
DOI: 10.1007/s004530010057

Algorithmica (2001) 29: 442–467 Algorithmica
© 2001 Springer-Verlag New York Inc.

On Two Class-Constrained Versions of the
Multiple Knapsack Problem1

H. Shachnai2 and T. Tamir2

Abstract. We study two variants of the classic knapsack problem, in which we need to place items of
different typesin multiple knapsacks; each knapsack has a limited capacity, and a bound on the number of
different types of items it can hold: in theclass-constrained multiple knapsack problem(CMKP) we wish to
maximize the total number of packed items; in thefair placement problem(FPP) our goal is to place the same
(large) portion from each set. We look for aperfect placement, in which both problems are solved optimally. We
first show that the two problems are NP-hard; we then consider some special cases, where a perfect placement
exists and can be found in polynomial time. For other cases, we give approximate solutions. Finally, we give
a nearly optimal solution for the CMKP. Our results for the CMKP and the FPP are shown to provide efficient
solutions for two fundamental problems arising in multimedia storage subsystems.

Key Words. Knapsack, Packing, Approximation algorithms, Resource allocation, Fairness, Utilization,
Multimedia on-demand.

1. Introduction

1.1. Problem Statement. In the well-knownmultiple knapsack problem(MKP) [18],
M items of different sizes and values have to be packed intoN knapsacks with limited
volumes. In this paper we study two variants of the MKP, in which items ofM distinct
typeshave to be packed intoN knapsacks, each having a limited volume and a limited
number of compartments; items of different types cannot be placed in the same com-
partment. Specifically, the input is a universeU , which consists ofM distinct types of
items, given as the subsetsU1, . . . ,UM ; there are|Ui | items of typei , 1≤ i ≤ M , and
U = U1 ∪ U2 · · · ∪ UM ; all items have the same (unit) size and the same value, that
is, for all u ∈ U , s(u) = w(u) = 1. There areN knapsacks: thej th knapsack,Kj ,
has the volumeVj , and a limited number of compartments,Cj , in which the items can
be placed, 1≤ j ≤ N. Thus, in thej th knapsack we can place items of at mostCj

different types. The output of our optimization problems is aplacement, which specifies
for each knapsackKj to which types of elementsKj allocated compartments, and how
many items of each type are placed inKj . A placement islegal if Kj allocated at most
Cj compartments, and the overall size of the items placed inKj does not exceedVj , for

1 A preliminary version of this paper appeared inProceedings of FUN with Algorithms, Isola d’Elba, Italy,
June 1998.
2 Department of Computer Science, The Technion, Haifa 32000, Israel.{hadas, tami}@cs.technion.ac.il.

Received June 1, 1998; revised December 5, 1998. Communicated by N. Megiddo.
Online publication October 6, 2000.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 443

all 1 ≤ j ≤ N. A placement determines a subsetU ′ = U ′1 ∪ U ′2 ∪ · · · ∪ U ′M of U ,
such that|U ′i | is the number of items packed fromUi .

The two optimization problems studied in this paper are:

The class-constrained multiple knapsack problem (CMKP), in which our objective
is to maximize the total size of the packed elements, given by

∑M
i=1 |U ′i |.

The fair placement problem (FPP), where the objective is to maximize the value of
0< c ≤ 1 such that,∀1≤ i ≤ M, |U ′i | ≥ c · |Ui |.
Throughout the paper we assume that

∑M
i=1 |Ui | =

∑N
j=1 Vj , that is, the total number

of items inU equals the total sum of the knapsack volumes. In particular, we look fora
perfect placement, in which both problems are solved optimally. Indeed, such a placement
yields the maximal utilization of the knapsack capacities, i.e., the total occupied volume
is V =∑N

j=1 Vj , and maximal fairness, i.e.,c = 1.
The assumption|U | = V simplifies the presentation of our results; moreover, any

input for the storage management problem that motivated our study, satisfies this as-
sumption. It is important to note, however, that our results hold for general inputs for
the CMKP and the FPP, i.e., for any relation between|U | andV . We elaborate on that
in the Appendix.

1.2. Storage Management in Multimedia Systems. Our two variants of the knapsack
problem are motivated by two fundamental problems arising in storage management
for multimedia-on-demand (MOD) systems. MOD services are becoming common in
library information retrieval, entertainment, and commercial applications. MOD systems
are expected to manage with the enormous storage and bandwidth requirements of mul-
timedia data. In addition, MOD servers should support strict timing requirements: each
user can choose a program he wishes to view and the time he wishes to view it. The
service should be provided within a small latency and guaranteeing an almost constant
transfer rate of the data.

In an MOD system a large database ofM video program files is kept on a centralized
server. Each program file is associated with a popularity parameter, given bypi ∈
[0,1], where

∑M
i=1 pi = 1. The files are stored onN shared disks. Each of the disks

is characterized by (i) its storage capacity, that is the number of files that can reside
on it, and (ii) its load capacity, given by the number of data streams that can be read
simultaneously from that disk. Assuming that{p1, . . . , pM} are known, we can predict
the expected load generated by each of the programs at any time.

We wish to define a static allocation of storage and load to each file, so that the load
generated due to access requests to the file can be satisfied. Our allocation should enable
simultaneous transmissions of as many video programs as possible. Indeed, it should
reflect the popularities of the programs, by allowing many transmissions of popular
programs, and only few transmissions to the less popular ones. In other words, we would
like to achieve fair allocation of the storage and load capacity. Another objective is to
maximize the utilization of the load capacity of the system.

The problem of assigning files to disks, so as to maximize utilization (fairness), can be
formulated as an instance of the CMKP (FPP): a diskj with load capacityL j and storage
capacityCj will be represented by a knapsackKj with volumeL j andCj compartments.
A file i will be represented by a setUi with size|Ui |, which is proportional to the file

444 H. Shachnai and T. Tamir

popularity. Specifically,|U | =∑N
j=1 L j and|Ui | = pi |U |.3 A solution to any of our two

variants of the knapsack problems will induce a legal static assignment.

1.3. Related Work. Previous work on the MKP and other knapsack related problems
assume that (i) all items of the same type have to be placed in the same knapsack, and
(ii) there is no limit on the number of different types of items that can be placed in one
knapsack (see, e.g., [3], [7], [15], [20] and detailed surveys in [18] and [19]).

The special case of the MKP whereN = 1, known as the classic 0–1Knapsack prob-
lem, admits a fully polynomial approximation scheme (FPAS). That is, for anyε > 0, a
(1− ε)-approximation to the optimal solution can be found inO(n/ε2), wheren is the
number of items [6], [7]. In contrast, the MKP is NP-hard in the strong sense, therefore
it is unlikely to have an FPAS, unlessP = NP [19].

The CMKP is closely related to thefractional knapsack problem: this problem can be
optimally solved in polynomial time (by a simple greedy algorithm [5]). Indeed, the sets
U1, . . . ,UM can be replaced byM items of the sizes|U1|, . . . , |UM |, where each item
can split among several knapsacks. In our generalized version of the fractional knapsack,
each knapsack has a limited capacity and a limit also on the number of items it can hold.
We show below that this problem is NP-hard.

Other related work deals withmultiprocessor scheduling[9]–[11], also known as the
minimum makespanproblem: givenn processors andm jobs with designated integral
processing times, the goal is to schedule the jobs on the processors, such that the over-
all completion time of the schedule is minimized. We can represent a knapsack by a
processor, and each set of items of sizek by a job requiringk units of processing time.
Hence, there aren = N processors andm = M jobs. The compartment constraint can
be represented in the scheduling problem by allowing at mostCj jobs to be scheduled on
processorj ,∀1≤ j ≤ N. Note, that minimizing the makespan is equivalent to maximiz-
ing the utilization of the knapsack volumes. Previous research on the scheduling problem
assumes no bound on the number of jobs which can be allocated to each processor, i.e.,
Ci = M , ∀1 ≤ i ≤ M (a survey appears in [12]). In this case the makespan problem
admits a polynomial time approximation scheme [9].

MOD systems have been studied intensively in recent years [1], [8], [16], [17], [21].
However, the assignment problem received only little attention in this context. Specif-
ically, most of the previous work discussed the problem of load balancing on disks, in
which the goal is to have the total load on the system distributed evenly amongN disks.
The first solution proposed for the load balancing problem was disk striping (see, e.g.,
[2] and [4]), in which the data of each file is distributed over multiple disks. Thus, the
heavy load caused by a popular program is shared among these disks.

In [22] dynamic algorithms were suggested for balancing the load in the system. The
paper also addresses the problem of determining the number of copies of each file that
should be kept in the system; the goal is to have the total storage capacity allocated
to fi reflect its popularity. This criterion can yield poor results when used for solving
our optimization problems: intuitively, the algorithm will allocate multiple copies to a
popular file, however, these copies may be stored on disks, whose load capacities are

3 For simplicity, we assume thatpi |U | is an integer (otherwise we can use a standard rounding technique [14]).

On Two Class-Constrained Versions of the Multiple Knapsack Problem 445

small. Consequently, these disks will be overloaded and the system will often reject
requests for that file. This is due to the fact that the placement of files on the disks uses as
parameters only the file popularities and storage capacities of the disks, while the load
capacities are ignored (a detailed example is given in Section 2.3.2).

1.4. Our Results. We now summarize the results presented in this paper:

• The CMKP and the FPP are NP-hard.
• For some instances a perfect placement always exists and can be found in polynomial

time. Three simple conditions for the existence of a perfect placement are given. For
each condition, we show how the CMKP and the FPP can be optimally solved, when
this condition is satisfied.
• When the conditions are not met, we derive approximate solutions for our two knapsack

problems. The approximation ratio depends on the “uniformity” of the knapsacks.
Specifically, givenr > 0 andα ≥ 1 such that,∀ j, r ≤ Vj /Cj ≤ α · r , we give an
algorithm which achieves(1/α)-approximation for both the CMKP and the FPP.
• We show that if the number of compartments in each knapsack is at leastb, for some

b ≥ 1, i.e.,Cj ≥ b, ∀1 ≤ j ≤ N, then the CMKP can be approximated to within
factorb/(b+ 1).

The rest of the paper is organized as follows. The hardness results are given in
Section 2.4. In Section 3 we discuss several cases in which a perfect placement exists
and can be found in polynomial time. A nearly optimal solution for the CMKP is given in
Section 4. In Section 5 we describe how our theoretical results can be applied to storage
management in MOD systems, and in particular toheterogeneousdisk subsystems. In
Section 6 we give possible directions for future work.

2. Preliminaries. Given N knapsacks with the volumesV1, . . . ,VN , thepacking po-
tentialof the knapsacks, denoted byV , is the total number of items that can be placed in
the knapsacks, i.e.,V =∑N

j=1 Vj . For a universeU of unit size items, partitioned to the
setsU1, . . . ,UM , a solution to the CMKP or the FPP can be represented as twoM × N
matrices:

1. Theindicator matrix, I , a{0,1}-matrix,Ii, j = 1 iff a compartment ofKj was allocated
to items of typeUi .

2. Thequantity matrix Q, Qi, j ∈ {0,1, . . . ,Vj }, Qi, j is the number of items ofUi that
are placed inKj .

A legal placement has to satisfy the following conditions:

• Ii, j = 0⇒ Qi, j = 0. This condition reflects the fact that items ofUi can be placed
in Kj only if a compartment ofKj was allocated to items of typei .
• For each knapsackKj ,

∑
i Qi, j ≤ Vj , that is, the total number of items placed inKj

does not exceed its capacity.
• For each knapsackKj ,

∑
i I i, j ≤ Cj , that is, the number of different types of items

placed inKj does not exceed the number of compartments inKj .

446 H. Shachnai and T. Tamir

The matricesI andQ determine a subset of itemsU ′ = U ′1 ∪ · · · ∪U ′M which is placed
into the knapsacks.

DEFINITION 2.1. Given a solution for the CMKP (FPP), thepacked quantity of Ui ,
denoted byQi , is the total number of items packed fromUi . Thus, Qi = |U ′i | =∑N

j=1 Qi, j .

2.1. Utilization of a Placement. Our first measure for the quality of a placement is
utilization:

DEFINITION 2.2. Theutilization of a placementis
∑M

i=1 Qi .

The maximal possible utilization of a placement isV , meaning that all the packing
potential of the knapsacks is exploited. Since

∑M
i=1 |Ui | = V , it also means that exactly

|Ui | items from the setUi are packed. Other placements may utilize only part of the
overall packing potential:

DEFINITION 2.3. A placement isc-utilized if its utilization equalsc · V , for somec ∈
[0,1].

Our main questions here are: “Can the maximal possible utilization be found in polyno-
mial time?” “Can we find an efficient approximation?”

The CMKP aims at maximizing the utilization of the packing potential: in Section 4 we
present adual approximation algorithmfor the CMKP. The notion of dual approximation
was introduced in [13]. It involves approximating thefeasibilityof a solution for a given
problem, rather than its optimality; traditional approximation algorithms seek feasible
solutions that are suboptimal, where the performance of the algorithm is measured by
the degree of suboptimality allowed.

In a dual approximation algorithm the objective is to find an infeasible solution that
is superoptimal; the performance of the algorithm is measured by the degree of infea-
sibility allowed. The general relationship between traditional (or primal) approximation
algorithms and dual approximation algorithms is discussed in Chapter 9 of [12]. The
dual approximation algorithm we present in Section 4 is superoptimal for the CMKP.
Our algorithm allows a small degree of infeasibility, that is, at most one compartment is
added to each of the knapsacks.

2.2. The Fair Placement Problem. Our second criterion for measuring the quality of
a placement is fairness:

DEFINITION 2.4. A placement isc-fair, for somec ∈ [0,1], if, for every setUi , Qi ≥
c · |Ui |.

An optimal placement is 1-fair. In a 1-fair placement, for eachi , exactly|Ui | items
from the setUi are packed. Since

∑M
i=1 |Ui | = V , it also means that the packing potential

of the knapsacks is fully exploited.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 447

Several questions arise when looking for a fair placement: “Does a 1-fair placement
exist for any instance of the problem?” “Can we find it efficiently?” “When a 1-fair
placement does not exist, can we find (or approximate) an optimal placement efficiently?”

2.3. Combining Utilization and Fairness

2.3.1. The perfect placement problem. We first explore the relation between the CMKP
and the FPP.

DEFINITION 2.5. A perfect placementis a placement in which all the items of all the
sets are packed, and all the knapsacks are full.

Clearly, any perfect placement is 1-fair and 1-utilized.
We now show that for some instances a perfect placement does not exist. Consider a

simple system consisting of two knapsacks, withC1 = C2 = 1 andV1 = V2 = 10, and
two sets of items:|U1| = 15 and|U2| = 5. The only legal placements are:

1. Each set is packed into a different knapsack. Ten items ofU1 and five items ofU2 are
packed.

2. Both compartments are allocated toU1, or both compartments are allocated toU2.
Clearly, these placements are 0-fair.

Note, that by increasingC1 to 2 we obtain an instance, for which a perfect placement
exists: now we can place items ofU1 into both knapsacks and chooseQ1,1 = Q2,1 = 5
andQ1,2 = 10.

When a perfect placement does not exist, we would like to find the best possible one.
However, the two goals of utilization and fairness may conflict. Consider an instance
with two knapsacks:V1 = 20, C1 = 2; V2 = 10, C2 = 1; and three sets of items:
|U1| = 14, |U2| = 14, |U3| = 2.

A placement which achieves the maximal utilization is presented in Figure 1(a): 28
items are packed, i.e., this placement is28

30-utilized. However, it is 0-fair—no element of
U3 is packed. Figure 1(b) presents the best possible placement with respect to fairness.
It is 10

14-fair and 26
30-utilized. Generally, anyc-fair placement is at leastc-utilized.

2.3.2. Simple algorithms. In this section we show that two simple greedy algorithms
are not suitable for the CMKP and the FPP. The first algorithm (presented in [22],
in the context of MOD systems) can be used for the FPP: the algorithm attempts to
guarantee “fairness” by allocating to each set of items a number of compartments that
is proportional to its size. Specifically, using an apportionment procedure, the algorithm
first determines the number of compartments,Ii , that will be allocated toUi , 1≤ i ≤ M ;
then it selects a subset ofIi knapsacks that will store items fromUi . Finally, the volumes
of the knapsacks are split among the sets, so as to achieve maximal fairness.

To realize that this algorithm is not suitable for any of our knapsack problems, consider
an instance which consists of three sets,|U1| = 6, |U2| = |U3| = 3, and eight knapsacks,
with Cj = 1 for 1≤ j ≤ 8. The volume of the first knapsack isV1 = 5, and the volumes
of the remaining knapsacks areV2 = V3 = · · · = V8 = 1; thus the packing potential
of the knapsacks isV = 12. The total number of compartments is eight, therefore,
by the “number of compartments” criterion, since half of the items belong toU1, four

448 H. Shachnai and T. Tamir

Fig. 1.Maximal utilization versus maximal fairness.

compartments should be allocated to this set, whileU2 andU3 should be placed into two
knapsacks each. Clearly, no fair placement exists under these conditions: the set whose
items are stored in the first knapsack is allocated extra volume, while the other two sets
are “discriminated.”

In the FPP our goal is to find placements in whichQi , the packed quantity ofUi ,
reflects its size. Note that in the above example, if the number of compartments allocated
to each set of items is not determined prior to the placement, then aperfectplacement
exists: for example, we can place the items ofU1 into K1 and K2, items ofU2 into
K3, K4, andK5; and items ofU3 into K6, K7, andK8. Indeed, items ofU1 are placed
into only two knapsacks, but since one of these knapsacks is large (K1), all the items of
U1 can be packed.

The second algorithm is based on theLongest Remaining Time First(LRTF) algo-
rithm [10]. LRTF provides a(4

3−1/n)-approximation for the makespan problem, where
n is the number of machines. When LRTF is adopted to the FPP, we place items from
the largest remaining set into the knapsack with the largest remaining volume.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 449

Note that this algorithm can yield poor, nonfair placements. Consider an instance
with two knapsacks:V1 = L + 1,C1 = L and V2 = L ,C2 = 1, for someL > 1;
suppose that there areL + 1 sets,|U1| = L + 1, and in theL remaining sets|Ui | = 1.
The optimal placement packs theL items of the small sets intoK1 andL items ofU1

into K2. This is an(L/(L + 1))-fair and(2L/(2L + 1))-utilized placement. The LRTF
algorithm first choosesQ1,1 = L + 1 and one more item from another set is placed in
K2. Then no available compartments are left inK2. The resulting placement is 0-fair and
((L + 2)/(2L + 1))-utilized.

Alternatively, consider a variant of the LRTF, which sorts the knapsacks by the ratio
Vj /Cj . Then items from the largest remaining set are placed into the knapsack in which
the (updated) ratioVj /Cj is maximal. Note that this algorithm also yields inefficient
solutions for the FPP. Consider, e.g., two knapsacks withV1 = 7,C1 = 1 andV2 =
12,C2 = 2; and three sets with|U1| = 10, |U2| = 7, and|U3| = 2. In the optimal
placementU2 is placed inK1, while U1 andU3 are placed inK2. The above algorithm
initially packs seven items ofU1 into K1, and cannot complete the packing of all the
items. In particular, it is 0-fair forU3. Using a slightly different rule, which places items
from the set with the largest remaining “unpacked fraction” into the knapsack with the
largest (updated)Vj /Cj ratio, may increase fairness, with a corresponding decrease in
utilization. Still, a more complicated algorithm, which combines sorting by the ratios
Vj /Cj with other ideas, can be useful in obtaining approximation algorithms for the
CMKP (we elaborate on that in Section 4).

2.4. Hardness of the Perfect Placement Problem. The next question we consider is
whether we can detect efficiently if a perfect placement exists.

THEOREM2.1. Given N knapsacks with the volumes V1, . . . ,VN ,and Cj compartments
in knapsack j, and the sets of items U1, . . . ,UM , it is NP-hard to determine if a perfect
placement exists for this instance.

PROOF. We show a reduction from thepartition problem, which is known to be NP-
hard [6]. The partition problem consists of a finite setA, and sizes(a) for eacha ∈ A.
The problem is to determine if there exists a subsetA′ of A such that

∑
i∈A′ s(i) =∑

i∈A\A′ s(i).
Given an instance for partition, consider the placement problem consisting of two

sets|U1| = |U2|, and|A| knapsacks withCj = 1 andVj = s(aj),∀1 ≤ j ≤ |A|. For
this problem, every perfect placement induces a desired partition and vice versa.

Any perfect placement is both 1-fair and 1-utilized. Therefore, the above reduction is
suitable for the CMKP and the FPP. We conclude that each of these problems is NP-hard.

3. Finding a Perfect Placement

3.1. Simple Conditions for the Existence of a Perfect Placement. In this section we
present simple conditions for the existence of a perfect placement. The first one considers

450 H. Shachnai and T. Tamir

inputs in which the “number of compartments” constraint can be ignored. Clearly, if,
for all the knapsacks,Cj ≥ Vj , then a perfect placement exists, and can be found in
polynomial time. (Observe, that ifCj ≥ Vj for all 1 ≤ j ≤ N, then we can greedily
place the sets into the knapsacks, until all the items are packed.)

The next simple condition considers thesizesof the different sets.

THEOREM3.1. Let 0 < ε ≤ 1 be the maximal number, such that, for all 1 ≤ i ≤ M ,
|Ui | ≥ (ε · |U |)/M . If, for all the knapsacks, Cj ≥ (Vj ·M)/(ε ·V)+1, then there exists
a perfect placement which uses at most M+ N − 1 different compartments.

PROOF. Consider the simple greedy algorithm, which packs the sets of items by filling
the knapsacks one after the other. Specifically, the knapsackKj is filled until it contains
Vj items, we then continue to pack intoKj+1, and so on. Since

∑
i |Ui | = |U | =

V = ∑
j Vj , the algorithm terminates when the last knapsack,KN , is filled with the

last item ofUM . Thus, all the packing potential of the knapsacks is exploited and all
the items are packed. Intuitively, the conditions indicate that even the smallest sets
are large enough to fill any knapsack. Formally,|Ui | ≥ (ε · |U |)/M implies that any
subset ofCj − 1 sets includes at least(Cj − 1)|U | · ε/M = (Cj − 1)V · ε/M items.
Since,Cj ≥ (Vj · M)/(ε · V) + 1, the subset’s total size is at leastVj . The additional
compartment is needed for a small number of items of the first set placed inKj —for
this set, the size is not predicted, since some of its items were already placed in previous
knapsacks.

If all the items of one set are placed in one knapsack, we use only one compartment
for this set. If it is placed ink different knapsacks, we usek compartments for this set.
Since the algorithm makes at mostN − 1 splits, the total number of compartments used
by this algorithm isM + N − 1.

3.2. Uniform Capacity Ratio. In this section we present an alternative condition for
the existence of perfect placement. We require that the volume and the number of com-
partments in a knapsack be correlated—knapsacks with high volume should have many
compartments and vice versa.

DEFINITION 3.1. For any 1≤ j ≤ N, thecapacity ratioof Kj is Vj /Cj . The set of
knapsacksK1, . . . , KN has auniform capacity ratioif there exists a constantr > 0,
such thatVj /Cj = r , ∀1≤ j ≤ N.

Intuitively, the capacity ratio of a knapsackKj gives the average number of items
contained in each compartment when the volume ofKj is totally utilized. We show that,
for a set of knapsacks with uniform capacity ratio, if

∑N
j=1 Cj ≥ M + N − 1, then a

perfect placement exists and can be found efficiently. This holds foranydistribution on
the sizes of the setsU1, . . . ,UM .

THEOREM3.2. If the capacity ratio is uniform and
∑N

j=1 Cj ≥ M + N − 1, then a
perfect placement exists and can be found in O(M · N +max(N lg N,M lg M)) steps.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 451

PROOF. We present a polynomial time algorithm which yields a perfect placement. The
algorithm, denoted byAu, proceeds by placing exactlyVj items of at mostCj different
sets into each of the knapsacks. We assume that the sets are given in a nondecreasing
order of their sizes, i.e.,|U1| ≤ |U2| ≤ · · · ≤ |UM |.

In each step we keep the remainders of the sets in a sorted list, denoted byR. The
list, R[1], . . . , R[m], 1 ≤ m ≤ M , is updated during the algorithm, that is, we remove
from R sets that were fully packed, and we move to their updated place sets that were
only partially packed.R is thevolume request list, that is, each entry ofR represents
the request for volume, which is the number of unpacked items, of some setUi . The
knapsacks are given in a nondecreasing order of the number of compartments they have,
i.e.,C1 ≤ C2 ≤ · · · ≤ CN .

The main idea in the algorithm is to keep the average size of the requests inR large
enough. Specifically, for each 1≤ k ≤ N, we will show that when the knapsackKk is
filled, either the average request size is at leastr , or a trivial greedy algorithm can be
applied to pack the remaining requests in the remaining knapsacks.

The algorithm uses two knapsack-filling procedures: some of the knapsacks are filled
using thegreedy-fillingprocedure; the other knapsacks will be filled using themoving-
windowprocedure. We now describe the two procedures.

GREEDY-FILLING . The greedy-filling procedure fills a knapsack with items, starting
from the smallest set,R[1], and continuing until the knapsack issaturated, that is, until
it contains exactlyVj items. The last set may split, that is, only part of its items will
be packed intoKj . A formal description of the greedy-filling procedure is given in
Figure 2.

MOVING-WINDOW. The moving-window procedure fills a knapsack,Kj , with the first
sequence ofCj sets whose total size is at leastVj . We search the listR using a moving
window of sizeCj . Initially, the window covers the set of the smallestCj sets. In every
iteration we replace the smallest set in the window by the next set inR, until the number
of items that are contained in the window is large enough to saturateKj . If the subset of
theCj largest sets includes less thanVj items, then we cannot saturateKj . However, we

Greedy-Filling(j)
i ← 1
repeat

Allocate one compartment ofKj for items of the setUk corresponding toR[i].
Place items ofUk in Kj : Qk, j = min{R[i],Vj }
Vj ← Vj − Qk, j

i ← i + 1
until Vj = 0
Remove fromR the sets that were fully packed intoKj .
Update the size of the new smallest set that was only partially packed intoKj .
RemoveKj from the knapsack list.

Fig. 2.The greedy-filling procedure.

452 H. Shachnai and T. Tamir

Moving-Window(j)
i ← 1
a = R[1] + · · · + R[Cj] .
while (a < Vj and|R| ≥ Cj + i)

a← a− R[i] + R[Cj + i]
i ← i + 1

Fill Kj :
Allocate compartments ofKj to all the sets corresponding to the requests

R[i], . . . , R[i + Cj − 1].
For eachk, i ≤ k ≤ i + Cj − 2

Place inKj R[k] elements of the corresponding set.
Qk′, j = Vj − (R[i] + · · · + R[i + Cj − 2]) .
Place inKj Qk′, j elements of the setUk′ corresponding toR[i + Cj − 1].

Update the listR:
Remove fromR the setsR[i], . . . , R[i + Cj − 2].
If the setUk′ corresponding toR[i + Cj − 1] is not completely packed,

Move R[i + Cj − 1] to its appropriate new place in the sorted listR.
RemoveKj from the knapsack list.

Fig. 3.The moving-window procedure.

show below that this never happens. A formal description of the moving-window pro-
cedure is given in Figure 3. Note that the window advances until it coversCj sets, such
that Vj > R[i − 1] + · · · + R[i + Cj − 2] and Vj ≤ R[i] + · · · + R[i + Cj − 1]
(see Figure 4). At this stage we can clearly place inKj all the items in the sets
R[i], . . . , R[i + Cj − 2], and saturateKj by adding some of the items in the set
R[i + Cj − 1].

THE ALGORITHM Au. The algorithm proceeds in iterations. In thej th iteration we fill
Kj by the following rules:

1. If there are less thanCj sets, or if the subset of theCj smallest sets contains more
thanVj items, then fillKj using the greedy procedure.

2. If the subset of theCj smallest sets contains at mostVj items, then fillKj using the
moving-window procedure.

Fig. 4.The list R.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 453

We now show that the algorithm terminates with a perfect placement. We distinguish
between two stages in the execution ofAu:

1. In the first stage, each knapsackKj that is filled containsCj − 1 orCj sets of items.
This stage includes executions of the moving-window procedure and some executions
of the greedy procedure.

2. The second stage starts when, for the first time, the number of sets placed inKj , for
some 1≤ j ≤ N, is smaller thanCj . This can clearly happen only when the greedy
procedure is used.

Note that for some inputs, one of the stages may not occur. For each of the two stages,
we show that any knapsackKj that is filled during this stage will contain exactlyVj

items of at mostCj different sets.
We use the following notation:

• Ck is the total number of compartments that are available afterk knapsacks are
filled.
• Mk is the number of sets that are not fully packed afterk knapsacks are filled.
• Nk is the number of empty knapsacks afterk knapsacks are filled (Nk = N − k).
• r is the capacity ratio, that is,∀ j,Vj /Cj = r .

We now consider the first stage.

LEMMA 3.3. Each of the knapsacks that are filled during the first stage ofAu will
contain exactly Vj items that belong to at most Cj different sets.

PROOF. We show the following invariant for the ratio between the number of remaining
sets, knapsacks, and compartments, during the first stage. LetKb be the first knapsack
filled in the second stage:b can be any number between 1 andN.

CLAIM 3.4. For every0≤ k < b, Ck ≥ Mk + Nk − 1.

PROOF. The proof is by induction onk, the number of knapsacks that were already
filled.

Base. k = 0. It is given that
∑N

j=1 Cj ≥ M + N − 1. Thus, using our notation,
C0 ≥ M0+ N0− 1.

Induction Step. Consider thekth iteration, in whichKk is filled.

1. After this iterationKk is no longer available, thereforeCk = Ck−1− Ck.
2. By the definition of the first stage, we fully pack in this iterationCk − 1 or Ck sets.

ThereforeMk = Mk−1−(Ck−1)or Mk = Mk−1−Ck. Hence,Mk ≤ Mk−1−(Ck−1),
that is,Mk−1 ≥ Mk + Ck − 1

3. Clearly,Nk = Nk−1− 1.

454 H. Shachnai and T. Tamir

By the induction hypothesis,Ck−1 ≥ Mk−1+ Nk−1− 1, therefore

Ck = Ck−1− Ck

≥ Mk−1+ Nk−1− 1− Ck

≥ Mk + Ck − 1+ Nk + 1− 1− Ck

= Mk + Nk − 1.

CLAIM 3.5. For every1≤ k < b, the average set size when we fill Kk is at least r.

PROOF. Using Claim 3.4, afterk− 1 knapsacks are filled, the average set size is

number of remaining items

number of remaining sets
≥ remaining packing potential

number of remaining sets

= r · Ck−1

Mk−1
≥ r · (Mk−1+ Nk−1− 1)

Mk−1
≥ r.

Recall that at the beginning
∑M

i=1 |Ui | =
∑N

j=1 Vj . Therefore, at any stage, the number
of nonpacked items is at least the remaining packing potential. Also,Nk−1 ≥ 1 since at
leastKk is still empty afterk− 1 knapsacks are filled.

We conclude that, for everyk < b, the largestCk sets after(k−1) iterations contain at
leastr ·Ck items, which is equal toVk. This means that if the moving-window procedure
is applied, the window never reaches the end ofR (the largest sets) without saturatingKk.
Knapsacks that are filled by the greedy procedure are clearly saturated, since the greedy
procedure is applied when even the smallestCk sets are large enough to saturateKk.

We now analyze the second stage of the algorithm. Note that we reach the second
stage when the smallestCb − 1 sets together contain more thanVb items.

LEMMA 3.6. Each of the knapsacks that are filled during the second stage ofAu will
contain exactly Vj items that belong to at most Cj different sets.

PROOF. Let Rb be the set list at the end of the first stage. We first show that, for every
j ≥ b, Kj can be saturated by any subset ofCj − 1 sets fromRb.

CLAIM 3.7. At the beginning of the second stage, for every j≥ b, any subset of Cj −1
sets contains more than Vj items.

PROOF. By definition,Kb is the first knapsack filled in the second stage. Therefore less
thanCb − 1 sets are packed intoKb. This can happen only if the subset of theCb − 1
smallest sets contains more thanVb = r · Cb items. Therefore the average size of the
smallestCb − 1 sets is larger than(r · Cb)/(Cb − 1). Consider a knapsackKj , j > b.
The knapsacks are sorted such thatCj ≥ Cb, and the sets are sorted in a nondecreasing

On Two Class-Constrained Versions of the Multiple Knapsack Problem 455

order of their sizes, therefore the average size of the smallestCj − 1 sets is larger than
(r · Cb)/(Cb − 1). In addition, sinceCj ≥ Cb,

r · Cb

Cb − 1
≥ r · Cj

Cj − 1
.

This means that the total number of items in the smallestCj − 1 sets is larger than

(Cj − 1) · r · Cj

Cj − 1
= r · Cj = Vj .

Clearly, if the smallestCj − 1 sets inRb contain more thanVj items, then anyCj − 1
sets inRb contain more thanVj items.

We now use Claim 3.7 to show that any knapsack filled afterKb contains at most
Cj − 1 different sets, and is saturated by additional items packed from one set ofRb.

By the greedy-filling procedure,Kb is filled until Vb items are packed. The last set
packed intoKb may include some more unpacked items. The fraction left from the split
set is now the smallest set inRb (since even before the split it was part of the smallest
available set). In other words, the fraction isR[1]. We now turn to fill Kb+1. Consider
the smallestCb+1 sets. These sets are composed ofR[1] and additionalCb+1−1 sets. By
Claim 3.7 the additionalCb+1−1 sets include more thanVb+1 items, therefore (no matter
what the size of the fractionR[1]) the smallestCb+1 sets include together more thanVb+1

items, and the greedy-filling procedure is used:Vb+1 items of at mostCb+1 sets are placed
in Kb+1. Again, the last set may be only partially packed. The same argument holds until
we reach a knapsackKl , such that less thanCl sets are left. Since

∑M
i=1 |Ui | =

∑N
j=1 Vj

at the beginning, and since all the knapsacks beforeKl were saturated, the total number
of nonpacked items equals the total left volume. Hence, we can fillKl using the greedy
procedure. This argument holds for all the remaining knapsacks, untilKN is saturated
and no sets are left.

Combining Lemmas 3.3 and 3.6 we conclude that each of the knapsacksKj , 1 ≤
j ≤ N, is filled by exactlyVj items of at mostCj different sets. Thus, the algorithm
terminates with a perfect placement.

The algorithm is polynomial: each of the filling procedures takesO(M) steps. Adding
the preprocessing complexity of sorting the lists, the total complexity of the algorithm
is O(N · M + N log N + M log M).

3.3. Approximating a Perfect Placement. When the knapsacks do not have uniform
capacity ratio, the degree of nonuniformity is measured by the minimalα such that, for
somer > 0,

∀ j, r ≤ Vj

Cj
≤ α · r.(1)

(Whenα = 1 we have uniform capacity ratio, in any other caseα > 1.) In this section
we show how a perfect placement can be approximated. The approximation ratio is
proportional toα.

456 H. Shachnai and T. Tamir

THEOREM3.8. Let α ≥ 1 be the minimal number satisfying(1). If C ≥ M + N − 1,
then a(1/α)-utilized placement can be found in polynomial time.

PROOF. Consider the following instance,I ′, of the placement problem: for each knap-
sackKj , 1 ≤ j ≤ N, the volume ofKj in I ′ is V ′j = dr · Cj e. Let V ′ = ∑N

j=1 V ′j .
For each set,Ui , the set size ofUi in I ′, denoted by|U ′i |, is determined by solving the
following MAX-MIN problem:

Maximize min
|U ′i |
|Ui | , such that

M∑
i=1

|U ′i | = V ′, |U ′i | integer.(2)

First, note that any legal placement ofI ′ induces a legal placement for the original
instance. This follows from the next claim:

CLAIM 3.9. For each1≤ j ≤ N, V ′j ≤ Vj .

PROOF. For each 1≤ j ≤ N, Vj is an integer. Therefore, for the knapsack achieving
the minimal capacity ratio,Vj = r · Cj = dr · Cj e = V ′j . For each knapsackKj such
thatVj /Cj > r , there exists someε > 0 such thatVj = (r + ε) ·Cj = d(r + ε) ·Cj e ≥
dr · Cj e = V ′j .

Next, we show that a perfect placement exists, and can be found efficiently forI ′.
Note that the knapsacks inI ′ do not necessarily have uniform capacity ratio, however, the
nonuniformity is small enough to show that the algorithmAu presented in Section 3.2 is
suitable forI ′. We follow the proof of Theorem 3.2 to show thatAu fills each knapsack
with exactlyV ′j items of at mostCj sets. It is easy to verify that Claims 3.4 and 3.5 hold
for I ′. Let Kk be a knapsack filled during the first stage ofAu. By Claim 3.5, the average
set size when we fillKk is at leastr . Indeed,V ′j may be larger thanr ·Cj , however, since
the number of items included in the window is an integer and sinceV ′j = dr ·Cj e is the
smallest integer not smaller thanr ·Cj , we conclude that whenever the moving-window
procedure is applied, the window does not reach the end ofR without saturatingKk.
Similarly, for the second stage ofAu, Claim 3.7 holds forI ′ and we conclude that all the
knapsacks are saturated. By Claim 3.9, a legal placement inI ′ is a legal placement for
the original instance. SinceV ′ ≥ (1/α)V , a perfect placement inI ′ induces a placement
that is(1/α)-utilized for the original instanceI .

REMARK 3.1. For solving the CMKP, any choice of set sizes that satisfies,∀i, |U ′i | ≤
|Ui | and

∑M
i=1 |U ′i | = V ′ can be applied here. The solution of (2) also solves efficiently

the FPP: for each setUi , |U ′i | ≥ (1/α)|Ui | − 1.

In order to achieve a good approximation we would like to haveα as close as possible
to 1. In Section 5 we show that if compartments can be moved among the knapsacks,
thenα = Ck/(Ck − 1), whereKk is the knapsack having the maximal capacity ratio.
This model is relevant to MOD storage subsystems, in which storage resources can be
moved among the disks.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 457

4. Approximation Algorithm for the CMKP. In this section we present a dual ap-
proximation algorithm for the CMKP. Specifically, we show that it is sufficient to add one
compartment to each knapsack, in order to eliminate the gap between the performance
of an optimal, probably exponential time algorithm, and a polynomial time algorithm.
Recall that adual approximation algorithmfinds an infeasible solution that is super-
optimal. Its performance is measured by the degree of infeasibility allowed. The pro-
posed algorithm is allowed to place items ofCj + 1 (instead ofCj) different sets into
Kj , 1≤ j ≤ N.

THEOREM4.1. Given an instance I of the CMKP, by adding a single compartment to
each knapsack, we can find in polynomial time a placement, whose utilization is at least
the maximal possible utilization for I.

PROOF. Let I be an instance of the CMKP. Denote byI + the instance generated fromI
by adding one compartment to each knapsack. We present a polynomial time algorithm
which finds a legal placement inI +. The algorithm, denoted byAr , proceeds by filling
Kj with at mostVj items of at mostCj +1 different sets,∀1≤ j ≤ N. The total number
of items packed fromI + byAr is at least the total number of items packed fromI by
an optimal algorithm.

As in the uniform-ratio case (Section 3.2), we assume that the sets of items are given
in nondecreasing order of their sizes, i.e., the sets satisfy|U1| ≤ |U2| ≤ · · · ≤ |UM |.
We keep the remaining sets in a sorted list, denoted byR, which is updated during the
algorithm. This algorithm also uses the two knapsack-filling procedures: greedy-filling
and moving-window introduced in Section 3.2. However, the moving-window procedure
is slightly changed: now the window coversCj +1 sets (instead ofCj). Also, if the subset
of theCj + 1 largest sets includes less thanVj items, then we cannot saturateKj , and
we do the best we can: we fillKj with theseCj + 1 sets (in the uniform-ratio case this
never happens).

The knapsacks are given in a nonincreasing order by theircapacity ratio, i.e.,V1/C1 ≥
V2/C2 ≥ · · · ≥ VN/CN . The sorted knapsacks are kept in a list denoted byL ′. Another
list of knapsacks, denoted byL ′′, may be created during the execution of the algorithm.

THE ALGORITHM Ar . Generally, the algorithm uses the moving-window procedure to
fill the knapsacks according to their order inL ′, that is, in thej th iteration we fillKj and
remove it fromL ′.

Note that the moving-window procedure places inKj items of exactlyCj + 1 sets.
Sometimes it is not possible to pack from that amount of sets (see below): in such
cases we moveKj to L ′′ or look for another knapsack for which the moving-window
procedure can be applied. Knapsacks that are moved fromL ′ to L ′′ are filled using the
greedy procedure, afterL ′ is empty.

The following rules are used whenAr examinesKj ∈ L ′.

• If Kj = ∅, i.e.,L ′ is empty, fill sequentially all the knapsacks inL ′′, using the greedy-
filling procedure.
• If there are less thanCj + 1 sets inR, moveKj to the end ofL ′′.

458 H. Shachnai and T. Tamir

• If the subset of theCj smallest sets inR contains at mostVj items, fill Kj with items
from Cj + 1 different sets, using the moving-window procedure.
• If the subset of theCj smallest sets inR contains more thanVj items, look for

the first knapsackKk ∈ L ′ for which the subset of the smallestCk sets includes
at mostVk items. If such a knapsack exists, fillKk using the moving-window pro-
cedure;Kj will be examined again in the next iteration. If there is no such knap-
sack inL ′, fill sequentially all the knapsacks inL ′ and L ′′ using the greedy-filling
procedure.

Optimality. Denote byG = {Kg1, Kg2, . . . , Kgn} the set of knapsacks that are not
saturated byAr , and denote byw1, w2, . . . , wn the resulting waste of volume in each
non-saturated knapsack, i.e., the volume ofKgi is not fully exploited and onlyVgi −wi

items are placed inKgi . We show that there is no legal placement ofI in which the
total utilization exceeds

∑N
j=1 Vj − (w1+w2+ · · · +wn). To prove this, we distinguish

between four stages ofAr :

1. Knapsacks fromL ′ are filled by their order inL ′, using the moving-window procedure;
some of the knapsacks may be moved toL ′′.

2. Knapsacks fromL ′ are filled using the moving-window procedure, but not necessarily
according to their order inL ′; some of the knapsacks may be moved toL ′′.

3. Knapsacks fromL ′ are filled, using the greedy-filling procedure (when no knapsack
from L ′ can be filled by the moving-window procedure).

4. Knapsacks fromL ′′ are filled using the greedy-filling procedure (whenL ′ is empty).

For the first two stages we show that the total waste of volume forI + is at most the
total waste of volume in an optimal placement ofI . For the last two stages we show that
there is no waste, and all the knapsacks filled during these stages are saturated.

For simplicity, assume that whenever the moving-window procedure is executed, the
list R is scanned from left to right, that is, the smallest set,R[1], is the leftmost set and
the largest set is the rightmost inR. During execution of the moving-window procedure,
the window moves from left to right. There are two possible scenarios:

1. Saturating: in which Kj is saturated, meaning that there exists somei , which is the
index in R of the smallest set in the window, such that
(i) (i > 1 and Vj > R[i − 1] + · · · + R[i + Cj − 1]) or (i = 1 and Vj >

R[1] + · · · + R[Cj]);
(ii) Vj ≤ R[i] + · · · + R[i + Cj].
At this stage, we can clearly place inKj theCj setsR[i], . . . , R[i + Cj − 1], and
saturateKj by adding some of the items ofR[i+Cj]. The setsR[i], . . . , R[i+Cj−1]
are removed fromR, and the fraction left from the setR[i+Cj] is moved to its updated
place in the listR. Note that since some of the items of this set are packed, the position
of that fraction inR is left to its original position.

2. Nonsaturating: in which the window reaches the rightmost position inR, but the
subset of theCj + 1 largest sets covered by the window contains less thanVj items.
All items in the setsR[i], . . . , R[i + Cj] are packed, and these sets are removed
from R.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 459

In both cases we can consider the removed sequence of sets as ahole in R. In a
saturating execution,Kj creates a hole ofCj sets in R, and one additional set (the
fraction left from the last set) is moved left of the hole. In a nonsaturating execution,Kj

creates a hole ofCj + 1 sets inR.
We examine the sequence of holes created inR during the first stage of the algorithm.

We first show that every nonsaturated knapsack creates, at the right end ofR, a hole
which is the union of all the holes inR.

CLAIM 4.2. Every Kgj ∈ G filled during the first stage ofAr unites the holes existing
in R into a single hole positioned at the right end of R.

PROOF. The proof is by induction onj , the index ofKgj in G.

Base. Kg1 is the first nonsaturated knapsack in the execution ofAr . The knapsacks are
sorted in nonincreasing order by their capacity ratios. Therefore, for everyk < g1, the
average number of items from each set packed intoKk is larger than the average number
of items from each set packed intoKg1. In particular, the largest set in the hole created by
Kk is larger than the smallest set in the hole created byKg1. Thus, the hole created byKg1

starts left of the hole created byKk. In addition, sinceKg1 is not saturated, the hole it cre-
ates includes the largestCg1+1 available sets, and in particular the rightmost one. There-
fore it unites all the holes that were created by previously filled knapsacks into one hole.

Induction Step. Let Kgj be the j th nonsaturated knapsack filled during the first stage
of the algorithmAr . By the induction hypothesis,Kgj−1 unites all the holes created by
K1, K2, . . . , Kgj−1. In other words,Kgj−1 dividesR into two parts: the hole at the right
and the remaining sets at the left. The knapsacks are sorted in nonincreasing order by
their capacity ratios. Therefore, as in the base case, for everygj−1 < k < gj the average
number of items in each set placed inKk is larger than the average number of items
in each set packed intoKgj , thus the hole created byKgj starts left of the hole created
by Kk. Since it also includes the largest available set, it unites the holes created by
Kgj−1+1, . . . , Kgj−1 and the hole at the right created byK1, . . . , Kgj−1 into one hole.

The way the holes are created implies thatAr is optimal for the knapsacks filled
during the first stage:

LEMMA 4.3. Let Kj be the last knapsack filled byAr during the first stage, then the
total number of items placed in K1, . . . , Kj is at least the number of items placed into
K1, . . . , Kj under an optimal algorithm for the instance I.

PROOF. Let Kgj be the last nonsaturated knapsack filled during the first stage. The
knapsacks that are filled afterKgj are saturated. Thus, it is sufficient to prove that the
lemma holds forK1, . . . , Kgj . By Claim 4.2, the hole created byKgj unites all the holes
created byK1, . . . , Kgj . For everyk ≤ gj the hole created byKk consists ofCk orCk+1
sets, therefore the combined hole consists of at least the largestC1+C2+· · ·+Cgj sets.
The total size of the hole is the total size of undivided sets placed inK1, . . . , Kgj , which
is at mostV1 + V2 + · · · + Vgj − (w1 + w2 + · · · + wj). We conclude that the sum of

460 H. Shachnai and T. Tamir

the largestC1+C2+ · · · +Cgj sets is at mostV1+ V2+ · · · + Vgj − (w1+w2+ · · · +
wj), meaning that no algorithm, and in particular an optimal one, can place more than
V1+ V2+ · · · + Vgj − (w1+ w2+ · · · + wj) items inK1, . . . , Kgj .

Note that fractions of sets that were created byK1, . . . , Kgj−1 should not bother us:
if a fraction of a set is packed later, it means that the original size of that set is contained
in the united hole. If the fraction is not packed, then the total number of items packed
byAr is in fact larger thanV1+ V2+ · · · + Vgj − (w1+w2+ · · · +wj), meaning that
K1, . . . , Kgj cannot be filled better even by more than the largestC1 + C2 + · · · + Cgj

sets.

Recall that during the first stage knapsacks can be moved fromL ′ to L ′′. These
knapsacks will be filled during the fourth stage, and the first stage continues. The first
stage continues until we find a knapsackKk, for which the subset of theCk smallest sets
contains more thanVk items.

We now prove the optimality of the second stage. The proof is similar to the proof
for the first stage. We show that the holes created during the second stage are united
whenever a knapsack is not saturated; then we conclude that the placement is optimal.

We first prove that the holes created during the second stage always “spread to the
left” in R.

CLAIM 4.4. Let Kk1 and Kk2 be two knapsacks that are filled in successive iterations
during the second stage, then the hole created by Kk2 starts left of the hole created by Kk1.

PROOF. We consider separately two cases:

1. k1 < k2, meaning that the capacity ratio ofKk1 is higher than the capacity ratio of
Kk2. In this case, as in the first stage, it is clear that the hole created byKk2 starts left
of the hole created byKk1.

2. k1 > k2. By the algorithm, when we examinedKk2 the subset of theCk2 smallest sets
contained more thanVk2 items, and the filling ofKk2 was delayed. Since we finally fill
Kk2 during the second stage, new small sets are used. These small sets are fractions
created by knapsacks saturated afterKk2 was rejected. Since we examineKk2 again
after each iteration, and it is finally filled right afterKk1, it means that a fraction
created byKk1 is used. Recall that, fori ≥ 1, any remainder of a set which returns to
R at the end of iterationi , will be positioned left of the hole created inR during this
iteration. Thus the hole created byKk2 starts left of the hole created byKk1.

We now conclude that nonsaturated knapsacks unite the holes inR.

CLAIM 4.5. Every Kgj ∈ G filled during the second stage ofAr unites the holes in R
into a single hole; this hole forms the right end of R.

PROOF. The proof is by induction onj , the index ofKgj in G. We follow the steps
of the proof of Claim 4.2. Indeed, we cannot assume that the knapsacks are filled in
a nonincreasing order of their capacity ratio. However, by Claim 4.4, ifKgj is filled
after Kk, then the hole it creates starts left of the hole created byKk, and since it also

On Two Class-Constrained Versions of the Multiple Knapsack Problem 461

includes the rightmost available set, it unites all the holes created byKk, . . . , Kgj , and
the induction in the proof of Claim 4.2 can be applied.

As in the proof of optimality for the first stage, we conclude from the way the holes
are created, that the placement is optimal.

COROLLARY 4.6. Let Kj be the last knapsack filled byAr during the second stage, then
the total number of items packed into K1, . . . , Kj is at least the number of items packed
into K1, . . . , Kj under an optimal algorithm for the original instance I.

For the first and second stages we have shown that the total volume wasted in knap-
sacks filled during these stages does not exceed the waste of volume in these knapsacks
under an optimal placement forI . We complete the proof of optimality by showing
that all the knapsacks which are filled during the third and the fourth stages ofAr are
saturated.

LEMMA 4.7. Each of the knapsacks that are filled during the third stage ofAr will
contain exactly Vj items, which belong to at most Cj + 1 different sets.

PROOF. The third stage consists of successive executions of the greedy-filling proce-
dure.Ar reaches the third stage if, for every knapsackKj ∈ L ′, the subset of theCj

smallest sets contains more thanVj items. Clearly, if theCj smallest sets are too large,
then anyCj sets are too large forKj . We show that the greedy algorithm never uses more
thanCj + 1 sets to fillKj :

Let Kc be the first knapsack filled in the third stage. Clearly, at mostCc sets are used.
The last set from which items are packed intoKc may split. The fraction that is left is
now the smallest set (since even before the split it was part of the smallest available
set). In other words, the fraction isR[1]. We now turn to fillKc+1. Consider the subset
of theCc+1 + 1 smallest sets. It consists ofR[1] and additionalCc+1 sets. The subset
of the additionalCc+1 sets includes more thanVc+1 items, therefore, no matter what
the size of the fractionR[1], the smallestCc+1 + 1 sets include together more than
Vc+1 items, and we can pack intoKc+1 exactlyVc+1 items from at mostCc+1 + 1 sets.
Again, the last set may split. The same argument holds for all the knapsacks that remain
in L ′. That is, every knapsackKj will contain exactlyVj items that belong to at most
Cj + 1 sets.

LEMMA 4.8. Each of the knapsacks filled during the fourth stage ofAr will contain
exactly Vj items that belong to at most Cj + 1 different sets.

PROOF. In the fourth stage we fill the knapsacks inL ′′. Recall that a knapsackKj

is moved toL ′′ if there are less thanCj + 1 available sets at the time it is exam-
ined byAr . Since we do not add sets along the execution of the algorithm, clearly
there are less thanCj + 1 available sets when we fillKj in the fourth stage, using
the greedy procedure. In order to realize that the knapsacks are saturated, note that
at the beginning

∑M
i=1 |Ui | =

∑N
j=1 Vj , that is, the total number of items is equal

462 H. Shachnai and T. Tamir

to the total available volume. Since no knapsack is filled by more thanVj items,
the sum of the sizes of the remaining sets always exceeds the total remaining
volume.

By combining Corollary 4.6 with Lemmas 4.7 and 4.8 we conclude that the total
amount of wasted volume for the instanceI + does not exceed the total amount of wasted
volume under an optimal placement ofI . In particular, if there exists a perfect placement
of I , then our algorithm finds a perfect placement ofI +.

The algorithm is polynomial: each filling procedure has complexityO(M). In the
worst case (during the second stage) it takesO(M ·N) steps to choose the next knapsack
to be filled. Therefore the total complexity ofAr is O(M2 · N2).

The dual approximation scheme yields the following approximation algorithm for the
CMKP:

1. Find an optimal solution, assumingCj = Cj + 1,∀1 ≤ j ≤ N. Let I ′, Q′ be the
resulting indicator and quantity matrices.

2. Let I = I ′, Q = Q′.
3. For each knapsackKj , j = 1, . . . , N: if

∑
i Qi, j = Cj+1 (i.e.,Cj+1 compartments

are used), letUs be the set from which the quantity placed inKj is minimal, that is,
Qs, j = min1≤i≤M Qi, j > 0, thenQs, j = 0.

In other words, we turn the infeasible placement into a feasible one, by using only the
Cj fullest compartments in each knapsack. Note that this way we omit from the subset
of packed items at mostVj /(Cj + 1) items.

COROLLARY 4.9. Given an instance I of the CMKP, let Uopt be the utilization obtained
by an optimal placement of the items, then we can find in O(M2 · N2) steps a placement
which achieves utilization U= Uopt− ε for ε =∑N

j=1(Vj /(Cj + 1)).

In particular, if the number of compartments in each knapsack is at leastb, for some
b ≥ 1, that is,Cj ≥ b for all 1 ≤ j ≤ N, then the above approximation algorithm
achieves utilization(1− α)Uopt for α = 1/(b+ 1).

5. Application to MOD Systems. In this section we show how our results for the
CMKP and the FPP apply to storage management in multimedia systems. Consider a
system havingN disks: the storage capacity of diskj is Cj , and its load capacity isL j ,
1 ≤ j ≤ N. The database associated with the MOD system containsM video program
files { f1, . . . , fM}, with the corresponding popularities{p1, . . . , pM}. The popularity
parameter offi reflects the portion of the total load generated due to access requests
to fi . Knowing these popularities and the total load capacity of the system, we can
determine the average load generated by each of the files.

As mentioned in Section 1.2, the problem of assigning files to disks can be formulated
as an instance of our packing problems, with the disks represented by knapsacks, and
the files by sets of items. The popularities of the files determine the set sizes, such that∑M

i=1 |Ui | =
∑N

j=1 L j . When our objective is to maximize utilization, we need to solve

On Two Class-Constrained Versions of the Multiple Knapsack Problem 463

the CMKP; when the goal is to maximize fairness, we need to solve the FPP. A solution
for any of our two variants of the knapsack problems will induce a legal static assignment.
In terms of the matricesI andQ:

• Ii, j = 1 iff a copy of the filei is stored on the diskj .
• Qi, j ∈ {0,1, . . . , L j } is the total load that filei can create on the diskj .

Thus, our results in Section 3 yield efficient algorithms for finding aperfectassignment
of files to the disks, in which the load capacity of the system is totally utilized, and the
requests to each of the files can be satisfied.

5.1. Approximating Uniform Capacity Ratio. We now consider a slightly different
model, in which the storage subsystem consists ofN disk arrays, D1, . . . , DN : Dj has
a fixed load capacity,L j , and, in addition, there is a limit,C, on thetotal number of
storage units that can be allocated to the disk arrays. We would like to find an allocation
of the storage units to the disk arrays. That is, for any 1≤ j ≤ N we need to determine
Cj , the storage capacity ofDj , such that

∑N
j=1 Cj = C. This model reflects the situation

in which several disk arrays are used for storing the files. The storage capacity of a
disk array is the sum of the storage capacities of the individual disks. Thus, the storage
capacity of a disk array (with a fixed load capacity) can vary, depending on the storage
capacities of the disks composing the array. We show below that, in such a system, the
overall storage capacity can be distributed among the disk arrays, so as to achieve a
nearly uniform capacity ratio. This enables us to find an almost perfect assignment of
the files to the disks.

Let L = ∑N
j=1 L j be the total load capacity of the system. Indeed, it is easy to

determine the storage capacity of each disk array so as to obtain a “uniform capacity
ratio”: in particular, we can chooseCj = C · L j /L. This yields a uniform capacity ratio
with r = L/C. However, since we require that each disk array holds an integral number
of files, we need to round theCj ’s in a way that minimizes the violation of uniformity.
Formally, we need to solve the following integer programming problem:

Minimize α = max1≤ j≤N(L j /Cj)

min1≤ j≤N(L j /Cj)
such that

N∑
j=1

Cj = C, Cj integer.(3)

This problem can be optimally solved inO(N log N+N logC) steps, by using, e.g., the
algorithm “SOLVE-FAIR” (see Chapter 6 of [14]). The solution provides an allocation
of the storage units to the disks such that, for somer > 0,

∀ j, r ≤ L j

Cj
≤ α · r,(4)

andα is minimized. By Theorem 3.8 we have:

COROLLARY 5.1. If storage units can be distributed among the disks, a (1/α)-utilized
assignment can be found in O(N · M + N log N + N logC) steps, whereα is the value
of the optimal solution of(3).

464 H. Shachnai and T. Tamir

To observe thatα is small (that is, close to 1), note that, in any optimal solution of (3),
the capacity ratio ofDj satisfies⌊

L

C

⌋
≤ L j

Cj
≤
⌈

L

C

⌉
, ∀1≤ j ≤ N.

This immediately yields a bound of 2 onα. More accurately,α ≤ dL/Ce/bL/Cc.

5.2. Achieving Almost Optimal Utilization. In Section 4 we presented a dual approxi-
mation algorithm for the CMKP. In terms of MOD systems, it means that we can achieve
the optimal utilization of a system by adding one storage unit to each disk. Indeed, for
a given MOD system, such changes in configuration may be impossible, however, we
can use the approximation algorithm derived from algorithmAr , and the result in Corol-
lary 4.9. This implies that if each of the disks can store at leastb files, for someb ≥ 1,
that is,Cj ≥ b for all 1 ≤ j ≤ N, then the above approximation algorithm achieves
utilization (1− α)Uopt, with α = 1/(b+ 1).

6. Discussion. We have studied two variants of the knapsack problem, namely, the
CMKP and the FPP. We have shown that both problems are NP-hard; for some instances
an optimal polynomial time algorithm exists. We also proposed an approximation algo-
rithm for the CMKP. Finally, we have shown how our results for the CMKP and the FPP
can be used for efficient resource allocation in multimedia storage subsystems.

Our paper leaves open several interesting avenues for future work:

• For the special case whereM = 1, both the CMKP and the FPP are easy to solve. In
contrast, both problems are hard to solve, already for the case whereM = 2, if each
knapsack has a single compartment. It is interesting to investigate further how the
ratio betweenM , the number of items classes, and the number of compartments in the
knapsacks enables us to find an optimal solution for each of the problems efficiently.
Along these lines, it may be possible to formulate weaker versions of the conditions
given in Section 3.1.
• We presented a(1− α)-approximation algorithm for the CMKP, whereα depends

on the input, namely, the capacity ratio of the knapsacks. Can the CMKP (FPP) be
approximated to within a factor 1− ε, for any ε > 0, using a (fully) polynomial
approximation scheme?
• We considered the case wheres(u) = w(u) for anyu ∈ U . A natural extension of

both the CMKP and the FPP would allow items of different types to have different
sizes and different weights.
• We have shown the application of the CMKP and the FPP to the problem of assigning

files to disks in multimedia storage subsystems. An underlying assumption in the
assignment problem was that the hardware configuration is fixed, and our goal is to
make the best use of this configuration, in terms of utilization and fairness. In the dual
problem ofsystem configurationour objective is to achieve a certain quality of service,
and we are allowed to change the hardware configuration. Specifically, given a set of
files, we would like to determine the number of disks that need to be used for storing
and broadcasting these files; the disks may be of several different types, where each

On Two Class-Constrained Versions of the Multiple Knapsack Problem 465

type is characterized by specific storage and load capacity, and a fixed cost. This gives
rise to the following class-constrained version of the fractional bin-packing problem:
suppose we have a setU of |U | = M items; each itemu ∈ U has a sizes(u) ∈ Z+.
We can pack the items inU (allowing items to split) in a collection of bins that may
be of several different types. A bin of typej has volumeVj ; it can holdCj ≥ 1 items
and its cost isFj . Our objective is to pack all the items in a set of bins at minimal cost.
• The CMKP and the FPP can be applied for thestaticassignment of files to the disks.

Static assignment is only the first component of an MOD resource allocation scheme,
in which the initial state of the system is defined. It is then followed by adynamic
phase, in which customer requests arriving to the system need to be serviced. During
the dynamic phase, the popularities of the various files can change. Such changes are
natural, e.g., when dealing with video data available on the world-wide-web sites.
In response, the MOD system should support operations such as file deletions or
replications, as well as reallocations of load. This introduces an on-line version of
each of our packing problems, where the sizes of the sets that we would like to
pack can change dynamically, and we need to update the placement accordingly. The
transition from one placement to another should be done with the minimum number
of reallocations of items to compartments.

Acknowledgments. We would like to thank the reviewers, for providing many helpful
comments and suggestions.

Appendix. In this appendix we show the validity of our results for general instances
of the CMKP and the FPP, in which the total number of items is not necessarily equal
to the sum of volumes of the knapsacks, namely,|U | 6= V . Note that the definitions
of utilization and fairness, as given in Sections 2.1 and 2.2, do not depend on the ratio
between|U | andV . This ratio, however, influences the definition ofperfect placement.
When|U | 6= V , the maximal possible utilization is min(|U |,V). When the objective is to
maximize fairness, an optimal placement is min(1,V/|U |)-fair.4 For a general instance,
a placement isperfect if it is optimal with respect to utilization as well as fairness.
Formally,

DEFINITION A.1. A perfect placementis a placement that is min(1,V/|U |)-fair, in
which one of the following is satisfied: (i) all the items are packed, or (ii) all the knapsacks
are full.

We now argue, that all the results presented in Section 3 hold for general inputs:

• If V > |U |, then add onedummy setof sizeV − |U | to obtain an instance in which
V = |U |. After placing the items in the knapsacks, omit the “dummy” items.

4 Standard rounding techniques [14] can be applied here to determine the exact number of items to be packed
from each type.

466 H. Shachnai and T. Tamir

• If V < |U |, a perfect placement is(V/|U |)-fair. For each seti , determine|U ∗i | =
(V/|U |)|Ui | (rounded to integers, such that

∑
i |U ∗i | = V). The resulting instanceU ∗

satisfies|U ∗| = V .

All the algorithms presented in Section 3 can be applied to the above adjusted instances,
to produce perfect placements for the original instances. Special tuning is needed in
the proof of Theorem 3.1: whenV > |U |, the added dummy set may not satisfy the
condition |Ui | ≥ (ε · |U |)/M . To solve this potential problem, the algorithm has to
consider the dummy set first: note that one (arbitrarily small) fraction of a set is allowed
in each knapsack, hence, the dummy set can serve as the fraction placed in the first
knapsack.

Our results in Section 4 also hold for general inputs, namely, the statements of The-
orem 4.1 and Corollary 4.9 remain valid. In fact, the algorithmAr , used in the proof of
Theorem 4.1, can be applied for any instance of the CMKP. It is sufficient to show the
validity of Corollary 4.6 and Lemmas 4.3, 4.7, and 4.8. First note that only the proof of
Lemma 4.8 assumes that|U | = V . We now show how the proof of this lemma can be
modified to argue that all the knapsacks filled during the fourth stage are “saturated,”
also when|U | 6= V . We consider separately two cases:

(i) If |U | > V , then as in the case where|U | = V , the sum of the sizes of the remaining
sets always exceeds the total remaining volume.

(ii) If V > |U |, then all the knapsacks filled during the fourth stage are saturated untilR
is empty, or until all the knapsacks are filled. IfR is empty (no requests are left), it
means that we packed all the elements ofU , which is clearly optimal. If we run out
of knapsacks, then, as in the case where|U | ≥ V , it means that all the knapsacks
filled in this stage are saturated. Thus, the only waste of volume is the inevitable
w = w1+ w2+ · · · + wn (from the two first stages).

In both cases the utilization achieved byAr is at least the maximal possible utilization
for the original instance,I .

References

[1] C. Aggarwal, J. Wolf, and P. S. Yu, On optimal piggyback merging policies for video-on-demand
systems, inProceedings of Sigmetrics, 1996, pp. 200–209.

[2] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju, Staggered striping in multimedia information
systems, inProceedings of SIGMOD, 1994, pp. 79–90.

[3] A.K. Chandra, D.S. Hirschberg and C.K. Wong, Approximate algorithms for some generalized knapsack
problems,Theoret. Comput. Sci., 3 (1976), 293–304.

[4] P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson, RAID: high performance, reliable secondary
storage,ACM Comput. Surveys, 26(2) (1994), 145–185.

[5] T. Corman, C. Leiserson, and R. Rivest,Introduction to Algorithms, The MIT Press, Cambridge, MA,
1990.

[6] M.R. Garey and D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco, CA, 1979.

[7] G.V. Gens and E.V. Levner, Computational complexity of approximation algorithms for combinatorial
problems, inProceedings of the8th International Symposium on Mathematical Foundations of Computer
Science, Lecture Notes in Computer Science, Vol. 74, Springer-Verlag, Berlin, 1979, pp. 292–300.

On Two Class-Constrained Versions of the Multiple Knapsack Problem 467

[8] L. Golubchik, J.C.S Lui, and R.R. Muntz, Adaptive piggybacking: a novel technique for data sharing
in video-on-demand storage servers,ACM Multimedia Systems J., 4(3) (1996), 140–155.

[9] R.L. Graham, Bounds for certain multiprocessing anomalies,Bell Systems Tech. J., 45 (1966), 1563–
1581.

[10] R.L. Graham, Bounds on multiprocessing timing anomalies,SIAM J. Appl. Math., 17 (1969), 263–269.
[11] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Optimization and approximation in

deterministic sequencing and scheduling: a survey,Ann. Discrete Math., 5 (1979), 287–326.
[12] D.S. Hochbaum,Approximation Algorithms for NP-Hard Problems, PWS, Boston, MA, 1995.
[13] D.S. Hochbaum and D.B. Shmoys, Using dual approximation algorithms for scheduling problems:

practical and theoretical results,J. Assoc. Comput. Mach., 34(1) (1987), 144–162.
[14] T. Ibaraki and N. Katoh,Resource Allocation Problems - Algorithmic Approaches, The MIT Press,

Cambridge, MA, 1988.
[15] O.H. Ibarra and C.E. Kim, Fast approximation for the knapsack and the sum of subset problems,

J. Assoc. Comput. Mach., 22 (1979), 463–488.
[16] M. Kamath, K. Ramamritham, and D. Towsley, Continuous media sharing in multimedia database

systems, inProceedings of the Fourth International Conference on Database Systems for Advanced
Applications, Singapore, 1995, pp. 79–86.

[17] P.W.K. Lie, J.C.S. Lui, and L. Golubchik, Threshold-based dynamic replication in large-scale video-on-
demand systems, inProceedings of the Eighth International Workshop on Research Issues in Database
Engineering(RIDE), Orlando, FL, February 1998, pp. 52–59.

[18] S. Martello and P. Toth, Algorithms for knapsack problems,Ann. Discrete Math., 31 (1987), 213–258.
[19] D. Pisinger, Algorithms for Knapsack Problems, Ph.D. Thesis, Department of Computer Science, Uni-

versity of Copenhagen, February 1995.
[20] S.S. Skiena,The Algorithm Design Manual, Springer-Verlag, New York, 1998.
[21] J.L. Wolf, P.S. Yu, and H. Shachnai, Scheduling issues in video-on-demand systems, inMultimedia

Information Storage and Management(Soon M. Chung, ed.), Kluwer, Dordrecht, 1996, pp. 183–207.
[22] J.L. Wolf, P.S. Yu, and H. Shachnai, Disk load balancing for video-on-demand systems,ACM Multimedia

Systems J., 5 (1997), 358–370.

