
Transactional Contention Management
as a Non-Clairvoyant Scheduling Problem

Hagit Attiya∗ Leah Epstein† Hadas Shachnai‡ Tami Tamir§

ABSTRACT
The transactional approach to contention management
guarantees atomicity by making sure that whenever two
transactions have a conflict on a resource, only one of them
proceeds. A major challenge in implementing this approach
lies in guaranteeing progress, since transactions are often
restarted.

Inspired by the paradigm of non-clairvoyant job schedul-
ing, we analyze the performance of a contention manager by
comparison with an optimal, clairvoyant contention manager
that knows the list of resource accesses that will be per-
formed by each transaction, as well as its release time and
duration. The realistic, non-clairvoyant contention manager
is evaluated by the competitive ratio between the last com-
pletion time (makespan) it provides and the makespan pro-
vided by an optimal contention manager.

Assuming that the amount of exclusive accesses to the
resources is non-negligible, we present a simple proof that
every work conserving contention manager guaranteeing the
pending commit property achieves an O(s) competitive ra-
tio, where s is the number of resources. This bound holds
for the Greedy contention manager studied by Guerraoui et
al. [2] and is a significant improvement over the O(s2) bound
they prove for the competitive ratio of Greedy. We show
that this bound is tight for any deterministic contention
manager, and under certain assumptions about the trans-
actions, also for randomized contention managers.

When transactions may fail, we show that a simple adap-
tation of Greedy has a competitive ratio of at most O(ks),
assuming that a transaction may fail at most k times. If a

∗Computer Science Department, The Technion, Haifa
32000, Israel. E-mail: hagit@cs.technion.ac.il.
†Department of Mathematics, University of Haifa, Haifa
31905, Israel. E-mail: lea@math.haifa.ac.il.
‡Computer Science Department, The Technion, Haifa
32000, Israel. E-mail: hadas@cs.technion.ac.il.
§School of Computer Science, The Interdisciplinary Center,
Herzliya 46150, Israel. E-mail: tami@idc.ac.il.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’06,July 22-26, 2006, Denver, Colorado, USA.
Copyright 2006 ACM 1-59593-384-0/06/0007 ...$5.00.

transaction can modify its resource requirements when re-
invoked, then any deterministic algorithm has a competitive
ratio Ω(ks). For the case of unit length jobs, we give (al-
most) matching lower and upper bounds.

Categories and Subject Descriptors
D.1.3 [Software]: programming techniques—Concurrent
Programming ; F.2 [Theory of Computation]: Analysis
of Algorithms and Problem Complexity; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumer-
ical Algorithms and Problems—Sequencing and scheduling ;
G.2.3 [Mathematics of Computing]: Discrete Mathe-
matics—Applications

General Terms
Algorithms

Keywords
scheduling, transactions, software transactional memory,
concurrency control, contention management

1. INTRODUCTION
Conventional methods for multi-processor synchroniza-

tion rely on mutex locks, semaphores and condition variables
to manage the contention in accessing shared resources. The
perils of these methods are well-known: they are inherently
non-scalable and prone to failures. An alternative approach
to managing contention is provided by transactional syn-
chronization. As in database systems [12], a transaction
aggregates a sequence of resource accesses that should be
executed atomically by a single thread. A transaction ends
either by committing, in which case, all of its updates take
effect, or by aborting, in which case, no update is effective.

The transactional approach to contention management [4]
guarantees atomicity by making sure that whenever a con-
flict occurs, only one of the transactions involved can pro-
ceed. A transaction J is in conflict when it tries to access
a resource R previously modified by some active (pending)
transaction J ′, that has neither committed nor aborted yet.
When this happens, one of the transactions—J or J ′—is
aborted and its effects are cleared. The aborted transaction
is later restarted from its very beginning. This guarantees
that committed transactions appear to execute sequentially,
one after the other, without interference.

A major challenge in implementing a contention manager
lies in guaranteeing progress. This requires choosing which of

the conflicting transactions (J or J ′) to abort so as to ensure
that work eventually gets done, and all transactions commit.
(It is assumed that a transaction that runs without con-
flicting accesses commits with a correct result; this is guar-
anteed, for example, by obstruction free transactions [4].)
Quantitatively, the goal is to maximize the throughput, mea-
sured by minimizing the makespan—the total time needed
to complete a finite set of transactions.

Rather than taking an ad-hoc approach to this problem,
we observe that it can naturally be formulated in the par-
lance of the non-clairvoyant job scheduling paradigm, sug-
gested by Motwani et al. [7]. A non-clairvoyant scheduler
does not know the characteristics of a job a priori, and is
evaluated in comparison with an optimal, clairvoyant sched-
uler that knows all the jobs’ characteristics in advance.

We adapt the non-clairvoyant model to our setting, by
viewing each transaction as a job and assuming that its re-
source needs are not known in advance. An optimal con-
tention manager, denoted Opt, knows the accesses that will
be performed by each transaction, as well as its release time
and duration. The quality of a non-clairvoyant contention
manager is measured by the ratio between the makespan it
provides and the makespan provided by Opt. This ratio is
called the competitive ratio of the contention manager.

Under a natural assumption that the amount of exclusive
accesses to the resources is non-negligible1, taking this ap-
proach allows us to present a simple and elegant proof that
every contention manager with the two following properties
achieves an O(s) competitive ratio, where s is the number
of resources.

Property 1. A contention manager is work conserving
if it always lets a maximal set of non-conflicting transactions
run.

Note that work conserving contention managers can be
efficiently implemented in our model. In general, being work
conserving requires to solve the maximum independent set
(IS) problem, which is NP-hard and hard to approximate.
However, in our model, a job that is ready for execution
requests a single resource in its first action; therefore, the
associated conflict graph is a collection of disjoint cliques,
on which IS is easily solved by picking one member from
each clique.

Property 2. A contention manager obeys the pending
commit property [2] if, at any time, some running transac-
tion will execute uninterrupted until it commits.

Both properties are guaranteed by the Greedy contention
manager, proposed by Guerraoui et al. [2]: Jobs are pro-
cessed greedily whenever possible. Thus, a maximal inde-
pendent set of jobs that are non-conflicting over their first-
requested resources are processed each time. When a trans-
action begins, it is assigned a unique timestamp (which re-
mains fixed across re-invocations), so that earlier (“older”)
transactions have smaller timestamps. Assume transaction
J accesses a resource modified by another pending transac-
tion J ′; if J is earlier than J ′ (has smaller timestamp) then
J ′ aborts, otherwise, J waits for J ′ to complete.2 (Special

1We formalize this in Section 2.
2This resembles classical deadlock prevention schemes [8]
(see [11, Ch. 18]).

accommodation is given to waiting transactions, see [2].)
The Greedy contention manager is decentralized and re-
lies only on local information, carried by the transactions
involved in the conflict.

Our result is a significant improvement over the O(s2)
upper bound previously known for Greedy (see [2]). Sim-
ulations [2, 3] show that this contention manager performs
well in practice; our analysis indicates that these, and in
fact even better, results are expected. We remark that our
upper bound for Greedy allows transactions with arbitrary
release times (which are unknown in advance to the con-
tention manager) and arbitrary durations. In contrast, the
analysis of Guerraoui et al. relies on the assumption that
transactions are available at the beginning of the execution
and have equal duration.

We show that our analysis is asymptotically tight, by
proving that no work-conserving online contention manager
can achieve a better competitive ratio. This lower bound
holds even if the contention manager is centralized and does
not guarantee the pending commit property, and even if all
the transactions have the same duration and are all avail-
able at time t = 0. For randomized contention managers, a
lower bound of Ω(s) holds if transactions can modify their
resource needs when they are re-invoked (after being aborted
or if they run at a different time).

We also study what happens when transactions may fail
(not as a result of a conflict). Guerraoui et al. [3] assume
that a transaction may fail at most k times, for some k ≥ 1,
and show a contention manager FTGreedy that has com-
petitive ratio O(ks2). We improve on their result and show
that the competitive ratio is at most O(ks). If a transaction
can modify its resource requirement when re-invoked, or if
it is run at a later time, then any deterministic algorithm
has a competitive ratio Ω(ks).

Finally, for the special case of unit length jobs, we
give (almost) matching lower and upper bounds. We
present a randomized algorithm whose competitive ratio is
O(max{s, k log k}). This is within logarithmic factor from
the lower bound of Ω(max(s, k)), which holds for any (de-
terministic or randomized) algorithm. The algorithm uses a
technique of partition into phases as a function of the num-
ber of pending jobs. The probability that a pending job will
try to run at a given time increases as the number of jobs
in the system drops.

Previous work on non-clairvoyant scheduling assume that
the jobs are not available together at the start and that the
job’s duration is not known when it arrives. In contrast,
the optimal scheduler knows the set of jobs, their release
times and their duration from the beginning. Motwani et
al. [7] allow preemption and assume that a preempted job
resumes its execution from where it was stopped; moreover,
their schedulers are centralized. In contrast, in our analysis,
an aborted job is restarted from its beginning; moreover, we
mostly study decentralized contention managers. Edmonds
et al. [1] study scheduling of jobs that arrive together, but
their characteristics and resource needs change during their
execution. Irani and Leung [5] consider decentralized sched-
ulers but assume unit-length jobs that are executed without
interruption.

Kalyanasundaram and Pruhs [6] consider the case where
the processors (running the jobs) may fail and study the
makespan and the average response time of on-line algo-
rithms in comparison with an optimal off-line scheduler.

Their results do not allow preemption, and clearly, do not
account for the added cost of re-invocations.

Herlihy et al. [4] suggest a generic implementation of a
contention manager. (We follow the description of Scherer
and Scott [9], who also evaluate a wide variety of contention
managers in [10].) With each resource, we associate the
identity of the transaction that most recently modified it.3

Each transaction has a status field indicating whether it
is committed, aborted, or still active. This way, a trans-
action accessing a resource can easily verify whether it is
“locked” by another pending transaction, and decide how
to proceed—perhaps using additional data stored for each
transaction. All contention managers the fit this generic de-
scription are work conserving. Scherer and Scott [9] provide
a comprehensive survey of contention managers; more recent
work is described in [2, 10].

2. MODEL AND PROBLEM STATEMENT
Consider a set of n ≥ 1 transactions (often called jobs

below) J1, . . . , Jn and a set of s ≥ 1 shared resources
R1, . . . , Rs. Each transaction is a sequence of actions, each
of which is an access to a single resource. The transaction
starts with an action and may perform local computation
(not involving access to resources) between consecutive ac-
tions. A transaction completes either with a commit or an
abort. The duration of transaction Ji is denoted di.

Formally, an execution is a finite sequence of timed ac-
tions. Each action is taken by a single transaction and it is
either a read to some resource R, a write to R, a commit, or
an abort. We assume that the amount of exclusive accesses
to the resources performed by J1, . . . , Jn is non-negligible,
more formally, the total duration of write actions is at least
α
Pn

i=1 di, where α ∈ (0, 1] is some constant. The times are
nonnegative, non-decreasing real numbers. As an example,
consider the execution described in Figure 1, W (Ri) denotes
write to Ri. Time advances horizontally from left to right.

Note that a transaction may request different resources in
different executions. In the above example, when J3 starts,
its first request is for R3. Later, when J3 is reinvoked, its
first request is for R1.

A transaction is pending after its first action, which must
be a read or a write, until its last action, which is a commit
or abort; it takes no further actions after a commit or an
abort. It is assumed that the times associated with actions
of one transaction are increasing, namely, two actions of the
same transaction cannot occur at the same time.

For a scheduling algorithm A and a set, S, of jobs,
makespan(A,S) denotes the completion time of all jobs under
A, that is the latest time at which any job of A is completed.
S is omitted when the set of jobs is clear from the context.
For randomized algorithms we use makespan(A,S) to denote
the expected latest completion time of any job.

We also assume that each transaction may access differ-
ent resources in different invocations. While the online al-
gorithm does not know these accesses until they occur, an
optimal offline algorithm, denoted Opt, knows the sequence
of accesses of the transaction to resources in each execution.

We make the following simple observation on the decisions
of Opt.

3The implementation also maintains before and after in-
formation for rolling back an aborted transaction, an issue
outside the scope of our paper.

Claim 1. There is an algorithm Opt that achieves the
minimum makespan and schedules each job exactly once.

Proof. Any execution with minimum makespan can be
modified so as to remove all partial executions. Clearly,
this does not increase the makespan, and provides the above
property.

3. THE GREEDY ALGORITHM HAS O(S)-
COMPETITIVE MAKESPAN

The greedy algorithm Greedy, suggested in [2], schedules
a maximal independent set of jobs (i.e., jobs that are non-
conflicting over their first-requested resources). When a set
of jobs is running, and some of these jobs are conflicting over
some resource, Rj , Greedy grants access to the ”oldest” job
among them, io. If io needs to perform write, then all other
jobs are aborted; if it performs read, any other ”reader”
can access Rj too. The algorithm guarantees the pending
commit property: at any time in the execution, at least
one job (the oldest) is guaranteed to complete its execution
without being aborted.

Theorem 1. Greedy is O(s)-competitive.

Proof. Consider the sequence of idle time intervals,
I1, . . . , Ik in which no job is running under Greedy, and
the sequence of time intervals I ′1, . . . , I

′
` in which no job is

running under Opt. We first prove that there exists an op-
timal schedule in which the total idle time is at least the
total idle time of Greedy. Formally,

Claim 2.
Pk

j=1 |Ij | ≤
P`

j=1 |I ′j |.
Proof. By definition, Greedy is idle at a certain time

only after completing all jobs available at that time. Let
I1 = [t1, t2]; this imply that during time interval [0, t1],
Greedy is busy processing some set of jobs S. The pro-
cessing of S is completed at time t1, and the next job is
released at time t2. There exists an optimal schedule that
completes the (sub)instance S at time at most t1, is idle till
t2, and possibly has additional idle intervals during [0, t1].
Such an optimal schedule exists, since Greedy completes
all jobs in S by time t1 and no job is available till time t2.
Since we are interested in a schedule which minimizes the
makespan, it is even possible to simply adopt the schedule
of Greedy without violating the optimality of the schedule.

Therefore, there exists an optimal schedule with total idle
time at least t2− t1 = |I1| till time t2. Continuing the same
way, for each prefix of idle intervals, we get that for any
j, 1 ≤ j ≤ k, there exists an optimal schedule with total
idle time at least

Pj
i=1 |Ii| till the end of Ij . In particular,

for j = k this gives the statement of the claim.

By assumption, a job accesses at least one resource at
any time during its execution. Consider the set of write
actions of all transactions. If s+1 jobs or more are running
concurrently, the pigeonhole principle implies that at least
two of them are accessing the same resource. Thus, at least
one out of s+1 writing jobs will be aborted. Claim 1 implies
that no job is aborted in an execution of Opt, implying
that at most s writing jobs are running concurrently during
time intervals that are not idle under Opt, that is, outside
I ′1, . . . , I

′
`. Thus, the makespan of Opt satisfies:

makespan(Opt) ≥
X̀
j=1

|I ′j |+
α
Pn

i=1 di

s
.

J1: W(R1) W(R2) Commit
J2: W(R2) W(R1)- Abort W(R2) W(R1) Commit
J3: W(R3) W(R2)- Abort W(R1) W(R2)-Abort W(R3) W(R2) Commit

Figure 1: A possible execution.

On the other hand, whenever Greedy is not idle, at least
one of the jobs that are processed will be completed. Hence,
the makespan of Greedy satisfies:

makespan(Greedy) ≤
kX

j=1

|Ij |+
nX

i=1

di.

The theorem follows.

We remark that the same proof holds for any work con-
serving contention manager that guarantees the pending
commit property.

4. Ω(S) LOWER BOUNDS FOR CON-
TENTION MANAGERS

4.1 A Lower Bound for Fixed First-request
In the following, we give a matching lower bound to the

upper bound derived in Section 3 for Greedy.

Theorem 2. Any work-conserving contention determin-
istic manager is Ω(s)-competitive.

Proof. Assume that s is even and denote s = 2k.
The proof uses an execution with ks = s2/2 unit length

jobs, described in Table 1: Each job j requests a pair of
resources (Rj1 , Rj2), such that Rj1 is the resource required
to begin the transaction, and Rj2 is an additional resource
requested by the job in order to complete its execution and is
not known in advance (the table shows the indices (j1, j2)).
All jobs are released and available at time t = 0. An online
algorithm knows only the first resource request of each job,
therefore, the input is in fact a set of ks jobs, such that for
every resource i, 1 ≤ i ≤ s, exactly k = s/2 jobs request Ri

for their execution to start. The second resource in each pair
will be determined by the adversary during the execution of
the algorithm in a way that will force many of the jobs to
abort.

Consider a work-conserving contention manager. Being
work-conserving, it must select to process a set of s non-
conflicting jobs, each requesting a different resource as its
first requested resource. The adversary will then determine
the second resource of each of these jobs according to a single
column in Table 1. Specifically, the first phase of s jobs is
described by the first column of the Table, that is, in order
to complete their execution, jobs whose first access is to a
resource with an odd index, request at time 1−ε the resource
R2 as their second resource, while jobs whose first access is
to a resource with an even index, request at time 1 − ε the
resource R1 as their second resource. Clearly, at most two
of these jobs can complete their execution, while all other
s− 2 jobs must abort.

In general, in phase t, the algorithm selects an indepen-
dent set of s jobs, and the adversary determines their second
requested resource at time t+1−ε to be either R2t−1 or R2t,
as described by column t of the table. Once again, only two

jobs from this column can complete their execution, while
all other jobs must abort.

All aborting jobs request R1 in any subsequent execution.
This implies that after the first k time-slots, during which
at most two jobs run in parallel, no parallelism is possible.
The resulting makespan is therefore ks− 2k = (s− 2)s/2.

We now show that there exists an optimal schedule with
makespan s: Note that each diagonal directed from left to
right in the upper or the lower half of the table consists of k
independent jobs that require exactly all the resources. For-
mally, for every odd value z ∈ {1, 3, . . . , 2k − 1}, Iz(up)
is the set of jobs in the upper half for which (Rj1 , Rj2)
have the form (r, (r + z) mod 2k), where r = 2` + 1,
0 ≤ ` ≤ k − 1. The sets in the lower half, Iz(low), are
similarly defined, only that r = 2`, 1 ≤ ` ≤ k. For exam-
ple I1(up) = {(1, 2), (3, 4), . . . (2k−1, 2k)} and I2k−5(low) =
{(6, 1), (8, 3), . . . , (4, 2k − 1)}.

An optimal contention manager runs all k jobs forming
each of these sets simultaneously; the makespan of this
schedule is the number of sets, that is, 2k = s, implying
a competitive ratio of (s− 2)/2.

4.2 A Lower Bound for Variable First-request
Consider now a generalized model in which, as before,

any job j arriving to the system requests its first resource;
however, while waiting to start its execution, j may modify
the request to another resource, thus the online algorithm
knows the first resource requested by any job only when this
job starts running. For this model, we show a lower bound
of Ω(s) for any (deterministic or randomized) algorithm.

Theorem 3. Any randomized algorithm in the model
where the first request for any resource is time dependent
has competitive ratio of Ω(s).

Proof. We first prove a lower bound of Ω(s) for an ar-
bitrary online deterministic algorithm, and then show how
to adapt it to randomized algorithms. Let s′ = bs/2c.

In our execution, each job will have a single request for a
resource. It reveals the information regarding the resources
it is going to need each time it restarts. Thus, the resource
requests are time dependent.

At first, there are 2s′ sets of unit-length jobs A1, ..., A2s′ .
Each set contains 2s′ jobs, where all jobs in one set Ai ini-
tially request resource i. For some of the jobs this is changed
later on. Consider the situation after s′ time units.

We define an offline contention manager Off. Partition
each set Ai into Bi and Ci. The set Ci contains all jobs in
Ai that the algorithm completes by time s′. Add additional
jobs from Ai to Ci until |Ci| = s′. Let Bi = Ai − Ci.
Off runs the jobs of Bi during time units 1, 2, ..., s′. Since
each set Bi requested a different resource, at time s′, Off
completes all these jobs. However, the online algorithm did
not run any of these jobs yet. Starting at time s′, the jobs in
B2, B3, ..., Bs request resource R1 when they start running.
Thus, all waiting requests need to use the same resource,
and the on-line algorithm needs 2s′2 additional time units

1 2 3 . . . k
1 (1, 2) (1, 4) (1, 6) . . . (1, 2k)

2 (3, 2) (3, 4) (3, 6) . . . (3, 2k)

3 (5, 2) (5, 4) (5, 6) . . . (5, 2k)

· · · · . . . ·
· · · · . . . ·
k (2k − 1, 2) (2k − 1, 4) (2k − 1, 6) . . . (2k − 1, 2k)

1 (2, 1) (2, 3) (2, 5) . . . (2, 2k − 1)

2 (4, 1) (4, 3) (4, 5) . . . (4, 2k − 1)

3 (6, 1) (6, 3) (6, 5) . . . (6, 2k − 1)

· · · · . . . ·
· · · · . . . ·
k (2k, 1) (2k, 3) (2k, 5) . . . (2k, 2k − 1)

Table 1: The set of jobs used in the proof of Theorem 2.

to complete them. In contrast, Off needs only s′ additional
time units, since it can now run the Ci jobs for all i in s′

time units in parallel. We get that the algorithm completes
all jobs at time s′+2s′2, whereas Off completes all jobs by
time 2s′. This gives a lower bound of 1

2
+ s′ = Ω(s).

Assume now that the algorithm is randomized. Instead
of defining Ci as before, let Ci be the set of s′ elements of
Ai with the highest probability to be run by the algorithm
and complete by time s′. Let Bi = Ai − Ci, i.e., the jobs
with smallest probabilities to terminate successfully by time
s′. As in the deterministic case, Off runs all jobs of all Bi

until time s′ and afterwords all jobs of Ci. Also, all jobs of
Bi request only resource 1 if they are run starting from time
s′ or later.

Let Xi (respectively Yi) be the number of elements of Bi

(Ci) that have been completed by the algorithm by time s′.
It holds that E(Xi) ≤ s′

2
. To see this, we use the linearity of

expectation and get E(Xi) ≤ E(Yi) and since Xi + Yi ≤ s′

we have E(Xi) + E(Yi) ≤ s′. Thus, the expected number of
elements from all Bi’s that are still waiting to be scheduled

by the algorithm is at least 2s′2
2

= s′2. It follows that the

expected makespan is at least s′ + s′2, and we get a lower
bound of Ω(s) for the randomized case as well.

Note that the proof of this theorem uses O(s) jobs, while
the proof of Theorem 2 uses O(s2) jobs.

We remark that Greedy is s-competitive also in this gen-
eralized model. The proof of Theorem 1 makes no assump-
tion on the identities of the requested resources, i.e., a job
may modify its resource request as long as it has not started
running; also, if a job was aborted and is waiting to be
restarted, it may initially ask for some resource, and later
modify its request.

5. HANDLING FAILURES
Consider a system in which jobs may fail; if a job j running

at time t fails, the contention manager subsequently needs
to restart the execution of j [3]. We assume that at most
k failures may occur for any job, for some k ≥ 1. Indeed,
for any job j, Greedy may run j almost to completion k
times, and then restart its execution due to a failure. This
stretches the processing time of j to (k + 1)dj . In contrast,

an optimal offline algorithm may avoid the execution of a
job j when j may fail. This implies:

Theorem 4. If each job may fail at most k times, then
Greedy is O(ks)-competitive.

For this model, we show a lower bound of Ω(ks) for any
deterministic algorithm.

Theorem 5. Assume that the first request of a job for a
resource is time dependent, and each job may fail at most k
times, for some k ≥ 1, then any deterministic algorithm has
competitive ratio Ω(ks).

Proof. Define the sets Ai, Bi and Ci as in the proof
of Theorem 3. The sequence is the same until time 2s′ (=
2bs/2c) at which Off completes all jobs. After this time,
we define failure times as follows. Consider the schedule of
the algorithm. If a running job already failed k times then it
is not interrupted; otherwise, it fails just before completion.
Thus, all jobs except for at most 2s′2+s′ fail exactly k times.
Since the failure of any job occurs almost upon completion,
the remaining 2s′2 − s′ jobs are completed only after (k +

1)(2s′2 − s′) additional times units. We get a total of (k +

1)(2s′2−s′)+2s′ time slots, and a lower bound of Ω(ks).

When requests are time dependent, we obtain a lower
bound also for randomized algorithms.

Theorem 6. Assume that the first request of a job for a
resource is time dependent, and each job may fail at most k
times, for some k ≥ 1, then any (deterministic or random-
ized) algorithm has competitive ratio Ω(max{s, k}).

Proof. Assume that k ≥ 5, otherwise the deterministic
bounds can be applied. A lower bound of Ω(s) follows from
Theorem 3. To prove a lower bound of k consider an in-
put with two jobs j1 and j2, each having (a different) one
of the two sets of failure times: {1, 3

2
, 2, 5

2
, . . . , k+1

2
} and

{ 1
2
, 1, 2, 5

2
, . . . , k+1

2
}, that is, both sets contain all multiples

of 1
2

(up to and including k+1
2

) except one such number. The

first set does not contain 1
2

whereas the second one does not

contain 3
2
. Assume that s = 1, thus, the issue of resources

may be ignored. An offline algorithm can run the job with

the first failure times sequence at time 0, until time 1, and
the other job at time 1, until time 2.

Consider an online algorithm. Let p1 be the probability
that job j1 is running just before time 1

2
and p2 that j2

is running. We have p1 + p2 ≤ 1 (since it may be the case
that no job is running). If p1 ≤ p2, we assign the first failure
times sequence to j1 and the second one to j2, and otherwise
we do the opposite assignment. The only way that all jobs
are completed by time 2, is that some job is completed by
time 1, and thus this job needs to be running just before time
1
2
, and not interrupted at time 1

2
. The probability for that

is p1 in the first case and p2 in the second case. However, in
the first case p1 ≤ 1

2
and in the second case p2 ≤ 1

2
, so with

probability at least 1
2
, at least one job can run to completion

only after time k+1
2

. Thus, the expected completion time is

at least 1
2
· 2 + 1

2
· (k+1

2
+ 1) = Ω(k).

We next describe a randomized algorithm that matches
this bound within a logarithmic factor for the case where
all jobs require unit processing time. We start with a de-
scription of a centralized scheduler, and later explain how
to make it decentralized.

Algorithm Phases

Let N be the set of pending jobs, and |N | be its size. Ini-
tially, N is the set of all jobs.

Phase 1. While |N | > 2k repeat the following steps.

Choose randomly and uniformly a permutation of the
n jobs, and assign the jobs in this order to run (one
job at a time) in the next n time units. The algorithm
is oblivious to aborts of jobs, and keeps the schedule
unchanged even if it becomes idle. Update N .

Phase 2. For j = 1, . . . , d3 log2 ke repeat the following
steps.

Choose randomly and uniformly an assignment of the
pending jobs, to the 2k time slots (such that each job
receives one random time slot among the 2k slots, and
some slots possibly remain idle). Assign jobs to run
at most one at a time, according to the assignment, in
the next 2k time units. Update N .

Phase 3. While |N | > 0 repeat the following steps.

Select a pending job from N and schedule it at every
integer time point until it runs to completion. Update
N .

Even though the algorithm is randomized, its worst case
total running time is bounded: Phase 1 terminates after at
most k + 1 iterations, since each job can be interrupted at
most k times. The same holds for Phase 2 and Phase 3.
Thus, in the worst case, the algorithm completes all jobs
after O(nk + k2) time units.

Next, we analyze the expected running time of the algo-
rithm.

Theorem 7. The competitive ratio of Phases is at most
O(max{s, k log k}).

Proof. Our proof consists of examining the expected
duration of each of the three phases. We show that the
first phase consumes expected time of O(n) and the second
and third phases consume expected time O(k log k). Since

Opt ≥ max{1, αn
s
}, this would give the competitive ratio as

claimed. Note that if n is initially small, it may be the case
that Phase 1 is skipped, or the other phases are skipped.
Moreover, it may be the case that Phase 2 or Phase 3 are
skipped, since the number of pending jobs can drop quickly
in an iteration of a previous phase.

Let ni be the number of pending jobs when Phase i starts.
Phase 3 lasts at most k + 1 times units for every job, and
thus takes at most n3(k + 1) time units.

Consider Phase 2. Since n2 ≤ 2k, each iteration admits
an assignment of all jobs to time slots. Consider a specific
job scheduled in an iteration. This job may be assigned
to any of the 2k time slots starting at integer times with
equal probability. However, out of these slots, at most k
can prevent a successful completion of the job. Thus, the
job is completed in a given iteration with probability at least
1
2
. We next compute an upper bound on the probability that

the algorithm reaches Phase 3. The probability of a given
job to be pending, even after d3 log2 ke iterations of Phase 2,

is at most (1
2
)d3 log2 ke ≤ 1

k3 . Using the sum of probabilities
as an upper bound, the probability that at least one job
is left for Phase 3 is upper bounded by n2

k3 ≤ 2k
k3 = 2

k2 .

Thus, with probability at most 1 − 2
k2 , the algorithm does

not reach Phase 3, and thus, the overall running time for
Phases 2 and 3 is at most 2k · d3 log2 ke. With probability at
most 2

k2 , Phase 3 will require at most (k +1)n3 ≤ 2k(k +1)
additional time units. This gives expected additional time of

at most 4(k+1)
k

< 5. We get for Phases 2 and 3 an expected
total running time of O(k log k).

Finally, consider Phase 1. Let Xi be a random variable
which denotes the length of iteration i of this phase. Clearly

X1 = n. We claim that E(Xi) ≤ Xi−1
2

for i ≥ 2. Similarly
to Phase 2, each job has equal probability to be assigned
to each time slot, and since n > 2k during this phase, the
probability of a job to run to completion during iteration i−1
is at least 1

2
. Since this holds for any value of Xi, and due to

linearity of expectation, we conclude that E(Xi) ≤ E(Xi−1)

2
.

Using induction we can prove that E(Xi) ≤ 1
2i−1 n1. Let t

be the number of iterations in Phase 1, as we saw above, this
number is no larger than k + 1. The length of Phase 1 is

then at most
tP

i=1

E(Xi) ≤ 2n. This completes the proof.

A Decentralized Implementation ofPhases

We describe a decentralized implementation of Algorithm
Phases, assuming a synchronized system. Crucial to the
algorithm is the assumption that pending jobs are aware
of |N | (the number of pending jobs), at the beginning of
each iteration of Phase 1, and at the end of each of the
first two phases. (This can be achieved by collecting global
information.) Initially, |N | = n.

As before, Phase 1 ends when fewer than 2k jobs remain.
The length of each iteration i ≥ 1 in this phase is equal to the
number of remaining jobs at the beginning of this iteration,
denoted mi. In iteration i of Phase 1, any job which has not
completed and did not fail yet in this iteration, runs in the
next time slot with probability 1

mi
. If more than one job

run in some slot, and the jobs are conflicting over resources,
then one of the jobs in the set is selected to run, randomly
and uniformly. The set N is updated at the end of each
iteration (jobs need only know its size).

Jobs follow Phase 2 in a similar manner, except that the

length of each iteration in this phase is 2k, and each of the
remaining jobs runs in the next slot (in any iteration) with
probability 1

2k
; the number of iterations in Phase 2 is y, that

will be determined later.
In Phase 3, jobs start running in time slots that are in-

tegral multiples of k + 1. Each of the remaining jobs starts
running in the next scheduling point. If several jobs have a
conflict on some resource, then the oldest job wins the next
k + 1 time slots, while all other jobs need to restart.

We next analyze the algorithm and show that it is a decen-
tralized implementation of algorithm Phases, where the ex-
pected running time increases by a constant factor. Specifi-
cally, we show that the expected length of Phase 1 is O(n),
while the expected length of Phases 2 and 3 is O(k log k).

Consider Phase 1. Suppose that some job ` tries to run
in slot j of iteration i. The probability that no other job
attempts to run in this slot is at least

(1− 1

mi
)mi−1 ≥ mi

mi − 1
e−2 ≥ e−2.

If job ` runs alone in some slot in iteration i and does
not fail, then ` completes in this iteration. To lower bound
the probability that job ` completes in iteration i, let Goodi

denote the set of (at least) mi − k time slots that are good
for ` in iteration i, i.e., if ` runs in any of these slots then
it does not fail. Also, let Ai

j be the event “In iteration i,
job ` runs for the first time in slot j, and conflicts with no
other job in this slot,” then the probability that ` completes
in iteration i is at least

X

j∈Goodi

Prob(Ai
j) ≥

X

j∈Goodi

(1− 1

mi
)j−1 · 1

mi
· 1

e2

≥
miX

j=k+1

(1− 1

mi
)j−1 1

e2mi

= (1− 1

mi
)k

1− (1− 1
mi

)mi−k

e2

≥ (1− 1

mi
)mi/2 1

e2
(1− (1− 1

mi
)mi/2)

since k ≤ mi/2

≥ 1

e3
(1− 1√

e
)

since e−1 ≤ (1− 1
mi

)mi/2 ≤ e−1/2

Letting δ = e−3(1− 1/
√

e), we get that

E[Xi] = (1− δ)E[Xi−1] ,

where Xi is a random variable denoting the length of itera-
tion i of Phase 1 (as in the analysis of Phase 1 in algorithm
Phases). It follows that the expected length of Phase 1 isP

i≥1(1− δ)i−1n = n
δ
.

For Phase 2, we set the number of iterations to be

y = log(2(k + 1)/ log k)/ log(1/(1− δ)),

and get that its length is O(k log k).
For Phase 3, an analysis similar to Phase 1 shows that

the probability that a job that started Phase 2 does not
complete by the end of the phase is at most (1 − δ)y <

log k
2(k+1)

. Therefore, the expected length of Phase 3 is at most

(1−δ)y ·2k(k+1) = O(k log k). This completes the analysis.

In the decentralized implementation of Phases, the worst
case length of Phase 1 is unbounded. The following adap-
tation of the algorithm results in bounding the length of
phase 1 with O(nk). When the phase reaches iteration
z = log(k/2)/ log(1/1− δ), every remaining jobs starts run-
ning in the next time slot. Conflicts are resolved as before,
by random selection of one job in the conflict set. Clearly,
this implies that in the next (k+1)n time units all jobs com-
plete. It can be shown that the expected length of Phase 1
with this modification remains O(n). (We leave the details
to the full version of the paper.) The lengths of the other
two phases are bounded.

6. DISCUSSION
We adopted terminology and techniques of non-

clairvoyant scheduling to analyze the behavior of transac-
tional contention managers. Our framework allows to ex-
plore further extensions to the results presented here, e.g., to
prove bounds when the amount of exclusive accesses to the
resources is negligible, in particular, when there are many
read-only jobs.

It would be nice to remove the assumption that jobs can
modify their resource needs (made in Theorem 3 and Theo-
rem 7).

Another problem that remains open is the optimality of
work-conservative algorithms. The lower bound of Ω(s) pre-
sented in Theorem 2 is suitable only for work-conserving
contention managers. Our difficulty in obtaining the same
lower bound for non work-conserving algorithms may hint
that such algorithms can perform better. Note that a lower
bound of Ω(

√
s) for non work-conserving algorithms follows

from the construction in the proof of Theorem 2.
The analysis of Algorithm Phases hinges on the fact that

the probability of a job trying to execute in a phase depends
on the number of pending jobs. Scherer and Scott [9] de-
scribe a practical randomized contention manager that flips
a coin to choose between aborting the other transaction and
waiting for a random time. Our analysis suggests that in
order for their contention manager to be effective, it should
bias the coin in a way that depends on (at least) an estimate
of the number of jobs waiting to be executed.

Another interesting avenue for further research is to eval-
uate other complexity measures, in particular, those that
evaluate the guarantees provided for each individual trans-
action, like the average response or waiting time or the av-
erage punishment.

Acknowledgments.We would like to thank Rachid Guer-
raoui and Bastian Pochon for helpful discussions, and the
anonymous referees for their comments.

7. REFERENCES
[1] Jeff Edmonds, Donald D. Chinn, Tim Brecht and

Xiaotie Deng, Non-clairvoyant multiprocessor
scheduling of jobs with changing execution
characteristics. J. Scheduling, 6(3): 231-250 (2003).

[2] R. Guerraoui, M. Herlihy and S. Pochon, Toward a
Theory of Transactional Contention Management.
PODC 2005: 258-264.

[3] R. Guerraoui, M. Herlihy, M. Kapalka and S. Pochon,
Robust Contention Management in software
transactional memory. Synchronization and

Concurrency in Object-Oriented Languages (SCOOL)
workshop, in conjunction with OOPSLA 2005.
http://urresearch.rochester.edu/handle/1802/2103.

[4] Maurice Herlihy, Victor Luchangco, Mark Moir and
William N. Scherer III, Software transactional
memory for dynamic-sized data structures. PODC
2003: 92-101.

[5] Sandy Irani and Vitus Leung, Scheduling with
Conflicts, and Applications to Traffic Signal Control.
SODA 1996: 85-94.

[6] Bala Kalyanasundaram and Kirk R. Pruhs,
Fault-tolerant scheduling. SIAM Journal on
Computing, 34(3): 697 - 719 (2005).

[7] R. Motwani, S. Phillips and E. Torng,
Non-Clairvoyant Scheduling. Theor. Comput. Sci,
130(1): 17–47 1994.

[8] Daniel J. Rosenkrantz, Richard E. Stearns and Philip
M. Lewis II, System Level Concurrency Control for
Distributed Database Systems. ACM Trans. Database
Syst., 3(2): 178-198 (1978).

[9] William N. Scherer III and Michael Scott, Contention
Management in Dynamic Software Transactional
Memory. PODC Workshop on Concurrency and
Synchronization in Java Programs, 2004: 70-79.

[10] William N. Scherer III and Michael Scott, Advanced
Contention Management for Dynamic Software
Transactional Memory, PODC 2005: 240-248.

[11] Abraham Silberschatz and Peter Galvin, Operating
Systems Concepts, 5th edition, John Wiley & sons,
1999.

[12] Gottfried Vossen and Gerhard Weikum, Transactional
Information Systems, Morgan Kaufmann, 2001.

