Rli+C —1)or (i = 1andV; >

RI1] + -+ RIG|]);

(i) V; < RI[i]+---+ R[i +C;jl.
At this stage, we can clearly place Ky the C; setsR]i]. ..., R[i + C; — 1], and
saturateK; by adding some of the items 8fi +C;]. The set<R{i], ..., R[i +C; —1]
are removed fronR, and the fraction left from the s&]i +C;] is moved to its updated
place in the lisR. Note that since some of the items of this set are packed, the position
of that fraction inR is left to its original position.

2. Nonsaturating: in which the window reaches the rightmost positionRnbut the
subset of theC; + 1 largest sets covered by the window contains less Yhatems.
All items in the setsR[i], ..., R[i 4+ C;] are packed, and these sets are removed
from R.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 459

In both cases we can consider the removed sequence of setscdsia R. In a
saturating executionk; creates a hole o€; sets inR, and one additional set (the
fraction left from the last set) is moved left of the hole. In a nonsaturating execitjon,
creates a hole f; 4 1 setsinR.

We examine the sequence of holes creatd® during the first stage of the algorithm.
We first show that every nonsaturated knapsack creates, at the right éycadiole
which is the union of all the holes iR.

CLAIM 4.2, Every Ky € G filled during the first stage ofl; unites the holes existing
in R into a single hole positioned at the right end af R

ProoF The proof is by induction on, the index ofKg, in G.

Base Kg, isthe first nonsaturated knapsack in the executio0fThe knapsacks are
sorted in nonincreasing order by their capacity ratios. Therefore, for &very,, the
average number of items from each set packedkntis larger than the average number

of items from each set packed irg, . In particular, the largest set in the hole created by
Ky is larger than the smallest set in the hole createl yThus, the hole created i,

starts left of the hole created I. In addition, since&K g, is not saturated, the hole it cre-
ates includes the largeSg, + 1 available sets, and in particular the rightmost one. There-
fore it unites all the holes that were created by previously filled knapsacks into one hole.

Induction Step Let Ky be thejth nonsaturated knapsack filled during the first stage

of the algorithmA,. By the induction hypothesig _, unites all the holes created by

K1, Kz, ..., Kg_,. In other wordsKy , dividesR into two parts: the hole at the right

and the remaining sets at the left. The knapsacks are sorted in nonincreasing order by
their capacity ratios. Therefore, as in the base case, for gyery< k < g; the average
number of items in each set placedKn is larger than the average number of items

in each set packed intiq, thus the hole created Wy, starts left of the hole created

by Kk. Since it also includes the largest available set, it unites the holes created by
Kg_.+1, - -, Kg -1 and the hole at the right created Ky, ..., Kq_, into one hole. O

The way the holes are created implies thttis optimal for the knapsacks filled
during the first stage:

LEMMA 4.3. Let K be the last knapsack filled by, during the first stagethen the
total number of items placed iniK.. ., K; is at least the number of items placed into
K1, ..., K; under an optimal algorithm for the instance |

PrROOF Let Ky be the last nonsaturated knapsack filled during the first stage. The
knapsacks that are filled aft&, are saturated. Thus, it is sufficient to prove that the
lemma holds foiKy, . .., Ky . By Claim 4.2, the hole created b, unites all the holes
created bK, ..., Kq . Foreveryk < g; the hole created by consists oy or Cy +1

sets, therefore the combined hole consists of at least the l@gesC, + - - - + Cq, sets.

The total size of the hole is the total size of undivided sets plac&d n. ., Ky, which

is at mostVy + Vo + -+ - + Vg — (w1 + w2 + - - - + wj). We conclude that the sum of

460 H. Shachnai and T. Tamir

the largesC; + Co + - - - + Cq setsisatmosty + Vo + - - + Vg — (wp +wa + -+ +
wj), meaning that no algorithm, and in particular an optimal one, can place more than
Vi+ Vot -+ Vg — (wr+ w2+ - +wj) items inKy, ..., Kg.

Note that fractions of sets that were createddqy. . ., Kq 1 should not bother us:
if a fraction of a set is packed later, it means that the original size of that set is contained
in the united hole. If the fraction is not packed, then the total number of items packed
by A; is in fact larger thatvy + Vo + - - - + Vg — (w1 + w2 + - - - + wj), meaning that
Ki, ..., Kg cannot be filled better even by more than the lar@ast C, + - -- + Cy
sets. O

Recall that during the first stage knapsacks can be moved koo L”. These
knapsacks will be filled during the fourth stage, and the first stage continues. The first
stage continues until we find a knapsagck for which the subset of th€x smallest sets
contains more thaN(items.

We now prove the optimality of the second stage. The proof is similar to the proof
for the first stage. We show that the holes created during the second stage are united
whenever a knapsack is not saturated; then we conclude that the placement is optimal.

We first prove that the holes created during the second stage always “spread to the
left” in R.

CLAIM 4.4. Let Ky, and Ky, be two knapsacks that are filled in successive iterations
during the second stagien the hole created byKstarts left of the hole created byK

PrROOF We consider separately two cases:

1. ks < kz, meaning that the capacity ratio B, is higher than the capacity ratio of
Kk, In this case, as in the first stage, it is clear that the hole creat&g tstarts left
of the hole created biK, .

2. ki > ky. By the algorithm, when we examinéd, the subset of th€,, smallest sets
contained more thav, items, and the filling oKy, was delayed. Since we finally fill
K, during the second stage, new small sets are used. These small sets are fractions
created by knapsacks saturated aKer was rejected. Since we examikg, again
after each iteration, and it is finally filled right aft&,, it means that a fraction
created byKy, is used. Recall that, for> 1, any remainder of a set which returns to
R at the end of iteration, will be positioned left of the hole created Riduring this
iteration. Thus the hole created Ky, starts left of the hole created b, . O

We now conclude that nonsaturated knapsacks unite the hoRs in

CLAM 4.5. Every Ky € G filled during the second stage 4f unites the holes in R
into a single holethis hole forms the right end of.R

PrROOF The proof is by induction or, the index ofKy in G. We follow the steps

of the proof of Claim 4.2. Indeed, we cannot assume that the knapsacks are filled in
a nonincreasing order of their capacity ratio. However, by Claim 4.&jfis filled

after Ki, then the hole it creates starts left of the hole create gyand since it also

On Two Class-Constrained Versions of the Multiple Knapsack Problem 461

includes the rightmost available set, it unites all the holes creatadby. ., Kg , and
the induction in the proof of Claim 4.2 can be applied.

As in the proof of optimality for the first stage, we conclude from the way the holes
are created, that the placement is optimal.

COROLLARY 4.6. Let K be the last knapsack filled by during the second stagihen
the total number of items packed intq K. ., K; is at least the number of items packed
into Ky, ..., Kj under an optimal algorithm for the original instance |

For the first and second stages we have shown that the total volume wasted in knap-
sacks filled during these stages does not exceed the waste of volume in these knapsacks
under an optimal placement fér We complete the proof of optimality by showing
that all the knapsacks which are filled during the third and the fourth stagds afe
saturated.

LEMMA 4.7. Each of the knapsacks that are filled during the third stagedpfwill
contain exactly Vitems which belong to at most;G+ 1 different sets

PROOFE The third stage consists of successive executions of the greedy-filling proce-
dure. A; reaches the third stage if, for every knaps#gke L', the subset of th€;
smallest sets contains more thénitems. Clearly, if theC; smallest sets are too large,
then anyC; sets are too large fd¢;. We show that the greedy algorithm never uses more
thanC; + 1 sets to fillK:

Let K. be the first knapsack filled in the third stage. Clearly, at Mistets are used.
The last set from which items are packed itg may split. The fraction that is left is
now the smallest set (since even before the split it was part of the smallest available
set). In other words, the fraction R[1]. We now turn to fillK¢ 1. Consider the subset
of the C.,1 + 1 smallest sets. It consists 8f1] and additionalC., 1 sets. The subset
of the additionalC;,; sets includes more thawt,, items, therefore, no matter what
the size of the fractiorR[1], the smallesiC.,; + 1 sets include together more than
Vqy1 items, and we can pack intd.,; exactlyV,,; items from at mos€;,1 + 1 sets.
Again, the last set may split. The same argument holds for all the knapsacks that remain
in L. That is, every knapsadK; will contain exactlyV; items that belong to at most
Cj + 1 sets. O

LEMMA 4.8. Each of the knapsacks filled during the fourth stagedpfwill contain
exactly \ items that belong to at most G- 1 different sets

ProoF In the fourth stage we fill the knapsacks lirf. Recall that a knapsacK;

is moved toL” if there are less thaf; + 1 available sets at the time it is exam-

ined by A;. Since we do not add sets along the execution of the algorithm, clearly
there are less tha@; + 1 available sets when we fiK; in the fourth stage, using

the greedy procedure. In order to realize that the knapsacks are saturated, note that
at the beginningzi'\":l|ui| = ZJ-N:le, that is, the total number of items is equal

462 H. Shachnai and T. Tamir

to the total available volume. Since no knapsack is filled by more Maitems,
the sum of the sizes of the remaining sets always exceeds the total remaining
volume. |

By combining Corollary 4.6 with Lemmas 4.7 and 4.8 we conclude that the total
amount of wasted volume for the instaricedoes not exceed the total amount of wasted
volume under an optimal placementlofin particular, if there exists a perfect placement
of I, then our algorithm finds a perfect placement &f

The algorithm is polynomial: each filling procedure has complegiyM). In the
worst case (during the second stage) it taR€M - N) steps to choose the next knapsack
to be filled. Therefore the total complexity @ is O(M? - N?). O

The dual approximation scheme yields the following approximation algorithm for the
CMKP:

1. Find an optimal solution, assumi@ = Cj + 1,V1 < j < N. Letl’, Q" be the
resulting indicator and quantity matrices.

2. Letl =1,Q=0Q.

3. Foreachknapsadk;, j = 1,..., N:if }; Q;j = Cj+1(i.e.,Cj+1 compartments
are used), letys be the set from which the quantity placedkn is minimal, that is,
Qsj = MiNg<j <m Qij >0, thean_]‘ =0.

In other words, we turn the infeasible placement into a feasible one, by using only the
C; fullest compartments in each knapsack. Note that this way we omit from the subset
of packed items at mo&t /(C; + 1) items.

COROLLARY 4.9. Given an instance | of the CMKRt Uy be the utilization obtained
by an optimal placement of the iteptisen we can find in OM? - N?) steps a placement
which achieves utilization Us Ugp — & for e = 31U, (V /(Cj + 1)).

In particular, if the number of compartments in each knapsack is atdestsome
b> 1, thatis,C; > bforall1 < j < N, then the above approximation algorithm
achieves utilizatior{l — a)Ugpt for o« = 1/(b + 1).

5. Application to MOD Systems. In this section we show how our results for the
CMKP and the FPP apply to storage management in multimedia systems. Consider a
system havingN disks: the storage capacity of digks C;, and its load capacity ik;,

1 < j < N. The database associated with the MOD system conbdin&leo program

files {fy, ..., fu}, with the corresponding populariti¢®, ..., pu}. The popularity
parameter off; reflects the portion of the total load generated due to access requests
to fi. Knowing these popularities and the total load capacity of the system, we can
determine the average load generated by each of the files.

As mentioned in Section 1.2, the problem of assigning files to disks can be formulated
as an instance of our packing problems, with the disks represented by knapsacks, and
the files by sets of items. The popularities of the files determine the set sizes, such that
MU = Zj’\‘:1 L;. When our objective is to maximize utilization, we need to solve

On Two Class-Constrained Versions of the Multiple Knapsack Problem 463

the CMKP; when the goal is to maximize fairness, we need to solve the FPP. A solution
for any of our two variants of the knapsack problems will induce alegal static assignment.
In terms of the matricek and Q:

e |i; = 1iff a copy of the filei is stored on the disk.
e Qije{0,1,...,L;}isthe total load that filé can create on the disk

Thus, our results in Section 3yield efficient algorithms for findipgdectassignment
of files to the disks, in which the load capacity of the system is totally utilized, and the
requests to each of the files can be satisfied.

5.1. Approximating Uniform Capacity Ratio We now consider a slightly different
model, in which the storage subsystem consistd afisk arrays Dy, ..., Dy: Dj has

a fixed load capacityl.j, and, in addition, there is a limiC, on thetotal number of
storage units that can be allocated to the disk arrays. We would like to find an allocation
of the storage units to the disk arrays. That is, for any L < N we need to determine

C;, the storage capacity @, such thanN:1 C; = C. This model reflects the situation

in which several disk arrays are used for storing the files. The storage capacity of a
disk array is the sum of the storage capacities of the individual disks. Thus, the storage
capacity of a disk array (with a fixed load capacity) can vary, depending on the storage
capacities of the disks composing the array. We show below that, in such a system, the
overall storage capacity can be distributed among the disk arrays, so as to achieve a
nearly uniform capacity ratio. This enables us to find an almost perfect assignment of
the files to the disks.

LetL = Zszl L; be the total load capacity of the system. Indeed, it is easy to
determine the storage capacity of each disk array so as to obtain a “uniform capacity
ratio”: in particular, we can choosg = C - L; /L. This yields a uniform capacity ratio
withr = L/C. However, since we require that each disk array holds an integral number
of files, we need to round thg;’s in a way that minimizes the violation of uniformity.
Formally, we need to solve the following integer programming problem:

max<j<n(Lj/Cj)
mini<j<n(Lj/Cj)

N
suchthat » C;=C, Cjinteger.
i-1

(3) Minimize « =

This problem can be optimally solved@(N log N + N log C) steps, by using, e.g., the
algorithm “SOLVE-FAIR” (see Chapter 6 of [14]). The solution provides an allocation
of the storage units to the disks such that, for some0,

(4) Vi, r<-—<uw-t,

ando is minimized. By Theorem 3.8 we have:

CoROLLARY 5.1. If storage units can be distributed among the djsk&l/«)-utilized
assignment can be found in(@ - M + N log N + N log C) stepswherex is the value
of the optimal solution of3).

464 H. Shachnai and T. Tamir

To observe that is small (that is, close to 1), note that, in any optimal solution of (3),
the capacity ratio oD; satisfies

L<5< E Vi<j<N.
cC|™¢ ™ |C -0 T

This immediately yields a bound of 2 @nh More accuratelyy < [L/C7/|L/C].

5.2. Achieving Almost Optimal Utilization In Section 4 we presented a dual approxi-
mation algorithm for the CMKP. In terms of MOD systems, it means that we can achieve
the optimal utilization of a system by adding one storage unit to each disk. Indeed, for
a given MOD system, such changes in configuration may be impossible, however, we
can use the approximation algorithm derived from algorithimand the result in Corol-

lary 4.9. This implies that if each of the disks can store at Ibdig¢s, for someb > 1,
thatis,C; > bforall 1 < j < N, then the above approximation algorithm achieves
utilization (1 — a)Ugpy, With o = 1/(b 4 1).

6. Discussion. We have studied two variants of the knapsack problem, namely, the
CMKP and the FPP. We have shown that both problems are NP-hard; for some instances
an optimal polynomial time algorithm exists. We also proposed an approximation algo-
rithm for the CMKP. Finally, we have shown how our results for the CMKP and the FPP
can be used for efficient resource allocation in multimedia storage subsystems.

Our paper leaves open several interesting avenues for future work:

e For the special case wheké = 1, both the CMKP and the FPP are easy to solve. In
contrast, both problems are hard to solve, already for the case Where, if each
knapsack has a single compartment. It is interesting to investigate further how the
ratio betweerM, the number of items classes, and the number of compartments in the
knapsacks enables us to find an optimal solution for each of the problems efficiently.
Along these lines, it may be possible to formulate weaker versions of the conditions
given in Section 3.1.

e We presented &l — w)-approximation algorithm for the CMKP, whetedepends
on the input, namely, the capacity ratio of the knapsacks. Can the CMKP (FPP) be
approximated to within a factor & ¢, for anye > 0, using a (fully) polynomial
approximation scheme?

e We considered the case whes@) = w(u) for anyu € U. A natural extension of
both the CMKP and the FPP would allow items of different types to have different
sizes and different weights.

e We have shown the application of the CMKP and the FPP to the problem of assigning
files to disks in multimedia storage subsystems. An underlying assumption in the
assignment problem was that the hardware configuration is fixed, and our goal is to
make the best use of this configuration, in terms of utilization and fairness. In the dual
problem ofsystem configuratioour objective is to achieve a certain quality of service,
and we are allowed to change the hardware configuration. Specifically, given a set of
files, we would like to determine the number of disks that need to be used for storing
and broadcasting these files; the disks may be of several different types, where each

On Two Class-Constrained Versions of the Multiple Knapsack Problem 465

type is characterized by specific storage and load capacity, and a fixed cost. This gives
rise to the following class-constrained version of the fractional bin-packing problem:
suppose we have a ddtof [U| = M items; each itenu € U has a sizes(u) € Z™.

We can pack the items id (allowing items to split) in a collection of bins that may

be of several different types. A bin of tygehas volumey;; it can holdC; > 1 items

and its cost id5j. Our objective is to pack all the items in a set of bins at minimal cost.

e The CMKP and the FPP can be applied for siaticassignment of files to the disks.
Static assignment is only the first component of an MOD resource allocation scheme,
in which the initial state of the system is defined. It is then followed lay@amic
phasein which customer requests arriving to the system need to be serviced. During
the dynamic phase, the popularities of the various files can change. Such changes are
natural, e.g., when dealing with video data available on the world-wide-web sites.
In response, the MOD system should support operations such as file deletions or
replications, as well as reallocations of load. This introduces an on-line version of
each of our packing problems, where the sizes of the sets that we would like to
pack can change dynamically, and we need to update the placement accordingly. The
transition from one placement to another should be done with the minimum number
of reallocations of items to compartments.

Acknowledgments. We would like to thank the reviewers, for providing many helpful
comments and suggestions.

Appendix. In this appendix we show the validity of our results for general instances
of the CMKP and the FPP, in which the total number of items is not necessarily equal
to the sum of volumes of the knapsacks, namgly, = V. Note that the definitions

of utilization and fairness, as given in Sections 2.1 and 2.2, do not depend on the ratio
betweenU | andV. This ratio, however, influences the definitionpafrfect placement
When|U| # V, the maximal possible utilization is miitJ |, V). When the objective isto
maximize fairness, an optimal placement is @irV /|U |)-fair.* For a general instance,

a placement igerfectif it is optimal with respect to utilization as well as fairness.
Formally,

DEFINITION A.1. A perfect placemenis a placement that is mih, VV/|U|)-fair, in
which one of the following is satisfied: (i) all the items are packed, or (ii) all the knapsacks
are full.

We now argue, that all the results presented in Section 3 hold for general inputs:

e If V > |U|, then add onelummy sebf sizeV — |U| to obtain an instance in which
V = |U|. After placing the items in the knapsacks, omit the “dummy” items.

4 Standard rounding techniques [14] can be applied here to determine the exact number of items to be packed
from each type.

466 H. Shachnai and T. Tamir

e If V < |U|, a perfect placement i&//|U|)-fair. For each set, determinelU;*| =
(V/|U]|Ui| (rounded to integers, such thal; |U*| = V). The resulting instandg*
satisfiegU*| = V.

All the algorithms presented in Section 3 can be applied to the above adjusted instances,
to produce perfect placements for the original instances. Special tuning is needed in
the proof of Theorem 3.1: whevl > |U|, the added dummy set may not satisfy the
condition|Uj| > (e - [U])/M. To solve this potential problem, the algorithm has to
consider the dummy set first: note that one (arbitrarily small) fraction of a set is allowed
in each knapsack, hence, the dummy set can serve as the fraction placed in the first
knapsack.

Our results in Section 4 also hold for general inputs, namely, the statements of The-
orem 4.1 and Corollary 4.9 remain valid. In fact, the algoritdm used in the proof of
Theorem 4.1, can be applied for any instance of the CMKP. It is sufficient to show the
validity of Corollary 4.6 and Lemmas 4.3, 4.7, and 4.8. First note that only the proof of
Lemma 4.8 assumes that| = V. We now show how the proof of this lemma can be
modified to argue that all the knapsacks filled during the fourth stage are “saturated,”
also whenU | # V. We consider separately two cases:

() If lU| > V,thenasinthe case whetg| = V, the sum of the sizes of the remaining
sets always exceeds the total remaining volume.

(ii) If V > |U]|, then all the knapsacks filled during the fourth stage are saturatedruntil
is empty, or until all the knapsacks are filled Rfis empty (no requests are left), it
means that we packed all the elementblofvhich is clearly optimal. If we run out
of knapsacks, then, as in the case whére> V, it means that all the knapsacks
filled in this stage are saturated. Thus, the only waste of volume is the inevitable
w = w1 + wz + - - - + wy, (from the two first stages).

In both cases the utilization achieved Hy is at least the maximal possible utilization
for the original instancd,.

References

[1] C. Aggarwal, J. Wolf, and P. S. Yu, On optimal piggyback merging policies for video-on-demand
systems, irProceedings of Sigmetric$996, pp. 200-209.

[2] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju, Staggered striping in multimedia information
systems, irProceedings of SIGMO[1994, pp. 79-90.

[3] A.K.Chandra, D.S. Hirschberg and C.K. Wong, Approximate algorithms for some generalized knapsack
problems,Theoret Comput Sci, 3 (1976), 293-304.

[4] P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson, RAID: high performance, reliable secondary
storage ACM ComputSurveys26(2) (1994), 145-185.

[5] T. Corman, C. Leiserson, and R. Rivelstiroduction to AlgorithmsThe MIT Press, Cambridge, MA,
1990.

[6] M.R.GareyandD.S. Johnsddpmputers and IntractabilityA Guide to the Theory of NP-Completeness
Freeman, San Francisco, CA, 1979.

[7] G.V.Gens and E.V. Levner, Computational complexity of approximation algorithms for combinatorial
problems, irProceedings of théth International Symposium on Mathematical Foundations of Computer
SciencelLecture Notes in Computer Science, Vol. 74, Springer-Verlag, Berlin, 1979, pp. 292-300.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 467

(8]
(9]

(20]
[11]

[12]
(23]

[14]
[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

L. Golubchik, J.C.S Lui, and R.R. Muntz, Adaptive piggybacking: a novel technique for data sharing
in video-on-demand storage servek€M Multimedia Systems, 3(3) (1996), 140-155.

R.L. Graham, Bounds for certain multiprocessing anomabedl, Systems Tecli., 45 (1966), 1563—

1581.

R.L. Graham, Bounds on multiprocessing timing anoma$aM J Appl. Math., 17 (1969), 263-269.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Optimization and approximation in
deterministic sequencing and scheduling: a sur&ey, Discrete Math, 5 (1979), 287-326.

D.S. HochbaumApproximation Algorithms for NP-Hard ProblenBWS, Boston, MA, 1995.

D.S. Hochbaum and D.B. Shmoys, Using dual approximation algorithms for scheduling problems:
practical and theoretical results,Assoc Comput Mach, 34(1) (1987), 144-162.

T. Ibaraki and N. KatohResource Allocation Problems - Algorithmic ApproachEse MIT Press,
Cambridge, MA, 1988.

O.H. Ibarra and C.E. Kim, Fast approximation for the knapsack and the sum of subset problems,
J. Assoc Comput Mach, 22 (1979), 463-488.

M. Kamath, K. Ramamritham, and D. Towsley, Continuous media sharing in multimedia database
systems, inProceedings of the Fourth International Conference on Database Systems for Advanced
Applications Singapore, 1995, pp. 79-86.

P.W.K. Lie, J.C.S. Lui, and L. Golubchik, Threshold-based dynamic replication in large-scale video-on-
demand systems, iProceedings of the Eighth International Workshop on Research Issues in Database
Engineering(RIDE), Orlando, FL, February 1998, pp. 52-59.

S. Martello and P. Toth, Algorithms for knapsack problefsn Discrete Math, 31 (1987), 213-258.

D. Pisinger, Algorithms for Knapsack Problems, Ph.D. Thesis, Department of Computer Science, Uni-
versity of Copenhagen, February 1995.

S.S. SkienaThe Algorithm Design ManuaBpringer-Verlag, New York, 1998.

J.L. Wolf, P.S. Yu, and H. Shachnai, Scheduling issues in video-on-demand systdvhdtimedia
Information Storage and ManageméSoon M. Chung, ed.), Kluwer, Dordrecht, 1996, pp. 183-207.
J.L.Wolf, P.S. Yu, and H. Shachnai, Disk load balancing for video-on-demand syst€Ms\viultimedia
Systems.J5 (1997), 358-370.

