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ABSTRACT
The generalized windows scheduling problem for n jobs on
multiple machines is defined as follows: Given is a sequence,
I = 〈(w1, `1), (w2, `2), . . . , (wn, `n)〉 of n pairs of positive
integers that are associated with the jobs 1, 2, . . . , n, respec-
tively. The processing length of job i is `i slots (a slot is
the processing time of one length unit). The goal is to re-
peatedly and non-preemptively schedule all the jobs on the
fewest possible parallel machines such that the gap (window)
between two consecutive executions of the first slot of job i
is at most wi slots. This problem arises in push broadcast
systems in which data is transmitted on parallel channels.

The problem is NP-hard even for unit-length jobs and a
(1+ε)-approximation algorithm is known for this case by ap-
proximating the natural lower bound W (I) =

Pn
i=1(1/wi).

The techniques used for approximating unit-length jobs can-
not be applied for arbitrary-length jobs mainly because the
optimal number of machines might be arbitrarily larger than
the generalized lower bound W (I) =

Pn
i=1(`i/wi). Our

main result is an 8-approximation algorithm for the gen-
eralized windows scheduling problem using new methods,
different from those used for the unit-length case. We also
present an algorithm that uses 2(1+ε)W (I)+log wmax ma-
chines and a greedy algorithm that is based on a new tree
representation of schedules. The greedy algorithm is opti-
mal for some special and simulations show that it performs
very well in practice.
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1. INTRODUCTION

The generalized windows scheduling problem for n jobs on
parallel machines is defined as follows: Given is a sequence of
n positive integer pairs I = 〈(w1, `1), (w2, `2), . . . , (wn, `n)〉
that are associated with the jobs 1, 2, . . . , n, respectively.
The processing length of job i is `i slots. For simplicity, we
assume integer lengths and that each unit of length takes one
slot of time in the schedule. The goal is to repeatedly and
non-preemptively schedule all the jobs on the fewest possible
parallel machines such that the gap (window) between any
two consecutive executions of the first slot of job i is at most
wi slots.

Example: Let I = 〈(4, 2), (8, 4), (8, 2), (16, 4), (16, 4)〉 for
jobs a, b, c, d, e, respectively. By calculating the total process-
ing requirements of the jobs, it is clear that more than
one machine is needed. A possible schedule using 2 ma-
chines is the following: [a, a, c, c, a, a, ∗, ∗] on one machine
and [b, b, b, b, d, d, d, d, b, b, b, b, e, e, e, e] on the other. Sched-
ules are represented by their periodic cycle where the “∗”
symbol stands for an idle slot. Observe that the window
between any two appearances of any of any of the five jobs
is always exactly as required.

The windows scheduling problem belongs to the class of
periodic scheduling problems in which n jobs need to be
scheduled infinitely often on m parallel machines (the num-
ber of machines is sometimes part of the input and not an
optimization goal). Each job has a length and is associated
with a frequency (or share) requirement. For example, a
job might need to be executed one half of the time. The
quality of a periodic schedule is measured by the actual fre-
quencies in which the jobs are scheduled, and the regularity
of the schedule regarding the gaps between consecutive ex-
ecutions of each job. This distinguishes periodic scheduling
from traditional scheduling in which each job is executed
only once and is associated with parameters like release time
and deadline. The traditional optimization goal for periodic
scheduling is an “average” type goal in which job i must be
executed a specific fraction of the time. Our problem con-
siders a different objective of a “max” type: the gap between
any two consecutive executions of job i must be at most wi

which implies in particular that job i is executed at least
`i/wi of the time.

Previous results for the windows scheduling problem ei-
ther assumed one machine with unit-length jobs (the pin-
wheel problem [21, 22]), unit-length jobs with multiple ma-
chines ([4, 6]), or one machine with arbitrary-length jobs
(the generalized pinwheel problem [10, 16]). To the best of



our knowledge, we are the first to consider the generalized
windows scheduling problem.

1.1 Applications and Motivation

Periodic scheduling in general and windows scheduling in
particular can be thought of as a scheduling problem for
push broadcast systems (as opposed to pull broadcast sys-
tems). One example is the Broadcast Disks environment
(e.g., [1]) where satellites broadcast popular information
pages to clients. Another example is the TeleText environ-
ment (e.g., [2]) where running banners appear in some televi-
sion networks. In such systems, there are clients and servers
where the servers choose what information to push and in
what frequency in order to optimize the quality of service
for the clients. This optimization objective belongs to the
average type periodic scheduling problems. In a more gen-
eralized model (e.g., [7, 19]), the servers “sell” their broad-
casting service to various providers who supply content and
request that the content be broadcast regularly. The regu-
larity can be defined by a window that represents the maxi-
mum delay before a client receives a particular content. This
is modelled by the windows scheduling problem.

In harmonic windows scheduling (e.g., [5]), jobs represent
segments of movies. For 1 ≤ i ≤ n, the window of segment
i is wi = D + i, where n is the number of equally sized
segments of the movie and DL/n is the guaranteed startup
delay for an uninterrupted playback of a movie of length L.
Harmonic windows scheduling is the basis of many popular
media delivery schemes (e.g., [24, 23]) that are based on
the concept of receiving data from multiple channels and
buffering data for future playback. This concept was first
developed in [30] and was the subject of numerous papers
in the last decade.

There is an interesting application of the generalized win-
dows scheduling problem in compressed video delivery. When
the video is compressed, frame (segment) i is associated with
a length `i measured in time slots. Different compressed
frames may have different lengths. Let L be the length of
a decompressed frame also in time slots. The entire frame
would have to be received before it could be decompressed
and played back. Suppose the desired delay to play back
the video is D slots. The first frame of length `1 must be
entirely received in every window of size w1 = D. The sec-
ond frame of length `2 must be entirely received in every
window of size w2 = D + L. In general, the ith frame of
length `i must be entirely received in every window of size
wi = D + (i− 1)L.

1.2 Related Work

The pinwheel problem was defined in [22] and the gen-
eralized pinwheel problem was considered in [10, 16]. In
these and other papers about the pinwheel problem, the fo-
cus was to understand which inputs can be scheduled on
one machine. For example, [12] optimized the bound on the
value of

Pn
i=1(1/wi) that guarantees a feasible schedule [12].

The windows scheduling problem was defined in [4] where
schedules were defined that use opt + O(ln(opt)) machines,
where opt is the number of machines used by an optimal
solution.

In [27] periodic scheduling was defined to be a schedule
where a job with window w is scheduled exactly once in
every time interval of the form [(k − 1)w, kw] for any inte-

ger k. This is a typical fairness requirement for the average
type periodic scheduling. In [28] an optimal solution for the
chairman assignment problem was presented for a stronger
fairness condition that depends on the prefix of the sched-
ule. These papers considered unit-length jobs on a single
machine. In the generalized model, each job has an arbi-
trary length and it can be scheduled on multiple machines.
For this case, [9] proposed Pfair schedules in which the num-
ber of slots allocated to a job whose share request (measured
by the fraction of time it should be processed) is f in any
prefix of t time slots is either bf · tc or df · te.

The broadcast disks problem, which is an average type
periodic scheduling problem, was introduced in [1]. Unit-
length jobs were addressed and constant approximation so-
lutions were presented in [3]. These results were improved
in [26] which presented a polynomial time approximation
scheme. The arbitrary length case was considered and a
constant approximation solution was presented in [25].

In perfect periodic schedules, each job has a fixed window
size (a period) between consecutive executions. The objec-
tive is to minimize the maximum or average ratio between
the granted period and the requested one. This problem
differs from windows scheduling since jobs may get larger
windows than their request. The unit-length case was con-
sidered in [8] and the general case of jobs with arbitrary
lengths was considered in [11].

Windows scheduling with unit-length jobs is a special case
of the bin packing problem (e.g., [13]) and one of our results
takes advantage of this fact. In the unit fractions bin packing
problem, the goal is to pack all the items in bins of unit size
where the size of item i is 1/wi. In a way, bin packing is
the fractional version of windows scheduling where windows
scheduling imposes another restriction on the packing. The
relationship between these two problems and their off-line
and the on-line cases were considered in [6].

Recent work on video-on-demand systems has provided
lower bounds on delay required to deliver media that also
applies to the special case of windows scheduling as a media
delivery scheme [14, 15, 20]. These bounds can be achieved
in the limit in the windows scheduling model [5].

1.3 Contributions

Notations and definitions: Denote by w-job a job with
window w and by (w, `)-job a job with window w and length
`. An instance in which all the windows and all the lengths
are powers of 2 is called a power-2 instance. The width of a
(w, `)-job is `/w. W (I) =

Pn
i=1(`i/wi) is the total width of

the jobs in I = 〈(w1, `1), (w2, `2), . . . , (wn, `n)〉. We consider
only non-preemptive schedules in which the `i slots allocated
to job i must be successive. We note informally that the pre-
emptive version is identical to windows scheduling of unit-
length jobs by replacing each (w, `)-job by ` (w, 1)-jobs. We
assume that `i ≤ wi for all 1 ≤ i ≤ n. Otherwise, the def-
inition of schedules and windows should be modified. Two
special types of schedules are Perfect schedules – in which
for each job there exists some w′i ≤ wi such that the gap
between any two executions of job i is exactly w′i slots, and
Thrift schedules – that are perfect schedules in which for all
i, w′i = wi. For an instance I, let OPT (I) denote the num-
ber of machines used in an optimal, not necessarily thrift,
schedule, and let OPTT (I) denote the number of machines



used in an optimal thrift schedule.

Since a restricted version of the optimal windows schedul-
ing problem is NP-hard even for one channel ([3, 16, 6]),
we look for approximate solutions. A natural lower bound
to the generalized windows scheduling problem is the total
width of the jobs. Since job i requires at least `i/wi frac-
tion of a machine, at least W (I) =

Pn
i=1(`i/wi) machines

are required in order to accommodate all the jobs. For the
unit-length case this lower bound is very close to the optimal
solution and indeed (1+ε)-approximation solutions exist for
small values of ε. The following example demonstrates that
this lower bound can be arbitrarily far from the optimal
solution for the generalized windows scheduling problem.

Example: Let I = 〈(r, 1), (r2, r), . . . , (rn, rn−1)〉 be an in-
stance consisting of n jobs where r ≥ 2 is an integer. It
is not hard to see that no two jobs can be executed on the
same machine and therefore any feasible schedule must use
at least n machines. On the other hand, each job demands
1/r of a machine for a total demand of n/r machines. Thus,
the ratio between the optimal solution and this lower bound
is at least r which can be arbitrarily large.

We develop new approximation algorithms that are based
on novel methods and techniques. We consider two special
cases: (i) In thrift schedules the gap between two execu-
tions of job i must be exactly wi (in non-thrift schedules
jobs may be scheduled more frequently). (ii) In power-2 in-
stances, windows and lengths are powers of 2. This case can
be optimally solved for unit-length jobs, but complex and
interesting problems arise in the general case. In particular,
the thriftiness paradox presented in this paper implies that
even for power-2 instances it might be useful to schedule
some jobs more frequently than their demand in order to
use fewest machines.

For thrift schedules of power-2 instances, we present an
optimal algorithm. This algorithm serves as the basis for
an 8-approximation algorithm for the generalized windows
scheduling problem after rounding both the windows and the
lengths to power of 2 values. We also present an algorithm
that uses 2(1 + ε)W (I) + log wmax machines and a greedy
algorithm that is based on a tree representation of sched-
ules. This greedy algorithm is evaluated by simulation, and
performs very well in practice. A variant of this algorithm
is optimal for thrift schedules of power-2 instances.

2. PRELIMINARIES

2.1 Hardness Proof

The windows scheduling problem for unit-length jobs is
known to be NP-hard. For this case, an optimal algorithm
exists when all the wi’s are powers of 2. By contrast the
generalized problem is strongly NP-hard even if all the wi’s
are powers of 2.

Theorem 2.1. The generalized windows scheduling prob-
lem is strongly NP-hard even if all the windows are powers
of 2.

Proof. We show a reduction from 3-partition, which is
strongly NP-hard [18]. An instance of 3-partition is defined
as follows.
Input: A finite set A of 3m elements, a number B ∈ Z+,
and a size s(x) for each x ∈ A, such that each s(x) satisfies

B/4 < s(x) < B/2 and such that
P

x∈A s(x) = B.
Output: Is there a partition of A into m disjoint sets,
S1, S2, . . . , Sm, such that, for 1 ≤ i ≤ m,

P
x∈Si

s(x) = B?

(Note that the above constraints on the element sizes im-
ply that every such Si must contains exactly three elements
from A).

Given an instance of 3-partition, we construct an input,
I, for windows scheduling, such that all the windows in I
are powers of 2 and I has a schedule on one machine if and
only if A has a 3-partition.

Let W > B be a power of 2, and let k > m be a power of 2.
For each x ∈ A there is an item with parameters (kW, s(x))
in I. In addition, I includes one item z with parameters
(W, W −B), and k−m dummy items, d1, d2, . . . , dk−m with
parameters (kW, B). If A has a partition then I has the
following schedule: [z,S1, z,S2, z, . . . ,Sm, z, d1, z, d2, . . . , z,
dk−m], where Si is a consequent schedule of the items orig-
inated from Si in arbitrary order. Since

P
x∈Si

s(x) = B,
the window of z is `z + B = W − B + B = W , as needed.
Also, the window of each of the other items is kW , since
the total length of the items in this schedule is

P
x∈A s(x)+

k`z + (k −m)B = mB + k(W −B) + (k −m)B = kW .
Note that

P
i∈I `i/wi = 1, thus, any schedule of I on one

machine must be thrift. In particular, if I has a schedule on
one machine then the schedule of z must be with an exact
W -window. This means that the k idle intervals of B slots
between the first k + 1 executions of z induce a partition
of A. Specifically, k −m of these intervals are allocated to
the dummy items and the remaining m intervals induce a
partition.

2.2 The Thriftiness Price

For an instance I, the thriftiness price is defined as the ra-
tio OPTT (I)/OPT (I). We show that sometimes the thrifti-
ness price can be very high. It means that thrift schedules
allocate the fewest possible number of slots to jobs, but on
the other hand, they might require many more machines.
In fact, even for unit-length jobs the thriftiness price is not
bounded. For a desired ratio r, consider an instance with r
requests such that wi = pi and `i = 1 where p1, . . . , pr are
r distinct primes greater than r. A thrift schedule must use
r machines since jobs with relatively prime windows cannot
be scheduled on the same machine. On the other hand, the
simple round-robin schedule is a non-thrift schedule on one
machine. It is feasible since the granted window for job i is
r which is smaller than the required window wi.

For power-2 windows and unit-length jobs, a known opti-
mal algorithm for a thrift schedule ([4]) uses OPT (I) ma-
chines, thus the thriftiness-price ratio is 1. Also, for power-2
instances, two polynomial time optimal algorithms that use
OPTT (I) machines are given in this paper. However, even
for power-2 instances, we can sometimes gain from schedul-
ing a job with a window smaller than its demand. The prob-
lem of finding a schedule in OPT (I) machines for power-2
instances remains open. Moreover, we do not know if the
problem is NP-hard. The following example demonstrates
this “paradox”.

Paradox Example: Consider an instance consisting of
one job z = (4, 1) and five (16, 2)-jobs a, b, c, d, e. A per-
fect non-thrift schedule (of length 15) for this instance is:
[z, a, a, z, b, b, z, c, c, z, d, d, z, e, e]. Job z is granted a win-
dow 3 and each of the other five jobs is granted window 15.



However, no 1-machine schedule in which the window size
of z is 4 exists because only one (16, 2)-job can be scheduled
between any two z’s that are four slots apart. In any 16 con-
secutive slots we have four such holes and five (16, 2)-jobs
to schedule.

The next two theorems show that the above example can
be extended for any number of machines h, and that on
the other hand, this 2-ratio (two machines instead of one
machine in the example) is tight.

Theorem 2.2. If I is a power-2 instance, then OPTT (I)
≤ 2 ·OPT (I).

Proof. Given a schedule of I on h machines, construct
a thrift schedule of I on 2h machines. In particular, for the
optimal schedule of I we get the statement of the theorem.

The construction is per-machine, that is, given a machine,
M , that processes the set of jobs IM = {wi, `i} ⊆ I, we
show that the optimal thrift algorithm, AT , will schedule
this set of jobs thriftily on at most two machines. Since the
jobs of IM are scheduled on a single machine it is known
that

P
i∈IM

`i/wi ≤ 1, and also, for any job i in IM , `i <

wmin(IM ). In other words, the length of any job in IM is
less than the minimal window of a job in IM . This is true
since otherwise, these two jobs cannot be assigned to the
same machine - as job i must be allocated `i consequent
slots, leaving no slot for a job with wmin in this segment.

Consider the execution of AT on IM . Observe first that
we will never have dedicated machines to a (w, w)-jobs. This
is true since grouped jobs have the length of the longest job
in the group, which is by the above, always less than wmin,
and thus also less than the current considered window size.
Thus, all the jobs will be packed in the last iteration. Let
wmax = 2kwmin. When moving from iteration i to iteration
i + 1, AT might add a dummy job of window wmax/2i and
length at most wmin/2 (by the above, this is the maximal
possible length of any job). The width of this additional
job is (wmin/2)/(2k−iwmin) = 1/2k−i+1. Therefore, along
the whole execution, as i is increased from 0 to k − 1, the
total width added by dummy jobs is at most 1/2k+1 + . . . +
1/8 + 1/4 < 1. Since these are the only dummy jobs added,
and AT packs optimally all the jobs of the last iteration (all
having window wmin), the total number of machines used is
it most dH(IM ) + H(dummy jobs)e ≤ d1 + 1e ≤ 2.

Theorem 2.3. For any integer h, there exists a power-2
instance I such that OPT (I) = h and OPTT (I) = 2h.

Proof. For any i = 0, 4, 8, 4k, . . ., define the instance Ii

consisting of six jobs: a single (2i+2, 2i)-job, denoted zi, and
five (2i+4, 2i+1)-jobs, denoted ai, bi, ci, di, ei. For example,
I0 = {(4, 1), (16, 2), (16, 2), (16, 2), (16, 2), (16, 2)} which is
the instance from the paradox example above, and I4 =
{(64, 16), (256, 32), (256, 32), (256, 32), (256, 32), (256, 32)}.

For a given h, the instance I∗h consists of a union of any
h different instances from the above set of instances (say,
the first h). An important observation is that jobs from Ii

and Ij for i > j cannot be scheduled on the same machine.
This is true since the length of any job in Ii is at least the
window of any job in Ij .

Claim 2.4. For any i, there is a non-thrift schedule of Ii

on one machine.

Proof. The following is a non-thrift perfect schedule for
ai, bi, ci, di, ei, zi: [zi, ai, zi, bi, zi, ci, zi, di, zi, ei], where each

appearance of zi is for 2i slots and each appearance of one
of the other five jobs ai, bi, ci, di, ei is for 2i+1 slots. The
window of zi is therefore 2i + 2i+1 < 2i+2, and the window
of the other five jobs ai, bi, ci, di, ei is 5(2i+2i+1) < 2i+4.

Claim 2.5. For any i, there is no thrift schedule of Ii on
one machine.

Proof. Note that only one (2i+4, 2i+1)-job can be sched-
uled between any two consecutive schedules of z = (2i+2, 2i).
In any 2i+4 consecutive slots we have four such holes and five
(2i+4, 2i+1)-jobs to schedule. Thus, an additional machine
must be used.

Combining the above claims with the fact that jobs from
different Ii’s cannot be scheduled on the same machine,
yields the 2-ratio.

2.3 Uniform Lengths or Uniform Windows

If all the jobs have the same length then the problem can
be reduced to the unit-length case. Let ` be the uniform
length of all jobs. If all windows are multiples of ` then
it is possible to replace all (k`, `)-jobs by (k, 1)-jobs. The
resulting instance, I ′, has unit lengths and any schedule of
it can be “stretched” by a factor of ` to produce a schedule
of the original instance. Also, each schedule of the original
instance induces a schedule of I ′. For arbitrary windows, it
is possible to round down a window of size k`+r, r < ` to be
k` without hurting the solution. A stretching and shifting
argument is used to prove the following:

Theorem 2.6. Let I be an instance in which all jobs have
the same length `. Let I ′ be the instance obtained from I by
replacing each (k` + r, `)-job (0 ≤ r < `) by a (k`, `)-job.
Then OPT (I) = OPT (I ′).

If all jobs have the same window, w, then the problem is
reduced to Bin-packing with discrete sizes. Formally, items
of sizes in {1/w, 2/w, . . . , w/w} are to be packed in a min-
imal number of bins of size 1, where a (w, `)-job is repre-
sented by an item of size `/w. Using the known APTAS for
bin-packing [29], we get an APTAS for this special case of
windows scheduling.

3. OPTIMAL THRIFT SCHEDULE OF
POWER-2 INSTANCES

We present an optimal algorithm for thrift schedules of
instances in which all the wi’s and `i’s are powers of 2. The
algorithm, denoted AT , schedules all the jobs in a minimal
number of parallel machines. Let wmin and wmax denote
the minimal and maximal windows in I. The algorithm
produces a schedule of length wmax (to be repeated cycli-
cally). We use the following property of thrift schedules of
jobs with power-of-2 windows:

Claim 3.1. In any thrift schedule, for each of the ma-
chines, if a w-job is scheduled on slot x, then slot x + w/2
on this machine is idle or allocated to a job having window
at least w.

Proof. Consider a wi-job with wi < w. We show that
job i cannot be scheduled on slot x+w/2. Since all windows
are powers of 2, wi = w/2j for some j > 0. Thus, if job i is
scheduled on slot x + w/2, it must be scheduled also on slot
x, which is occupied by the w-job.



Algorithm AT : Assume wmax = 2kwmin. The algorithm
proceeds in three phases.

Phase 1: The first phase of the algorithm consists of k
iterations. In the first iteration, the algorithm considers the
wmax-jobs. Some of these jobs are scheduled and the rest
are replaced by (wmax/2)-jobs. The set of non-scheduled
jobs (original jobs and the newly created (wmax/2)-jobs),
are moved to the next iteration. Generally, let Ii denote the
set of jobs that are not scheduled before iteration i, where i
goes from 0 to k−1, in particular, I0 = I. In iteration i, AT

schedules some of the (wmax/2i)-jobs on hi machines, and
replaces the rest of the (wmax/2i)-jobs by (wmax/2i+1)-jobs.
This way, in Ii, all the jobs have window at most wmax/2i.

We now describe the way Ii+1 is built from Ii. Let M be
the set of jobs having the maximal window, w = wmax/2i,
in Ii. AT first schedules each (w, w)-job on a dedicated
machine. Let hi be the number of these jobs. From the
remaining jobs, AT constructs the instance Ii+1 as follows:
Sort the jobs of M such that `1 ≥ `2 ≥ . . .. Let j be such
that `1 = `2+`3+ ...+`j . If no such j exists, it must be that
`1 > `2 + `2 + ...+ `|M| (because each `i is a power of 2) and
all the jobs of M are replaced by one (w/2, `1)-job. If such a
j exists, AT replaces the j jobs with one (w/2, `1)-job, and
continues in the same way with the rest of M . In addition,
all the jobs of Ii having window smaller than w are moved
to Ii+1.

Phase 2: Recall that in Ii all the jobs have windows at
most wmax/2i, thus, all jobs in Ik have windows at most
wmax/2k = wmin. In other words, Ik consists of wmin-
jobs. In the second phase of the algorithm, AT schedules
Ik optimally on h′ = dP(w,`)∈Ik

`/wmine machines by par-

titioning them into h′ sets such that the total length of the
jobs in each set is at most wmin. Since ` is a power of 2
and ` ≤ wmin for all (w, `) ∈ Ik, such a partition exists and
can be found by any ‘any fit’ algorithm that considers the
jobs in non-increasing order of their lengths. Given such a
partition, AT allocates one machine to each of the h′ sets
and schedules the jobs of each set sequentially and thriftily
on this machine. The length of this optimal schedule of Ik

is wmin.

Phase 3: During the third phase of the algorithm, after
scheduling optimally Ik, AT backtracks to schedule the orig-
inal set of jobs, I. This phase consists of k iterations. In
iteration i, i = k, k − 1, . . . , 1, AT moves from a schedule
of Ii of length wmax/2i to a valid thrift schedule of Ii−1

of length wmax/2i−1. Given a schedule of length wmax/2i

of Ii, repeat it to get a schedule of double length. The
jobs with window smaller than wmax/2i−1 were not modified
in the move from Ii−1 to Ii and therefore they are legally
scheduled. In the doubled schedule, every (wmax/2i)-job
appears twice. Some of the (wmax/2i)-jobs in Ii originate
from (wmax/2i−1)-jobs in Ii−1. Each such job of length `
originates from one (wmax/2i−1, `)-job, j, and a set, Bj of
(wmax/2i−1)-jobs with total length at most `. In the double-
length schedule, replace the first appearance of this job by
j and the second appearance by Bj and some idle slots such
that the total length of Bj and the idle slots is `. This
process is done for each of the grouped (wmax/2i)-jobs and
for each machine in the schedule of Ii. The resulting sched-
ule is a feasible thrift schedule of Ii−1 of length wmax/2i−1.

Example execution of AT without dummy jobs: Con-
sider the instance I = 〈a = (4, 1), b = (8, 2), c = (8, 1), d =
(8, 1), e = (16, 2), f = (16, 2), g = (16, 16)〉. It has wmax =
16. AT first dedicates one machine to job g. Next, it replaces
e and f by e′ = (8, 2). The remaining instance is I1 = 〈a =
(4, 1), b = (8, 2), c = (8, 1), d = (8, 1), e′ = (8, 2)〉 in which
w = wmax/2 = 8. In the second iteration, AT replaces b and
e′ by b′ = (4, 2), and c and d by c′ = (4, 1). The remaining
instance is I2 = 〈a = (4, 1), b′ = (4, 2), c′ = (4, 1)〉 in which
w = wmax/4 = wmin = 4. That is, all the jobs have w = 4
and

P
(4,`)∈I2

`/4 = 1. AT now constructs the 1-machine

schedule [a, c′, b′, b′]. Next, it retrieves a schedule of I from
the schedule of I2. This is done by ’opening’ the groups,
first to get a schedule of I1: [a, c, b, b, a, d, e′, e′] and again,
to get the final schedule [a, c, b, b, a, d, e, e, a, c, b, b, a, d, f, f ].
Together with the machine that processes g, this is an opti-
mal two-machine schedule of I.

Example execution of AT with dummy jobs: Consider
the instance I = 〈a = (2, 1), b = (4, 2)〉. It has wmax = 4,
and no additional 4-job exists to be grouped with b. Thus,
b is replaced by b′ = (2, 2) to get I1 = 〈a = (2, 1), b′ =
(2, 2)〉. All the jobs have a 2-window. (2 + 1)/2 < d(2 +
1)/2e = 2, so one dummy job, d = (2, 1), is added and
AT partitions I1 into two sets, each to be scheduled on one
machine. Specifically, one machine for b′ and one for a and
d. Next, to get a schedule of I, AT opens the b′ group to
get [b, b, ∗, ∗] (∗ denotes idle), and replaces the dummy job
by idle slots, to get [a, ∗, a, ∗] on the second machine.

Example 3: Consider the instance I = 〈a = (4, 2), b =
(8, 2), c = (8, 2), d = (8, 4), e = (8, 4)〉. It has wmax = 8.
First, AT replaces d and e by d′ = (4, 4). That is, I1 =
〈a = (4, 2), b = (8, 2), c = (8, 2), d′ = (4, 4)〉. One machine
is dedicated to the new job d′ and AT continues with a, b, c.
The jobs b and c are replaced by b′ = (4, 2). Thus, I2 = 〈a =
(4, 2), b′ = (4, 2)〉. Now all the jobs have the same window
w = 4. and an optimal schedule is [a, a, b′, b′]. Next, AT

doubles this schedule to get the schedule [a, a, b, b, a, a, c, c]
of I1 and doubles the schedule of the d′-machine to get the
schedule [d, d, d, d, e, e, e, e]. These two machines together
form a schedule of I0 = I.

Theorem 3.2. For any power-2 instance, I, AT sched-
ules I on OPTT (I) machines.

Proof sketch: Based on Claim 3.1, it can be shown that
for all i, 0 ≤ i ≤ k−1, if Ii has a feasible schedule on h ma-
chines, then Ii+1 has a feasible schedule on h−hi machines.
In particular this implies that OPTT (Ii+1) ≤ OPTT (Ii)−hi.
Recall that hi is the number of machines dedicated in it-
eration i to (wmax/2i, wmax/2i)-jobs. Combine the above
with the observation that Ik is packed optimally (formally,
OPTT (Ik) = h′), we get that the number of bins used by
AT is

k−1X
i=0

hi + h′ ≤
k−1X
i=0

(OPTT (Ii)−OPTT (Ii+1)) + h′

= OPTT (I0)−OPTT (Ik) + h′

= OPTT (I0) .



4. APPROXIMATION ALGORITHMS FOR
ARBITRARY INSTANCES

Given a general input, we can reduce each window wi to
the nearest power of 2, and schedule separately (as a bin-
packing problem, see Section 2.3) all the jobs whose win-
dows were rounded to 2u. The rounding produces log wmax

uniform-window instances. When using an APTAS for the
induced bin-packing problem [29], this approach gives a gen-
eral algorithm that uses 2(1 + ε)W (I) + log wmax machines.
We omit the details. We now present our main result: an
8-approximation algorithm.

Let I be an arbitrary instance. Let J ′ be the instance
obtained from I by rounding the lengths down to powers
of 2 and rounding the windows up to powers of 2. Clearly,
J ′ is a power-2 instance. Note that J ′ is easier than I. In
other words, every schedule for I induces a valid schedule for
J ′, by allocating to each job of J ′ the slots allocated to the
corresponding job in I. In particular, OPT (J ′) ≤ OPT (I).
Let J be the power-2 instance obtained from J ′ by replacing
each (w, `)-job by a (w/2, 2`)-job. If w/2 < 2` then the
(w, `)-job of J ′ contributes a (w, w)-job to J ′. Note that each
(w, `)-job in I is represented in J by a (w′, `′)-job such that
w′ ≤ w and `′ ≥ `, therefore, the instance I is easier than J
meaning that every schedule for J induces a valid schedule
for I. This is also valid for the jobs with w/2 < 2`: being
replaced by a (w, w)-job, each such job will be allocated a
machine - which is clearly sufficient.

Algorithm A: Execute the algorithm AT , which is opti-
mal for power-2 instances, to find an optimal thrift schedule
of J , the hardest instance among the three. The resulting
schedule induces a valid (perfect but not necessarily thrift)
schedule of I.

In order to analyze the approximation ratio of A, we first
bound the cost of doubling the job lengths and the cost of
dividing all windows by 2 in a power-2 instance.

The Cost of Doubling the Lengths: For a power-2 in-
stance J ′, consider the instance J ′′ obtained from J ′ by
replacing each (w, `)-job by a (w, 2`)-job. In other words,
each job in J ′ contributes to J ′′ a job with the same window
and a doubled length. Clearly, J ′′ is also a power-2 instance.
Note that if w = `, then a non-feasible (w, 2w)-job is cre-
ated. To avoid this problem, a (w, w)-job in J ′ contributes
to J ′′ one identical (w, w)-job. However, since we give an
upper bound on OPTT (J ′′), we can assume w.l.o.g. that
such jobs do not exist.

Claim 4.1. OPTT (J ′′) ≤ 2 ·OPTT (J ′).

Proof sketch: Given a thrift schedule of J ′ on h machines,
construct a thrift schedule of J ′′ on 2h machines. Note that
for the optimal schedule of J ′ we get the statement of the
claim. The construction is per-machine, that is, given one
machine that processes thriftily a subset of jobs of J ′, it
must be that AT uses a single machine to schedule those
jobs. It can be shown that AT uses at most two machines
in order to schedule the corresponding subset of jobs of J ′′.
If J ′ consists of a single (w, w)-job, then the corresponding
(w, w)-job in J ′′ is scheduled on a single machine.

The Cost of Dividing the Windows by 2: For a power-
2 instance J ′, consider the instance J ′′ obtained from J ′ by
replacing each (w, `)-job by a (w/2, `)-job. In other words,

each job in J ′ contributes to J ′′ a job with the half-size
window and the same length. By definition, J ′′ is also a
power-2 instance. Note that if w = `, then a non-feasible
(w/2, w)-job is created. To avoid this problem, a (w, w)-job
in J ′ contributes to J ′′ one identical (w, w)-job. In fact,
since we look for an upper bound on OPTT (J ′′), we can
assume without loss of generality that such jobs do not exist.
In addition, since the only possible 1-jobs are (1, 1)-jobs,
the above exception includes also 1-jobs, and therefore J ′′

is well-defined.

Claim 4.2. OPTT (J ′′) ≤ 2 ·OPTT (J ′).

Proof sketch: Let J ′′ = 〈(wi, `i) : 1 ≤ i ≤ n〉 and
J ′ = 〈(2wi, `i) : 1 ≤ i ≤ n〉. Consider the instance K =
〈(2wi, 2`i) : 1 ≤ i ≤ n〉. By Claim 4.1, OPTT (K) ≤
2·OPTT (J ′). We show that OPTT (J ′′) ≤ OPTT (K). Given
a thrift schedule of K, the idea is to construct a schedule
of J ′′ by compressing it by a factor of 2. Assume that time
slots are indexed 1, 2, . . .. It can be shown that there exists
an optimal schedule of K in which all schedules of all jobs
begin in odd-indexed slots. Given such a schedule of K,
for every t ≥ 1, the slots 2t − 1, 2t either process the same
(even-length) job, or are both idle. Therefore, it is possible
to compress this schedule, by taking just the odd slot out of
each such pair. The resulting instance is a schedule of J ′′.

Theorem 4.3. For any instance I, A schedules I on at
most 8 ·OPT (I) machines.

Proof sketch: Combine Claims 4.1 and 4.2, to get OPTT (J) ≤
4OPTT (J ′). An additional factor of 2 is due to the thrift
price for power-2 instances (Theorem 2.2). That is, OPTT (J) ≤
4OPTT (J ′) ≤ 8OPT (J ′), Finally, since J ′ is an easier in-
stance than I we have, OTPT (J) ≤ 8OPT (I).

5. A PRACTICAL ALGORITHM

We present a greedy algorithm for the generalized win-
dows scheduling problem, the output of which is a perfect,
but not necessarily thrift, schedule. For arbitrary instances,
the algorithm is evaluated by a simulation, according to
which it performs very close to the optimal (see Section 5.3).
A variant of this algorithm for thrift schedules of power-2
instances is proved to be optimal. Due to space limitation
we do not detail this variant, we only note that the optimal
schedules it produces are not necessarily identical to those
produced by AT . In overview, the greedy algorithm is simi-
lar to other fit packing algorithms. The algorithm sorts the
jobs according to some deterministic rule (breaking ties ar-
bitrarily) and then jobs are scheduled one after the other
according to the sorted order. Each job is scheduled on one
of the already open machines that can process it, and in
the case there is no such machine, a new machine is added,
and the job is scheduled on it. The machine selection rule
for generalized window scheduling is more involved than is
usually found in solving other problems (like bin-packing)
with a similar strategy. In particular, after the machine is
selected, it is determined in which slots the job will be sched-
uled. In the following we use directed trees to represent the
state of the machines and describe the algorithm formally.



5.1 Tree Representation of Perfect Schedules

Each machine is represented by a directed tree. Every
node in the tree is labelled with a window w and a length
`, representing a periodic (w, `)-schedule on the machine.
Each leaf might be closed or open. A closed (w, `)-leaf is
associated with a (w′, `′)-job scheduled on this machine. In
this case w ≤ w′ and ` ≥ `′. An open (w, `)-leaf is associated
with a (w, `)-periodic idle of the machine (an idle of ` slots
repeated with window w). For example, the tree in Figure 1
represents a schedule of the instance I = {a = (4, 1), b =
(8, 1), c = (8, 1), d = (8, 2), e = (16, 2), f = (16, 2).}.

4, 4

8, 2

8, 38, 3

8, 1

1, 1

8, 1 8, 2

16, 216, 2

4, 34, 1

Figure 1: Tree representation of a 1-machine schedule

Initially, the machine is idle. The associated tree has a
single node - a (1, 1)-leaf, meaning we can schedule a job
with window 1 and length 1 on this machine. An open
(w, `)-leaf can be split into multiple leaves as follows:

1. Split into k open (wk, `)-leaves. For example, a (4, 2)-
leaf can split into three (12, 2)-leaves.

2. Split into k leaves 〈(w, `1), (w, `2), . . . , (w, `k)〉 such thatPk
i=1 `i = `. For example, a (12, 8)-leaf can split into

(12, 5), (12, 2) and (12, 1).

Also, for any w, a (1, 1)-leaf (the root of the tree) can be
replaced by a (w, w)-leaf.

These rules imply a straightforward deterministic map-
ping of trees into a schedule. The schedule is defined recur-
sively. The base case is the (w, w)-root representing an idle
schedule of length w. A (w, `)-node that splits into k (wk, `)-
children represents a round-robin schedule on the children
schedules, each allocated ` slots in any window of wk slots.
A (w, `)-node that splits into k nodes {(w, `1), (w, `2), . . . ,

(w, `k)} such that
Pk

i=1 `i = ` represents a round-robin
schedule on the children schedules, where child i is allocated
`i slots in every window of w slots. The schedule represented
by the tree in Figure 1 is [a, b, d, d, a, c, e, e, a, b, d, d, a, c, f, f ].

5.2 The Greedy Algorithm

In the first stage of the algorithm the jobs are sorted in
non-decreasing order by their window size, that is, w1 ≤
w2 ≤ . . . ≤ wn. Jobs having the same window and different
lengths are sorted in non-increasing order by their lengths.
That is, the w-jobs are sorted such that `1 ≥ `2 ≥ . . ..
For every two jobs (w1, `1) and (w2, `2), the first job comes
before the second one if w1 < w2 or w1 = w2 and `1 ≥ `2.
After sorting, the algorithm schedules the jobs one after the
other according to the sorted order. Let (w, `) be the next

job to be scheduled. A (w, `)-job can be scheduled on any
(w′, x)-leaf such that w′ ≤ w and x ≥ `. Moreover, if w′ =
kw′′ and w′′ ≤ w, a (w′, x)-leaf can split into k (w′′, x)-
leaves, and one of them will be used. In both cases (split
or not), if x > ` the (v, x)-leaf on which (w, `) is scheduled,
splits to a closed (v, `)-leaf that is allocated to the job and
to an open (v, x− `)-leaf.

Scheduling Rule: The algorithm schedules the next (w, `)-
job on a leaf (v, x) that minimizes the lost bandwidth (given
by 1/v− 1/w). Ties are broken in favor of leaves (v, x) with
minimal x ≥ `.

5.3 Simulation Results
The implementation consists of two parts: the algorithm

and the creation of an instance.

Algorithm: The implementation follows directly from the
algorithm specification. The implementation employs search
to find the fewest trees (machines) necessary to schedule
the instance. The maximum number of trees necessary is
the number of jobs n in the instance while the minimum
number of trees is 1. We use binary search in this range to
find the fewest machines necessary.

Instance Generation: In order to test the greedy algo-
rithm, we generated random instances. Let H be the opti-
mal number of trees for a given instance I. We generated
instances with known H values to allow comparisons to the
optimal.

Each instance is generated from a forest of H separate
(1, 1) roots, with each root generating an independent tree.
Given a leaf node in a tree, the implementation randomly
selects (with equal probability) to split it into k (prime num-
ber chosen randomly) children nodes, or to mark the node as
frozen, prohibiting any future splits, or to split it into two
children while conserving the window size in the children.
The implementation uses a threshold value to terminate tree
creation, and these leaves become jobs in instance I.

The optimal number of trees for instance I is exactly the
number of trees, H, used to create the instance. We call
these non-perturbed instances since the jobs in I are exactly
those generated in the tree creation process. To create in-
stances I with less consistent window sizes, we perturb the
window sizes of nodes by increasing them slightly. We de-
note these as perturbed instances. In order to ensure that H
does not decrease, we set a limit on the differences between
the original width `/w and the new width `/w′. Specifically,
the new value w′ can be between w and 1.125w (to keep
modifications small) as long as the total difference in width
for all jobs remains under 1.0 (

P
I (`/w − `/w′) < 1.0).

Experimental Results: We ran the greedy algorithm and
the three variations on 20 non-perturbed instances and 20
perturbed instances for H between 5 and 100 (stepping by
5). The three variations sort the jobs within an instance
in different ways before using the scheduling routine of the
greedy algorithm. The first variation, called Demand, sorts
the jobs according to their widths `/w. The Most demand-
ing jobs (larger `/w) are scheduled first. Ties are broken
in favor of small w. The second variation, called Length,
sorts jobs by length, with longer jobs scheduled first, and
ties are broken in favor of small w. In the final variation,
Online, the jobs are shuffled randomly and scheduled in the
resulting order.
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Figure 2: For non-perturbed (top) and perturbed (bottom) instances: Shows the average difference (20 runs
per H) in number of machines used and the optimal number of machines (H).

The top of figure 2 shows the results for all four algo-
rithms (Orig, Demand, Length, Online) for non-perturbed
instances. The average differences between the number of
machines scheduled and H are shown. In every experimental
run, the original greedy algorithm used the fewest machines
of all four variations and used H or H + 1 machines. The
results are similar for perturbed instances as shown in Fig-
ure 2 (bottom), with the original greedy algorithm using the
fewest machines. For the Demand, Length, and Online ver-
sions, the average difference for each H is roughly twice the
non-perturbed results. The original algorithm used between
H and H + 3 machines in every experimental run. For H
greater than 30 the original greedy is usually optimal.

6. OPEN PROBLEMS
Can the approximation factor 8 be improved? Alterna-

tively, is there a C > 1 for which a C-approximation is
NP-hard? These questions also apply to the special cases
of thrift schedules and windows scheduling of power-2 in-
stances. The optimal algorithm presented in this paper for
power-2 instances is for thrift schedules. Is it NP-hard to
find a non-thrift optimal schedule for these instances? As
shown in the thriftiness paradox, the optimal schedule is not
necessarily thrift.

The greedy algorithm performs very well in practice. Is
there any theoretical bound on its performance? Are there
better natural algorithms for practical instances?



All of our solutions and previous solutions to the original
windows scheduling do not use migrations. That is, a par-
ticular job is scheduled only on one machine. It is open to
see if solutions with migrations perform better.

Thrift schedules and the generalized windows scheduling
are special cases of a general problem in which jobs may be
scheduled with some jitter. That is, job i is associated with
jitter parameters jub

i and jlb
i and the window between any

two consecutive executions of job i must be no smaller than
wi − jlb

i and no larger than wi + jub
i . In a thrift schedule

both jitter parameters equal 0 and in the generalized win-
dows scheduling problem jub

i = 0 and jlb
i = wi−1. This gen-

eralization is motivated by maintenance problems in which
jobs cannot get the service too often.
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