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Abstract. Best response (BR) dynamics is a natural method by which
players proceed toward a pure Nash equilibrium via a local search method.
The quality of the equilibrium reached may depend heavily on the order
by which players are chosen to perform their best response moves. A
deviator rule S is a method for selecting the next deviating player. We
provide a measure for quantifying the performance of different deviator
rules. The inefficiency of a deviator rule S with respect to an initial
strategy profile p is the ratio between the social cost of the worst equi-
librium reachable by S from p and the social cost of the best equilibrium
reachable from p. The inefficiency of S is the maximum such ratio over
all possible initial profiles. This inefficiency always lies between 1 and
the price of anarchy.
We study the inefficiency of various deviator rules in network formation
games and job scheduling games (both are congestion games, where BR
dynamics always converges to a pure NE). For some classes of games, we
compute optimal deviator rules. Furthermore, we define and study a new
class of deviator rules, called local deviator rules. Such rules choose the
next deviator as a function of a restricted set of parameters, and satisfy a
natural independence condition called independence of irrelevant players.
We present upper bounds on the inefficiency of some local deviator rules,
and also show that for some classes of games, no local deviator rule can
guarantee inefficiency lower than the price of anarchy.

Keywords: Congestion games; Best-response dynamics; Deviator rules; Price
of anarchy

1 Introduction

Nash equilibrium (NE) is perhaps the most popular solution concept in games.
It is a strategy profile from which no individual player can benefit by a unilateral
deviation. However, a Nash equilibrium is a declarative notion, not an algorith-
mic one. To justify equilibrium analysis, we have to come up with a natural
behavior model that leads the players of a game to a Nash equilibrium. Oth-
erwise, the prediction that players play an equilibrium is highly questionable.
Best response (BR) dynamics is a simple and natural method by which players
proceed toward a NE via the following local search method: as long as the strat-
egy profile is not a NE, an arbitrary player is chosen to improve her utility by
deviating to her best strategy given the profile of others.



Work on BR dynamics advanced in two main avenues: The first studies
whether BR dynamics converge to a NE, if one exists [21, 17]. The second ex-
plores how fast it takes until BR dynamics converges to a NE [11, 13, 25, 18].
It is well known that BR dynamics does not always converge to a NE, even if
one exists. However, for the class of finite potential games [24, 22], a pure NE
(PNE) always exists, and BR dynamics is guaranteed to converge to one of the
equilibria of the game. A potential game is one that admits a potential function
— a function that assigns a real value to every strategy profile, and has the
miraculous property that for any unilateral deviation, the change in the utility
of the deviating player is mirrored accurately in the potential function. This
mirroring, combined with the fact that the game is finite, guarantees that any
BR sequence must terminate and this happens at some (local) minimum of the
potential function, which is a NE by definition. While BRD is guaranteed to
converge, convergence may take an exponential number of iterations, even in a
potential game [3].

Our focus in this work is different than the directions mentioned above. The
description of BR dynamics leaves the choice of the deviating player unspecified.
Thus, BR dynamics is essentially a large family of dynamics, differing from one
another in the choice of who would be the next player to perform her best
response move. In this paper, we study how the choice of the deviating player
(henceforth a deviator rule) affects the efficiency of the equilibrium reached via
BR dynamics. Our contribution is the following: (i) We introduce a new measure
for quantifying the inefficiency of deviator rules, (ii) we introduce a natural
class of simple and local deviator rules, and (iii) we analyze the inefficiency of
deviator rules in network formation games and job scheduling games. Our results
distinguish between games where local deviator rules can lead to good outcomes
and games for which any local deviator rule performs poorly.

1.1 Model and Problem Statement

A game G has a set N of n players. Each player i has a strategy space Pi, and the
player chooses a strategy pi ∈ Pi. A strategy profile is a vector of strategies for
each player, p = (p1, . . . , pn). The strategy profile of all players except player i is
denoted by p−i, and it is convenient to denote a strategy profile p as p = (pi, p−i).
Similarly, for a set of players I, we denote by pI and p−I the strategy profile
of players in I and in N \ I, respectively, and we write p = (pI , p−I). Each
player has a cost function ci : P → R≥0, where ci(p) denotes player i’s cost in
the strategy profile p. Every player wishes to minimize her cost. There is also a
social objective function, mapping each strategy profile to a social cost.

Given a strategy profile p, the best response of player i is the set of strategies
that minimize player i’s cost, fixing the strategies of all other players, formally
BRi(p) = arg minp′i∈Pi

ci(p
′
i, p−i). Player i is said to be suboptimal in p if the

player can reduce her cost by a unilateral deviation, i.e., if pi 6∈ BRi(p). If no
player is suboptimal in p, then p is a Nash equilibrium (NE) (in this paper we
restrict attention to pure NE; i.e., an equilibrium in pure strategies).

Given an initial strategy profile p0, a best response (BR) sequence from p0

is a sequence 〈p0, p1, . . .〉 in which for every T = 0, 1, . . . there exists a player
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i ∈ N s.t pT+1 = (BRi(p
T
−i), p

T
−i). In this paper we restrict attention to games

in which every BR sequence is guaranteed to converge to a NE.

Deviator rules and their inefficiency. A deviator rule is a function
S : P → N that given a profile p, chooses a deviator among all suboptimal
players in p. The chosen player then performs a best response move (breaking
ties arbitrarily). Given an initial strategy profile p0 and a deviator rule S we
denote by NES(p0) the set of NE that can be obtained as the final profile of a
BR sequence 〈p0, p1, . . .〉, where for every T ≥ 0, pT+1 is a profile resulting from
a deviation of S(pT ) (recall that players break ties arbitrarily, thus this is a set
of possible Nash equilibria)

Given an initial profile p0, let NE(p0) be the set of Nash equilibria reachable
from p0 via a BR sequence, and let p?(p0) be the best NE reachable from p0 via
a BR sequence, that is, p?(p0) = arg minp∈NE(p0) SC(p), where SC : P → R is
some social cost function.

The inefficiency of a deviator rule S in a game G, denoted αGS , is defined as
the worst ratio, among all initial profiles p0, and all NE in NES(p0), between
the social cost of the worst NE reachable by S (from p0) and the social cost of

the best NE reachable from p0. I.e., αGS = supp0 maxp∈NES(p0)
SC(p)

SC(p?(p0)) .

For a class of games G, the inefficiency of a deviator rule S with respect to G is
defined as the worst case inefficiency over all games in G: αGS = supG∈G{αGS }. A
deviator rule with inefficiency 1 is said to be optimal, i.e., an optimal deviator
rule is one that for every initial profile reaches a best equilibrium reachable from
that initial profile.

The following observation shows that the inefficiency of every deviator rule
is bounded from above by the price of anarchy (PoA) [20, 23]. Recall that the
PoA is the ratio between the cost of the worst NE and the cost of the social
optimum, and is used to quantify the loss incurred due to selfish behavior.

Observation 1 For every game G and for every deviator rule S it holds that
the inefficiency of S is at least 1 and bounded from above by the PoA.

Local deviator rules. We define and study a class of simple deviator rules,
called local deviator rules. Local deviator rules are defined with respect to state
vectors, that represent the state of the players in a particular profile. Given a
profile p, every player i is associated with a state vector vi, consisting of several
parameters that describe her state in p and in the strategy profile obtained by her
best response. The specific parameters may vary from one application to another.
A vector profile is a vector v = (v1, . . . , vn), consisting of the state vectors of
all players. A deviator rule is said to be local if it satisfies the independence of
irrelevant players condition, defined below.

Definition 1. A deviator rule S satisfies independence of irrelevant players
(IIP) if for every two state vectors vi1 , vi2 , and every two vector profiles v,v′

such that v = (vi1 , vi2 , v−i1,i2), and v′ = (vi1 , vi2 , v
′
−i1,i2) 3, if S(v) = i1, then

S(v′) 6= i2.

3 Note that the vectors v and v′ may correspond to different sets of players.
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The IIP condition means that if the deviator rule chooses a state vector vi
over a state vector vj in one profile, then, whenever these two state vectors exist,
the deviator rule would not choose vector vj over vi. Note that this condition
should hold even across different game instances and even when the number of
players is different. Many natural deviator rules satisfy the IIP condition. For
example, suppose that the state vector of a player contains her cost in the current
profile and her cost in the profile obtained by her best response; then, both (i)
max-cost, which chooses the player with the maximum current cost, and (ii)
max-improvement, which chooses the player with the maximum improvement,
are local deviator rules.

Congestion games. A congestion game has a set E of m resources, and the
strategy space of every player i is a collection of sets of resources; i.e., Pi ⊆ 2E .
Every resource e ∈ E has a cost function fe : IN→ IR, where fe(`) is the cost of
resource e if ` players use resource e. The cost of player i in a strategy profile p is
ci(p) =

∑
e∈pi fe(`e(p)), where `e(p) is the number of players that use resource

e in the profile p. Every congestion game is a potential game [22], thus admits
a pure NE, and moreover, every BR sequence converges to a pure NE. In this
paper we study the efficiency of deviator rules in the following congestion games:

Network formation games [3]: There is an underlying graph, and every player
is associated with a pair of source and target nodes si, ti. The strategy space of
every player i is the set of paths from si to ti. The resources are the edges of
the graph, every edge e is associated with some fixed cost ce, which is evenly
distributed by the players using it. That is, the cost of an edge e in a profile p is
fe(p) = ce/`(p). In network formation games the cost of a resource decreases in
the number of players using it. We also consider a weighted version of network
formation games on parallel edge networks, where players have weights and the
cost of an edge is shared proportionally by its users. The social cost function
here is the sum of the players’ costs; that is SC(p) =

∑
i∈N ci(p).

The state vector of a player in a network formation game, in a profile p,
consists of: (1) player i’s cost in p: ci(p), (2) the cost of player i’s path:

∑
e∈pi ce,

(3) player i’s cost in the profile obtained from a best response of i: ci(p
′(i))

(where p′(i) = (p−i, BRi(p−i)) is the profile obtained from a best response of i),
and (4) the cost of player i’s path in the profile p′(i):

∑
e∈BRi(p−i)

ce. In weighted
instances, the state vector includes player i’s weight as well.

Job scheduling games [26]: The resources are machines, and players are jobs
that need to be processed on one of the machines. Each job has some length,
and the strategy space of every player is the set of the machines. The load on
a machine in a strategy profile p is the total length of the jobs assigned to it.
The cost of a job is the load on its chosen machine. We also consider games
with conflicting congestion effect ([14, 7]), where jobs have unit length and in
addition to the cost associated with the load, every machine has an activation
cost B, shared by the jobs assigned to it. The social cost function here is the
makespan, that is SC(p) = maxi∈N ci(p). The state vector of a job (player) in a
job scheduling game, in a profile p, consists of the job’s length, the job’s current
machine and the loads on the machines.
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1.2 Our Results

In Section 2 we present our results for network formation games. We first study
symmetric games, where all the players share the same source and target nodes.
We observe that the local Min-Path deviator rule, which chooses the player with
the cheapest best response path, is optimal. In contrast, the local Max-Cost de-
viator rule has the worst possible inefficiency, n (which matches the PoA for
this game). We then consider asymmetric network formation games. Unfortu-
nately, the optimality of Min-Path does not carry over to asymmetric network
formation games, even when played on series of parallel paths (SPP) networks.
In particular, the inefficiency of Min-Path in single-source multi-target instances
is θ(|V |), and for multi-source multi-target instances, it further grows to θ(2|V |).
On the positive side, we show poly(n, |V |) dynamic-programming algorithms for
finding an optimal BR sequence for network formation games played on SPP
networks, for single-source multi-target instances, and for multi-source multi-
target instances with proper intervals (i.e., where no player’s strategy is a subset
of another player’s strategy). The specification of these algorithms is deferred to
the full version due to space constraints. For network formation games played
on extension-parallel networks we show that every local deviator rule has an
inefficiency of Ω(n).

In Section 2.4 we study network formation games with weighted players. It
turns out that weighted players lead to quite negative results. We show that
even in the simplest case of parallel-edge networks, it is NP-hard to find an op-
timal BR-sequence, and no local deviator rule can ensure a constant inefficiency.
Moreover, the Min-Path deviator rule has inefficiency Ω(n), even in symmetric
games on series-parallel graphs, and even if the ratio between the maximal and
minimal weights approaches 1.

The analysis of job scheduling games is deferred to the dull version. A job’s
(= player’s) state vector in job scheduling games includes the job’s lengths and
the machines’ loads. Local deviator rules capture many natural rules, such as
Longest-Job, Max-Cost, Max-Improvement, and more. We show that in an in-
stance with m identical machines, no local deviator rule can guarantee ineffi-
ciency better than the PoA, which is 2m

m+1 . In contrast, for job scheduling games
with conflicting congestion effects [14], we present an optimal local deviator rule.

Positive results on local deviator rules imply that a centralized authority that
can control the order of deviations can lead the population to a good outcome,
by considering merely local information captured in the close neighborhood of
the current state. In contrast, negative results for local deviator rules imply that
even if a centralized authority can control the order of deviations, in order to
converge to a good outcome, it cannot rely only on local information; rather,
it must be able to perform complex calculations and to consider a large search
space.

1.3 Related work

Congestion games have been widely studied from a game theoretic perspective.
The questions that are most commonly analyzed are the existence of a pure NE,
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the convergence of BRD to a NE, and the loss incurred due to selfish behavior
– commonly quantified by the price of anarchy [20, 23] and price of stability [3].

Our work addreses congestion games and some variants thereof. It is well
known that every congestion game is a potential game [24, 22] and therefore ad-
mits a PNE and possesses the finite improvement property (FIP). In particular,
every BRD converges to a PNE. However, the convergence time may, in gen-
eral, be exponentially long. It is shown in [3, 13] that finding a PNE in network
formation games is PLS-complete. Examples for exponential convergence of job
scheduling games are presented in [10]. It has been shown in [9] that in random
potential games with n players in which every player has at most a strategies,
the worst case convergence time is n · an−1.

The observation that the convergence of BRD can be exponentially long has
led to a large amount of work aiming to identify special classes of congestion
games for which BRD converges to a PNE in polynomial time (or even linear
time). Examples include [3] for games with positive congestion effects, and [10,
16] for games with negative congestion effects. For resource selection games (i.e.,
where feasible strategies are composed of singletons), polynomial convergence
has been proven in [18].

Variants of congestion games such as weighted network formation games
and resource selection games with player-specific cost functions have been also
considered in the literature [17, 21]. Some classes of cost functions that always
admit PNE or the FIP were identified in [17]. It was also shown that singleton
weighted congestion games that always admit a PNE do not always have the FIP.
[4, 12] present variants of network formation games in which computing a player’s
best response is NP-hard. A cost-sharing game on unrelated machines has been
studied in [5], where it was shown that a PNE exists only for instances with
unit-cost machines. Moreover, even when a PNE exists and BRD is guaranteed
to converge, the implementation of BRD can be computationally hard.

BRD has been studied also in games that do not converge to a PNE. The
notion of dynamic inefficiency was defined in [6] as the average social cost in
a BR infinite sequence (for games that do not possess the finite improvement
property), and different deviator rules are analyzed with respect to the dynamic
inefficiency measure.

The effect of the deviator rule on the convergence time of job scheduling
games was studied in [10]. This paper considered the convergence time under
the Max-Weight-Job, Min-Weight-Job, FIFO and random deviator rules. The
Max-Cost deviator rule was considered also in [15] for conflicting congestion
games [14, 7], and in [19] for swap-games [2]. In both cases Max-Cost significantly
improves convergence time to O(n).

2 Network Formation Games

In this section we study network formation games. We consider two natural local
deviator rules, namely Max-Cost and Min-Path. The Max-Cost deviator rule
chooses a suboptimal player that currently incurs the highest cost, i.e., Max−
Cost(p) ∈ arg max{i∈N |pi 6∈BRi(p)} ci(p). The Min-Path deviator rule chooses a
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suboptimal player whose path in the profile obtained from a best response move
is cheapest, i.e., Min− Path(p) ∈ arg min{i∈N |pi 6∈BRi(p)}

∑
e∈BRi(p)

ce.

2.1 Warmup: Symmetric Network Formation Games

A network-formation game is symmetric if all the players have the same source
and target nodes. Recall that the inefficiency of any deviator rule is upper
bounded by the price of anarchy (PoA) of the game. It is well known that the
PoA of network formation games is n.

We first show that the Max-Cost rule may perform as poorly as the PoA,
even in symmetric games on parallel-edge networks.

Observation 2 The inefficiency of Max-Cost in symmetric network formation
games on parallel-edge networks is n.

On the other hand, we show that Min-Path is an optimal deviator rule, i.e.,
it always reaches the best NE reachable from any initial profile. Our analysis of
Min-Path is based on the following Lemma:

Lemma 1. In symmetric network formation games, the path chosen by the first
deviator is the unique path that will be chosen by all subsequent players, regardless
of the order in which they deviate.

Lemma 1 directly implies the optimality of Min-Path:

Theorem 1. Min-Path is an optimal deviator rule for symmetric network for-
mation games.

Proof. By Lemma 1 the first deviation dictates the NE to be reached. Thus, the
set of BR paths in p0 are the set of reachable NE. Clearly choosing the cheapest
one among them is optimal. ut

2.2 Series of Parallel Paths (SPP) Networks

In this section we study NFGs played on SPP networks. An SPP network consists
of m segments, where each segment is a parallel-edge network. Let {u0, . . . , um}
denote the vertex set, and for every j ≤ m, let Ej denote the set of edges in
segment j (i.e., the parallel edges connecting uj−1 and uj). For a player i, let
E(i) = ∪si<k≤tiEk, denote the set of edges player i may choose.

Note that in an SPP network, a player’s choice of an edge in Ej is independent
of any other segment in her path. This implies that a NFG on an SPP network
consists of a sequence of symmetric games, where the set of players participating
in each game varies. Combining this observation with Lemma 1 implies:

Lemma 2. In every network formation game played on an SPP network with m
segments, for every 1 ≤ j ≤ m, and every BR sequence, let i be the first player
in the sequence such that Ej ∈ E(i), and let e be the edge in Ej chosen by player
i. Then e is the unique edge in Ej players deviate to.

Based on the above lemma, it is possible to develop polynomial-time al-
gorithms, based on dynamic programming, for finding optimal BR sequences
for SPP networks, for both single-source multi-targets games and multi-source
multi-target games with proper intervals. Due to space constraints, the algo-
rithms are omitted.
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The performance of Min-Path in SPP networks. Recall that Min-Path
was shown to be optimal for symmetric NFGs. We now analyze its inefficiency
for SPP networks. Given an SPP network and a BR-sequence, we say that a
segment is unresolved if there are at least two players whose intervals include
the segment, and each of them will select a different edge in the segment if chosen
to perform a BR next. The other segments are denoted resolved. By Lemma 2,
after player i performs her best response, all the segments in her interval are
resolved. Thus, no player migrates more than once. The reachable NEs have the
same edges in the resolved segments and can only differ in unresolved segments.
Therefore, the migrations of players who use only resolved segments does not
influence the reachable NEs and in the following analyses we ignore them. Thus,
all the deviations we consider resolve at least one segment. We denote by Ri the
resolved segments after i such deviations. Let OPT denote the minimal cost of
a NE reachable from p0 by some BR sequence. Formally, OPT = SC(p?(p0)).

Lemma 3. For any BR sequence of an SPP network instance, as long as there
are unresolved segments, there exists a suboptimal player whose interval includes
unresolved segments, and if this player is chosen next, then the cost of the unre-
solved segments she would set is at most OPT.

Proof. Let p be an intermediate strategy profile in the BR sequence. Consider
the players according to the order they deviate in some optimal BR sequence.
Let i′ be the first player in this order who is suboptimal in p. Since no player
prior to i′ in the optimal sequence is suboptimal, the segments that i′ would
resolve by a deviation from p are a subset of the segments she resolves in the
optimal sequence. In the optimal sequence she obviously resolves these segments
such that the selected edges are of total cost at most OPT , and therefore this
is an upper bound on the total cost of unresolved segments she would set by
deviating from p. ut

Using the above lemma, we provide tight analysis on the performance of
Min-Path for SPPs with multi-targets and single or multiple sources. Note that
in a single-source instance, every player resolves the prefix of the network corre-
sponding to her interval.

Theorem 2. The inefficiency of Min-Path in SPP NFGs with single-source and
multi-targets is θ(m).

Proof. We show that the total cost determined for the segments resolved in
every iteration is at most OPT . Since at least one segment is resolved in each
iteration, the whole network’s cost is bounded by m · OPT . Let i be the i-th
player chosen to deviate by Min-Path and assume i has unresolved segments.
Let i′ be the player guaranteed by Lemma 3. It may be that i = i′. Both players
have the same BR path in the resolved segments and therefore differ only in
their unresolved segments. Since Min-Path chose i, the cost of her unresolved
segments is at most the cost of i′’s unresolved segments, which is at most OPT
by Lemma 3.
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s t1 t3 

𝑒1, 𝑛 − 1 

t2 tn tn-1 

 𝑒1
′ , 1 + 𝜖 

𝑒2, 𝑛 − 2 

𝑒2
′ , 1 + 𝜖 

𝑒3, 𝑛 − 3 

𝑒3
′ , 1 + 𝜖 

𝑒𝑛
′ , 1 + 𝜖 

Fig. 1. A network on which Min-Path has inefficiency Ω(m)

We show that the analysis is tight: Consider the network depicted in Figure
1. There are n = m players, where ti is the target of player i. In the initial
strategy profile for every 1 ≤ i ≤ n, p0i = 〈e1, e2, . . . , ei−1, e′i〉. Note that in every
segment, Ei, connecting ti−1 and ti, the upper edge costs n − i and is used by
the n − i players i+ 1, ..., n and the lower edge costs 1 + ε and is used only by
player i.

In every segment, the players using the upper edge will benefit from deviating
to the lower one and the player using the lower edge will benefit from deviating to
the upper one. By Lemma 2, the first deviation will determine the edge that will
be used in the NE reached. Therefore, a first deviation of player n to 〈e′1, ..., e′n〉
will result in the NE corresponding to that path and has a social cost n · (1 + ε).

Player i’s BR path’s cost is
∑

1≤t≤i−1
(1+ε)+(n−i) = (i−1) ·(1+ε)+(n−i) =

(n− 1) + (i− 1) · ε. Therefore, Min-Path chooses Player 1 to deviate first. After
her deviation all the rest of the players would use e1 in their BR and treating t1
as source shows that the next Player to deviate will be Player 2 and then Player
3 etc. Min-Path’s BR sequence’s NE will consist of 〈e1, ...en−1, e′n〉 and therefore

its inefficiency for this strategy profile is
(n−1)n

2 +1+ε

n(1+ε) →
ε→0

(n−1)n
2 +1

n ≈ n
2 . Since

n = m, we conclude that the inefficiency of Min-Path in SPP networks with
single-source and multi-targets is θ(m).

ut
We next show that Min-Path performs poorly on more general instances.

Theorem 3. The inefficiency of Min-Path in SPP network formation games
with multi-sources and multi-targets is θ(2m).

Proof. Let c(Ri) denote the total cost of resolved segments after i deviations of
players whose deviation resolved at least one segment. Since the initially resolved
segments has to be included in the NE reached, it holds that c(R0) ≤ OPT . We
prove that c(Ri)−c(Ri−1) ≤ c(Ri−1)+OPT for every i; i.e., c(Ri) ≤ 2c(Ri−1)+
OPT . This implies that the total network’s cost is c(Rm) ≤ 2m+1 ·OPT .

Let i be the ith player chosen to deviate by Min-Path that has some un-
resolved segments. The total cost of the unresolved segments that i resolves is
c(Ri)− c(Ri−1). Let i′ be a player guaranteed by Lemma 3. Since i was chosen
by Min-Path, the cost of i’s BR path is lower than the cost of i′’s BR path.
But the cost of i’s BR path is at least the cost of the unresolved segments in
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i’s BR path. On the other hand, the cost of i′’s BR path equals the sum of the
cost of her resolved segments, which is bounded by c(Ri−1) and the cost she
would set to her unresolved segments, bounded by OPT (by Lemma 3). Putting
it all together, we get c(Ri)− c(Ri−1) ≤ c(Ri−1) +OPT , as required. In the full
version, we present a matching lower bound. ut

2.3 Local Rules for Extension Parallel (EP) Graphs

We now show that the inefficiency of any local deviator rule is Ω(n), even in the
restricted class of EP networks. Recall that the state vector of a player consists of
the player’s cost in her current profile and in the profile obtained by a deviation
of the player, and the total cost of the path used by the player in the two profiles.

Theorem 4. For the class of single-source network formation games played on
extension-parallel networks, the inefficiency of every local deviator rule is Ω(n).

Proof. Consider the network depicted in Figure 2(a). There are n players, all
sharing the source s, and the targets are as depicted in the figure. Consider the
following profile: (i) Player 1 uses the path 〈e1〉. (ii) Player 2 uses the path
〈e1, e2〉. (iii) Players 3, 4 use the path 〈e3〉. (iv) Players 5 to n use the path 〈e5〉.

𝑐𝑒1 = 24 

𝑥𝑒1 = 2 

 

s t2,3,4 t5,..,n 

t1 

(𝑎) 

s t2,3,4 t5,..,n 

t1 

(𝑏) 

𝑐𝑒2 = 10 

𝑥𝑒2 = 1 

 

𝑐𝑒3 = 30 

𝑥𝑒3 = 2 

 

𝑐𝑒4 = 0 

𝑥𝑒4 = 0 

 
𝑐𝑒5 = 7.4(𝑛 − 4) 

𝑥𝑒5 = 𝑛 − 4 

 

𝑐𝑒5 = 6.5(𝑛 − 4) 

𝑥𝑒5 = 𝑛 − 4 

 

𝑐𝑒3 = 30 

𝑥𝑒3 = 2 

 

𝑐𝑒4 = 0 

𝑥𝑒4 = 0 

 

𝑐𝑒1 = 24 

𝑥𝑒1 = 2 

 

𝑐𝑒2 = 10 

𝑥𝑒2 = 1 

 𝑐𝑒6 = 10 
𝑥𝑒6 = 1 

 

Fig. 2. A local deviator rule fails (a) if v2 is preferred, and (b) if v3 is preferred. Every
edge is labelled by the edge cost and the number of players using it in the initial strategy
profile. E.g., the edge e1 costs 24 and is used by 2 players in the initial strategy profile.

Recall that the state vector of player i consists of her current cost, the to-
tal cost of her current path, her post-deviation cost, and the total cost of her
post-deviation path. Consider player 2, who uses the path 〈e1, e2〉. Her cur-
rent cost is 22 (she shares the cost of edge e1 with player 1 and pays fully for
edge e2), the total cost of her path is 34, her post-deviation cost is 10 (ob-
tained by deviating to e3, and sharing this cost with players 3, 4), and the to-
tal cost of her post-deviation path is 30. Thus, the state vector of player 2 is
v2 = (22, 34, 10, 30). Similarly, one can verify that the state vector of player 3 (or
layer 4) is v3 = (15, 30, 13, 34) (obtained by deviating to the path 〈e1, e2〉). The
suboptimal players in this profile are players 2 and 3 (or 4). If the deviator rule
chooses the state vector v2 over v3, then player 2 will deviate to e3, reaching a
NE whose social cost is 54 + 7.4(n− 4). On the other hand, if the deviator rule
chooses the state vector v3 over v2, then player 3 will deviate to 〈e1, e2〉, and
from this point on all players will deviate to 〈e1, e2〉, reaching a NE whose social
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cost is 34. We conclude that a deviator rule that prefers v2 over v3 reaches an

inefficiency of 54+7.4(n−4)
34 = Ω(n).

Consider next the network depicted in Figure 2(b). There are n players, all
sharing the source s, with targets as depicted in the figure. Consider the following
profile: (i) Player 1 uses the path 〈e1, e2〉. (ii) Player 2 uses the path 〈e1, e6〉.
(iii) Players 3, 4 use the path 〈e3〉. (iv) Players 5 to n use the path 〈e5〉.

One can verify in a similar analysis to the one showed for the game in 2(a) that

if a deviator rule prefer v3 over v2 then it has inefficiency of 34+6.5(n−4)
30 = Ω(n).

We conclude that any local deviator rule has inefficiency of Ω(n). ut

2.4 Weighted Symmetric Network Formation Games

In this section we consider network formation games with weighted players [1,
17], where every player is associated with a cost wi. If an edge of cost ce is shared
by k players with weights w1, w2, . . . , wk, then player i pays wi∑k

j=1 wj
· ce.

For weighted NFGs on parallel-edge graphs, we prove the following.

Theorem 5. In weighted network formation games on parallel edge networks:
(a) it is NP-hard to calculate the social cost of an optimal reachable NE from a
given profile; (b) finding a reachable NE that approximates the social optimum
by factor 3

2 is NP-hard; (c) any local deviator rule has inefficiency Ω(
√
n).

A direct corollary of the last theorem (part (a)) is that the problem of finding
an optimal BR sequence is NP-hard.

Weighted symmetric network formation games with strategies consisting of
two resources (i.e., a 2-segment SPP) are potential games [3]. Theorem 1 shows
that in unweighted symmetric games, the Min-Path deviator rule ensures con-
vergence to the optimal reachable NE. Here we show that in weighted games
the efficiency of Min-Path can be as poor as the PoA, even if the weights are
arbitrarily close to each other, and the strategies are sets of two resources.

Theorem 6. In weighted network formation games on a 2-segment SPP, the
Min-Path deviator rule has inefficiency Ω(n). This bound is valid even if the
ratio maxi wi/mini wi is arbitrarily close to 1.
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