Tight Bounds for Online Class-Constrained
Packing !

Hadas Shachnai®?3 and Tami Tamir?

aComputer Science Department, The Technion, Haifa 32000, Israel.

b Department of Computer Science and Engineering, Box 352350, Univ. of
Washington, Seattle, WA 98195.

Abstract

We consider class constrained packing problems, in which we are given a set of bins,
each having a capacity v and ¢ compartments, and n items of M different classes
and the same (unit) size. We need to fill the bins with items, subject to capacity
constraints, such that items of different classes are placed in separate compartments;
thus, each bin can contain items of at most ¢ distinct classes. We consider two
optimization goals. In the class-constrained bin-packing problem (CCBP), our goal
is to pack all the items in a minimal number of bins; in the class-constrained multiple
knapsack problem (CCMK), we wish to maximize the total number of items packed
in m bins, for m > 1. The CCBP and CCMK problems model fundamental resource
allocation problems in computer and manufacturing systems. Both are known to be
strongly NP-hard.

In this paper we derive tight bounds for the online variants of these problems. We
first present a lower bound of (1 + «) on the competitive ratio of any deterministic
algorithm for the online CCBP, where a € (0,1] depends on v,¢, M and n. We
show that this ratio is achieved by the algorithm first-fit. We then consider the
temporary CCBP, in which items may be packed for a bounded time interval (that
is unknown in advance). We obtain a lower bound of v/c on the competitive ratio
of any (deterministic or randomized) algorithm. We show that this ratio is achieved
by all any-fit algorithms. Finally, tight bounds are derived for the online CCMK
and the temporary CCMK problems.

Key words: Class-constraints, Bin Packing, Multiple Knapsack, Temporary
Assignment, Online algorithms

Preprint submitted to Elsevier Science

1 Introduction

In the well-known bin packing (BP) and multiple knapsack (MK) problems, a
set of items of different sizes and values needs to be packed into bins of limited
capacities; a packing is feasible if the total size of the items placed in a bin
does not exceed its capacity. We consider the class-constrained variants of these
problems, which model fundamental resource allocation problems in computer
and manufacturing systems. Suppose that all items have the same (unit) size,
and the same value; however, the items may be of different classes (colors).
Each bin has a capacity and a limited number of compartments. Items of
different colors cannot be placed in the same compartment. Thus, the number
of compartments in each bin sets a bound on the number of distinct colors of
items it can accommodate. A packing is feasible if it satisfies the traditional
capacity constraint, as well as the class constraint.

Formally, the input to our packing problems is a set of items, I, of size |I| = n.
Each item a € I has a unit size and a color. Thus, I = [UI,---U I, where all
items in I; are of color 7, 1 < ¢ < M. The items need to be placed in identical
bins, each having capacity v and ¢ compartments. The output of our packing
problems is a placement, which specifies the subset of items from each class to
be placed in bin j, for any j > 1. In any feasible placement, at most v items
of at most ¢ distinct colors are placed in bin j, for all 7 > 1.

We consider the following optimization problems:

The class-constrained bin-packing problem (CCBP), in which our goal
is to find a feasible placement of all the items in a minimal number of bins.

The class-constrained multiple knapsack problem (CCMK), in which
there are m bins (to which we refer as knapsacks). Our goal is to find a feasible
placement, which maximizes the total number of packed items.

The CCMK problem is known to be NP-hard for ¢ = 2, and strongly NP-hard
for ¢ > 3 [13]. These hardness results carry over to CCBP. (Clearly, an optimal
solution for BP uses m bins iff an optimal solution for the knapsack problem
with m bins packs all the items.)

In this paper we study the online versions of these problems, in which the
items arrive as a sequence, one at a time. In each step we get a unit size item

Email addresses: hadas@cs.technion.ac.il (Hadas Shachnai),
tami@cs.washington.edu (Tami Tamir).
1A preliminary version of this paper appears in the proceedings of the Fifth Latin
American Theoretical Informatics Symposium (LATIN), April 2002.
2 Corresponding author. Author supported in part by Technion V.P.R. Fund, and
by the Fund for the Promotion of Research at the Technion.
3 Part of this work was done while the author was at Bell Laboratories, Lucent
Technologies, 600 Mountain Ave., Murray Hill, NJ 07974.

of color 7, 1 <1 < M. We need to pack this item before we know any of the
subsequent items. Formally, I is given as a sequence o = ay, ao, . . . of length n,
such that Vk,a, € {1,..., M}. The algorithm can base its decision regarding
the packing of a; solely on the knowledge of ay,...ax_1. The decisions of the
algorithm are irrevocable, that is, packed items cannot be repacked at later
times, and rejected items (in the knapsack problem) cannot be packed later.

Note that, since all items have unit size, the non class-constrained versions
of our problems can be solved optimally by a greedy algorithm that packs
each arriving item in the bin that was opened last. For the BP problem, this
algorithm uses [n/v] bins, which is clearly optimal. For the MK problem,
this algorithm packs min(n, Mv) items, which is also optimal. Since we are
interested in instances in which the value of ¢ imposes a restriction on the
packing, we assume throughout this paper that ¢ < min(M,v).

In our study of CCBP and CCMK, we first use the traditional assumption
that packed items remain permanently in the system. In the more general
case, some items may be temporary. Thus, the input sequence may consist of
() arrivals of items: each item colored with i € {1,..., M }; (ii) departures of
items that were packed earlier. Once all the items of the same color leave a bin,
the empty compartment can be allocated to arriving items of (possibly) dif-
ferent color. Generally, a departure is associated with specific item (of specific
color, placed in specific bin). We also consider the special case where depar-
ture is associated with a color, and we may choose the item of that color to
be removed. The resulting temporary packing problems are denoted by CCBP?
and CCMK?®. In the CCBP? problem, our objective is to minimize the overall
number of bins used throughout the execution of the algorithm. In CCMK"
our goal is to maximize the total number of items packed by the algorithm.

1.1 Applications

The CCMK and CCBP have several important applications, including storage
management for continuous-media data (see, e.g.,[25,12]), scheduling jobs on
parallel machines [23] and production planning [9].* These applications fall
into a large class of resource allocation problems of the following form. Suppose
that we have a set of devices, each possessing some amount of a shared resource.
A user request for the resource can be satisfied by specific device if (i) there
is sufficient amount of the resource available on that device; (i7) the device
is in configuration to service this type of user. We represent a device as a
bin, with the amount of shared resource given by its capacity; the number
of compartments in each bin is the number of distinct configurations of the
corresponding device. When our goal is to maximize the number of satisfied
requests, we get an instance of CCMK. When we wish to minimize the number

4 A detailed survey is given in [21].

of (identical) devices needed for satisfying all the requests, we get an instance
of CCBP.

The temporary CCBP and CCMK problems reflect the nature of user requests
to hold the resource for a limited amount of time (which is often unknown in
advance). In Section 3.2 we discuss a model in which a departure is associated
with a color, and the algorithm may choose the item in this color to be omitted.
This model captures the flexibility of many systems, in providing service from
any idle device which is in appropriate configuration to handle users of a given
type. Consider, for example, the transmission of video programs which reside
on a centralized server, to a set of clients (on demand). Upon request for a
video, any non-overloaded disk that holds the video file can provide the service.
In particular, suppose that some video, fi, is played from the disks di, ds, to
service the requests of the users uj, us; the disk dy is overloaded while d; is
underloaded. When the system completes the transmission from d;, it may
continue servicing us from d;, thus reducing the load on ds. In terms of online
class-constrained bin-packing, we may choose the bin from which we omit an
item, as long as we take an item of the specified color (i.e., a copy of fi).

1.2 Performance Measures

Let A be an algorithm for CCBP. We denote by Na(c), Nyp(o), the num-
ber of bins used by A and an optimal (offline) algorithm, respectively, for
packing the items in o. By standard definition (see, e.g., [6]), we say that
A is p-competitive, for some p > 1, if for any input sequence, o, r4(0) =
Na(0)/Nopt(0) < p. Another measure of interest is the asymptotic worst-case
ratio, given by

N
ra =lim sup (max % | Nopt(0) = No}).
No—00 g 0

In some cases, we study the performance of a packing algorithm, A, on a set
of inputs. Formally, for a set S, r4(S) denotes the competitive ratio of A on
inputs from S, that is, Vo € S, Na(o) < 74(S)Nyp(o). In particular, we
are interested in 74(S.,(k, h)), where for given ¢, v, the set S.,(k, h) consists
of all the input sequences, o, in which the number of colors, M,, satisfies
ke < M, < (k+1)c and hv < |o| < (h+ 1)v. Our refined analysis for sets of
inputs yields tighter performance bounds, that depend on v, ¢, |o| and M,.

In the CCMK problem, we evaluate an algorithm by the number of packed
items. Formally, for a placement algorithm A and an input sequence o, let
n4(o,m) denote the number of items in o packed by A in the m bins. Let
nopt (0, m) denote the maximal number of items in o that can be packed in the

bins. The competitive ratio of A on o is given by

.. na(o,m)
r4(0) = inf ———=~.
A() om Nopt (0_’ m)

1.3 Our Results

In this paper, we study the online (temporary) CCBP and CCMK problems.
We obtain the best possible results for items of unit sizes and values, and
arbitrary number of classes. Our first main contribution (in Section 2) is a
tight lower and upper bound of 2 on the competitive ratio of any deterministic
algorithm for the online CCBP. Tighter bounds are derived for the subsets of
instances S, (k, h). Specifically, we show that for any deterministic algorithm
Ag, 1<c<wv,k>0and h >k —14+max{[k/(c—1)], [(kc+1)/v]},

k+1— [kt
h+1 ’

Td(Sc,v(ka h’)) 2 1+ (1)

Our bound implies that an algorithm may be close to the optimal offline on
long sequences that contain relatively small number of colors (e.g., £k = 2
and h > 1); however, it may have a ratio of 2 when, on the average, any
subsequence of length v contains items of ¢ distinct colors (Take h = k> 1).
We show that a variant of the first-fit algorithm, adapted to class-constrained
packing, achieves the bound in (1). A greedy algorithm based on partitioning
the items into color-sets is shown to be efficient as well.

Next, we examine the performance of the well-known set of any-fit algorithms
in solving our problems. Recall that for classical BP, all any-fit algorithms and
some other greedy algorithms (such as nezt-fit) have constant competitive
ratios [16,17]. We show that this is no longer true in the presence of class-
constraints; that is, next-fit has the competitive ratio v/c, while some any-fit
algorithms have the competitive ratio min(v/c, c — 1).

Our second main contribution (in Section 3) is a tight lower bound of v/c on
the competitive ratio of any algorithm for the CCBP? problem. This bound
is valid for both deterministic and randomized algorithms. We show that all
any-fit algorithms achieve this bound. It may seem that online algorithms for
CCBP! perform better when departures are associated with a color, rather
than specific item. Indeed, in this case, each departure allows some re-packing
of the items. However, we show a lower bound of min(v/c,c¢ — 1) on the com-
petitive ratio of all any-fit algorithms. Thus, when v < ¢ — ¢, we get the ratio
v/c obtained for departures of specific items. Also, the color-sets algorithm,
that achieves the best possible ratio (of 2) when no departures are allowed, is
shown to achieve the ratio of v.

A natural question that we address here is whether a-priori knowledge of the
number of items to be packed, or the number of distinct colors in the input
sequence, can help. We answer this question in the negative and show that we
gain no advantage from a-priori knowledge of these parameters. Specifically,
our lower bounds hold for any deterministic algorithm, even one that knows
n and M, in advance, and the algorithms whose competitive ratios are shown
to match the lower bounds, do not use the values of n, M,. This holds for all
the problems considered in this paper.

Finally, in Section 4 we present the results for CCMK and CCMK!. For CCMK
we show an upper bound of ¢/v on the competitive ratio of any deterministic
algorithm. Any greedy algorithm which never rejects an item that can be
packed achieves this bound, regardless of the way it packs the items.? We
also show that there is no competitive algorithm for CCMK®.

1.4 Related Work

Online bin-packing has been studied since the early 1970’s, starting with the
classical works of Garey et al. [11] and Johnson [15]. The performance of
first-fit (FF) and best-fit (BF) was analyzed in [17], where it was shown that
rrr,TBr < 1.7. The first lower bound for any online bin packing algorithm
was given by Yao in [26]. He showed that 74 > 1.5, for any algorithm A. The
current best lower bound, 1.540, is due to van Vliet [24]. Detailed surveys of
online packing results can be found in [6,10].

There is a wide literature on the offline bin packing (BP) and the multiple
knapsack (MK) problems (see comprehensive surveys in [14,20]). Shachnai
and Tamir introduced in [22] the offline CCMK problem and showed that it
is NP-hard. The paper presents an approximation algorithm that achieves a
factor of ¢/(c+1) to the optimal. Golubchik et al. [13] derived a tighter bound
of 1 —1/(1 + +/c)? for this algorithm, with a matching lower bound for any
algorithm for this problem. The paper [21] considers the offline CCMK and
CCBP problems with items of arbitrary sizes.

When there is only one item (of arbitrary size) from each color, we get a
cardinality-constrained packing problem. These problems were studied in [8,18]
(in the offline case) and in [5] (in the online case). A recent paper by Krumke
et al. [19] studies the online bin coloring problem, in which we need to pack
unit sized items of different colors into a set of identical bins. However, this
problem differs from CCBP, both in the way the items are packed and the
objective function (the goal is to minimize the maximal number of distinct
colors in any of the bins, given that ¢ = v).

5 Such greedy algorithms, also known as fair, were previously considered for other
packing problems (see, e.g., in [7,3]).

The problem of online load balancing, in scheduling tasks with unknown du-
rations on multiple machines, is dual to bin packing with temporary items.
Azar, Broder, and Karlin [4] initiated the study of load balancing with tem-
porary tasks.® A technique developed in [2] enables to derive a lower bound
on the competitive ratio of randomized algorithms, based on existing lower
bound for deterministic algorithms. We use the technique to obtain a gen-
eral lower bound on the competitive ratio of any algorithm for CCBP? (see in
Section 3.1.1).

1.5 Notation and Simple Facts

Given a (possibly partial) packing, we say that a bin is full if it contains
v items; otherwise it is non-full. A bin is occupied if it contains items of ¢
distinct colors; otherwise it is non-occupied. Denote by C(B) the set of colors
contained in the bin B. Initially, VB, C(B) = (). During the placement of the
items, whenever B allocates a compartment to color i, i is added to C(B).

Let 0 = ay, as, ... be a sequence of items to be packed. Clearly, upon arrival,
an item ay of color 7 needs to be placed in some bin B such that: (i) B is
non-full, and (é4) ¢ € C(B) or B is non-occupied. A bin satisfying these two
requirement is possible for a;. An online algorithm needs to determine in which
possible bin a; will be placed. In CCMK, an item can also be rejected. We
first give a simple lower bound on N, (o) for CCBP.

Property 1 For any v > ¢ > 1 and sequence o, Nop(0) > max{[2], [#=]}.

Proof: The total size of the items in o is |o| = n. Thus, even if all the bins
are full, the capacity bound for each bin implies that at least [n/v] bins are
used. Similarly, the total number of compartments needed for all the items of
o is at least M,. Thus, even if all the bins are occupied, at least [M, /c] bins
are used. [

Note that when ¢ = 1 we pack items of different colors in separate bins,
and the greedy algorithm is optimal for CCBP; thus, in our discussion of
CCBP we assume that ¢ > 1. The offline CCMK with identical bins was
considered in [22]. The paper shows that when the input sequence o satisfies
cN > M, + N —1, we can fully utilize the N bins. In other words, for packing
n = Nv items, we need N > % bins. An upper bound on N, (o) follows.

Property 2 For any v > ¢ > 1,0, Nop(0) < max{[2], [2==11}.

An algorithm is called any-fit if it never opens a new bin for an item that can
be packed in one of the open bins. Any-fit algorithms may differ in the way
they choose the bin in which the item will be placed.

6 Comprehensive surveys of previous work on temporary task scheduling are given
e.g. in [10], [6] and [1].

The first-fit algorithm, denoted by Ap, always packs an arriving item into the
first (lowest indexed) possible bin. That is, we place a new item, a € I;, in
the first non-full bin, B, such that either B is non-occupied or i € C(B). If
no such bin exists, we open for a a new bin.

2 Deterministic Algorithms for CCBP

In this section, we present a general lower bound on the competitive ratio
of any deterministic algorithm and show that first-fit achieves this bound.
Another greedy algorithm, based on partitioning the items into color-sets, is
also shown to be efficient.

The algorithms that we analyze do not use the values of n, M, , while our lower
bound holds for any deterministic algorithm, even one that knows n and M,
in advance. We conclude that a-priori knowledge of these parameters cannot
improve the performance of deterministic algorithms for CCBP.

2.1 A Lower Bound for any Deterministic Algorithm

Recall that for given c¢,v > 1, an input sequence o is in S,(k,h) iff ke <
M, < (k+1)c and hv < |o| < (h+ 1)v. In other words, [M,/c| =k + 1 and
[lo]/v] = h+1.

Theorem 2.1 For any deterministic algorithm, Aq, and for any v > ¢ > 1,
k>0, and h > k — 1 +max{[2], [E<H]},

v

k+1— [kt
Seo(k,h)) > 1 v,
ralSea b, 1)) > 14
Proof: =~ We show that there exists an input sequence, o € S.,(k, h), such
that A, uses at least k + h+ 2 — [£¢21] bins to pack o, while Ny (o) = h+1.
The sequence o is constructed online by the adversary according to the way
Agq packs the items. We denote by B, Bs, ... the sequence of bins used by Ajy.

Let © = h—k+1— [%] > 0. The length of o is n = (k + z)v + kc+ 1, thus
[2] = k+ 2 + [%¢1] = h + 1. The number of distinct colors in o is k¢ + 1.
Therefore, 0 € S ,(k,h). We assume that this is known to the algorithm in
advance; thus, A, can use the values h, k£ in making its deterministic decisions.
The sequence o is constructed as follows.

Step 1. For ¢ =1 to kc:
pack items of color 7, until for the first time, an item of color 7 is placed in
one of the bins Byiy41, Bitgi2s - - -

Step 2. Pack items of color kc+ 1, until |o| = (k + z)v + ke + 1.

Claim 1 A, uses at least h+ k + 2 — [%1 =2k + x4+ 1 bins to pack o.

Proof: Clearly, if Boy,.1 is used in Step 1 then at least 2k +x + 1 bins are
used for the whole sequence; otherwise, the claim is proved by the following
facts (see Figure 1).

e After Step 1, each of the bins Byiyy1, Brigt2, - - -, Bogys contains exactly ¢
items of different colors. This holds since the adversary moves to the next
color whenever an item is placed in one of these bins, for each of the kc
colors 1,2,..., kc.

e The items packed in Step 2 cannot be placed in Bgi,11, Byizt2,-- -, Bogra
(which are occupied by items of colors different from kc+ 1); therefore, they
must be placed in the bins Bl; BQ, ceey Bk—l—x or B2k+$+1, B2k+z+27 R

e Since |o| = (k + z)v + kc + 1 and exactly kc items are placed in the
bins Biisi1, Beiwio, - - -, Bokie, the remaining (k 4+ z)v + 1 items must be
placed in By, By, ..., Bgiy or Bogiy11, Bogigyo,. ... Even if each of the bins
By, ..., By, is full, at least one item must be placed in Bogi,y1.

B, Bk+€k+z+l B2£—2zk+a:+1
Fig. 1. The placement produced by A4
Claim 2 For any h > k — 1+ [2], Nypw(0) =h +1.

Proof: The length of o is n = (k + z)v + kc + 1. The number of distinct
colors in ¢ is M, = k¢ + 1. By Property 2, Nyp(0) < max{[2], [M=—1]}. We

c—1
have [2] = h+1, and [2==1] = [£2]. Given that h > k — 1+ [£], we get
h+1> [£7; that is, Ny (o) < h+1. n
Combining Claims 1 and 2 we conclude that for any c,v,k and h > k — 1+
_ rket1l
max{ [5], 51}, ra(Se(k, b)) > 1+ S .

Recall that ry = limsupy,_,(max,{N4(0)/No | Nopt(c) = No}). For any
No > 1,let Kk = h = Ny — 1, and consider an instance with bins having
c>k+1and v > kc+ 1. Let 0 be the input sequence constructed by the
adversary for S, (k, h). Note that A > k — 1+ max{[-%], [£¢H]}. By Claims
1 and 2, A, uses at least kK + h +2 — [’“U—“] = 2Ny — 1 bins to pack o, while

Nopi(0) = h+1 = No. That is, rq(c) > 251,

Corollary 2.2 For any deterministic algorithm Agq, rq > 2.

2.2 First-fit, an Optimal Deterministic Algorithm

Consider the first-fit algorithm, Ap. Clearly, Ay satisfies the following.

Property 3 At any time during the execution of the algorithm, each bin,
except maybe for the last one, is either full or occupied.

Note that, given a placement of the items by Ay, for each bin, B, and color,
i € C(B), B allocated a compartment to 7 only if all the previous bins that
contain items of I; are full. Also, while B is non-full, any a € I; can be placed
in B. Hence, we get the next result.

Property 4 In any placement produced by Ar, each non-full bin, B, holds
the last item of each of the colors in C(B).

We show that the competitive ratio of Ar for any input sequence, o, and for
any values of v, ¢ is less than 2. Moreover, for any c, v, k, h, the competitive-
ratio of Ag on S.,(k, h) matches the lower bound given in Theorem 2.1.

Theorem 2.3 For any c,v, k, h,

k+1— [ketd]

ok, 1)) < 1
e (Seolk, b)) < 14+ L

Proof: Let o € S.,(k,h) be an input sequence for Ap. Assume that there
are my full bins and ms non-full bins in the placement produced by A for o.

By Property 1, Nopi(0) > [2] = h + 1. Thus, rp(0) < ™E02,

By Property 3, all the non-full bins, except maybe for the last one, are oc-
cupied. Therefore, the length of o is n > mqv + (my — 1)e + 1 (The last
non-full bin contains at least one item). Since o € S.,(k,h), h+1 = [2] >
my + [M] The coefficients of m; and my in this inequality are 1 and
c/v < 1; thus, m; + my is maximized when msy gets a maximal value.

Proof: By Properties 3 and 4 each non-full bin, except maybe for the
last one, contains items of ¢ distinct colors. The last non-full bin contains
items of at least one additional color. Thus, M, > (my — 1)c+ 1. In addition,
M, < (k+1)c. Thus, mye < (k+2)c—1 and since mg, c are integers ms < k+1.

|

Setting my = k + 1, we get that m; < h+1 — [%] Thus, m; + my <

_rket1
k+1+h+1— 5] and rp(o) = 1+ 2 "

10

Next we show that for general input sequences, the competitive ratio of A is
at most 2; thus, by Corollary 2.2, Ar achieves the best possible ratio in the
set of deterministic algorithms.

Theorem 2.4 Let o be a sequence satisfying kc < M, < (k + 1)c, for some

k>0, then rp(o) <2 — k%l[%w

Proof: Given the sequence o, recall that h = [|o|/v] — 1. We distinguish
between two cases. If h > k then, by Theorem 2.3,
k+1—[het] 1 ke+1

k41— [hett
Sl)
h+1 k+1 k+1" v
If h < k then, by Property 1, Nyp(0) > max{h + 1,k + 1} = k + 1. Assume
that there are m; full bins and my non-full bins in the placement produced by
Ap for 0. Thus, rp(o) < % As in the proof of Theorem 2.3, we have that

my + msy gets its maximal value when ms = k+1,and m; < h+1— [’“U—H} <
k+1— [kt Therefore, mq +my < 2(k + 1) — [R<H]. "

rr(o) <1+

2.3 Other Deterministic Algorithms

2.3.1 The Color-Sets Algorithm

Consider a simple algorithm, Acg, which partitions the M, colors in ¢ into
[#=7 color-sets and packs the items of each color-set greedily. Each color-set
consists of ¢ colors (excluding the last color-set, that may contain fewer colors).

The partition into color-sets is determined online by the input sequence. That
is, the first set, C', consists of the first ¢ colors in o, the second set, C5, of
the next ¢ colors in ¢ and so on. At any time, there is one active bin for each
color set. When an item a of color ¢ € Cj arrives, it is placed in the active bin
of C;. If the active bin contains v items, we open a new bin for a and this is
the new active bin of C;. Since |C}| < ¢, the resulting placement is feasible.

Theorem 2.5 For Acg, the color-sets algorithm, rocs < 2.

Proof: Assume that when Acg terminates there are £ active bins, containing
x1,- .., Ty items. Since we open a new active bin for some color-set only when
the current active bin of that color set is full, we have

n—(z1+ 22+, ..., 7) 1

Nes(o) = : e % + 61—). 2)

Note that (2) is maximized when ¢ is maximized. Since £ < [#=], we have

1.

Thus, ros < 2. [|

Nes(o) < 2+ [2E1(1= 2) < 2Nge(o)

1M,
v v C

11

2.3.2 Any-fit Algorithms

Recall that an any-fit (AF) algorithm never opens a new bin for an item which
can be packed in one of the open bins. AF algorithms differ in the way they
choose the bin in which the item will be placed. In class-constrained packing,
AF algorithms may differ also by the way they select the compartment in
which an item of color ¢ will be accommodated. We consider below two types
of AF algorithms.

e Strong any-fit algorithms, which never allocate a new compartment to an
item of color ¢, if a bin that is possible for the item has a compartment of
color 7.

e Weak any-fit algorithms, which may allocate a new compartment for an
item of color %, even if one of the possible bins has a compartment of that
color.

It turns out that almost any AF algorithms falls in the second category, as
shown in our next result.

Theorem 2.6 First-fit is the only strong-AF algorithm.

Proof: First note that Ar is an any-fit algorithm. We open a new bin for
an item only if none of the open bins is possible for that item. Assume that
Ap is not a strong-AF algorithm. That is, for some a € I;, the bin B;, which
is the first possible bin for a, does not have a compartment for I;, while some
other bin By, with £ > j, has a compartment allocated to I;. Let b be the first
item of I; placed in By. Clearly, B; was possible for b at the time it arrived. A
contradiction to the way Ap packs items. Thus, Ap is a strong AF algorithm.

Let A, be a strong AF algorithm. A; never allocates a new compartment if an
arriving item can be placed in an open compartment. Thus, for each color, 7,
at any time, there is at most one open possible bin. Specifically, either there is
a single occupied bin which holds color 7, to which we can add the item, or we
need to open a compartment for ;. By Property 3, this may be possible only
in the last open bin. Being the only possible bin, this bin is also the ‘lowest
indexed bin among the possible ones’. Thus, the execution of Ay is identical
to the one of Ag. N

In the following we derive upper and lower bounds on the competitive ratios
of AF algorithms. To this end, we first prove a general upper bound for a set
of algorithms that satisfy Property 3.

Theorem 2.7 Let A be an algorithm for which Property 3 holds. Then, for
anyv>c>1,ry <min(v/c,c+1).

Proof: ~ We first show that, for any sequence o, Ny(0) < 2Nyu(o) + 1.
By Property 3, when A terminates, each bin, except maybe for the last one,
contains at least ¢ items. Thus, Na(o) < % + 1. By Property 1, Noy (o) > 2.
It follows that Na(o) < 2Ngy (o) +1, and r4 < v/c.

12

For the upper bound of ¢+ 1, assume that A has n full bins and n, occupied
bins, then N4(o) < ny +n, + 1. W.lo.g., assume that the occupied bins are
By,...,B,,, then each of the occupied bins, B;, contains a color that is not
contained in any of the bins By,..., B;_;. It follows that M, > n,. On the
other hand, |o| > v ny. Thus, Ny (o) > max(ns,n,/c). This implies that

Ny(o) < My tne 1
Now(0) = max(ng, nofc)

ra(o) =

If nf > n,/cthen rg(0) < c+1+41/ny; otherwise, r4(0) < c+1+c¢/n,. Thus,
rg <c+ 1.]

Note that since AF algorithms open a new bin only if none of the open bins
are possible, all AF algorithms satisfy Property 3. Thus, we have

Corollary 2.8 For any AF algorithm, Ay, rw < min(v/c,c+ 1).

We now derive a matching lower bound on the competitive ratio of AF algo-
rithms. This distinguishes class-constrained bin packing from classic BP, for
which all AF algorithms have a constant competitive ratio of at most 2 [16,17].

Theorem 2.9 There ezists an AF algorithm, A, for whichr, > min(v/c,c—
1).

Proof: Consider the weak AF algorithm, A,,, which places a new item in the
last (highest indexed) bin into which it can fit. Given the values of v > ¢ > 1,
for any j = 0,1,..., let o; be the sequence of c requests c+ 7,1,2,...,c — 1.

Fix an integer £ > 0, and let x = £(c — 1) +1 and z = max([%¢], [-%]). Then
we construct a sequence o such that N, (o) = z, while Ny (o) < z.
The sequence o, of length xc, consists of the sub-sequences ogy, 01, ...,0,_1.

A, packs o as follows (see Figure 2 for v = 5,¢ = 3,/ = 1): the ¢ items of oy
are placed in the first bin; a new bin is opened for the first item of o1, which
cannot fit into the first bin. All other items of o; can fit into both the first
and the second bin, however, A,, places them all in the second bin. Similarly,
for each j, the items of o; are placed in a new bin. That is, A, uses x bins to
pack o.

By Property 2, Nyy(0) < max{[2],[#==1]}. For the sequence o, we have
n = zc and M, = z + ¢ — 1. Note that [#==1] = [He=ltel] — ¢4 1, and

c—1
that [-2:] = [4< D% — ¢ 4 1. That is,

Nop(0) < max{{%q,u 1} = max{[%],

13

We get that r,(0) > 7. Note that o can have arbitrary length, by taking the
value of ¢ to be arbitrarily large. Thus,

Ny(0)

Ty = lim sup (max{
No—)OO g

| Nopt(0) = No})

. Le—1)+1
> lim
T oo lc—1)4+1)c, b(c—1)+1
e (D5 D =51
v c
) lc—1)+1)
> lim = min(—,c—1).
oo ((ﬁ(c -1)+1)c 3 le—1)+1 N 1)
v c—1
n
4
3 5
2 2 2 1 2
1 1 1 2
3 4 5 1 2
Ay Optimal

Fig. 2. Lower bound for AF algorithms (v =5, ¢ = 3)

2.83.8 The Next-fit Algorithm

The next-fit algorithm, denoted by Ay, always packs an arriving item into
the currently active bin. If the item cannot be placed in the active bin, then
the currently active bin becomes inactive (and never used again); a new bin
is opened and becomes the active bin. Note that Ay is not an AF algorithm,
since it may open a new bin for an item, even if the item can be packed in
one of the (inactive) bins that were opened earlier. Yet, since Ay never opens
a new bin if the active bin is possible for an item, it satisfies Property 3. It
follows from Theorem 2.7 that ry < v/c. We now derive a matching lower
bound for next-fit.

Theorem 2.10 ry > v/c.

Proof: Given v,c, for any Ny > 1 consider an input sequence o, of length
n = Nyv, consisting of repetitions of the subsequence 1,2,...,c+ 1. That is,
c=12,....c+1,1,2,...,c+1,.... Note that Ay must close each active
bin after exactly ¢ items. Thus, Ny(c) = [%] > Z. On the other hand, since

14

M, = ¢+ 1 and Ny > 1, by Property 2, an optimal algorithm packs ¢ in

% = Ny bins (see Figure 3). Thus, Ny(0) > 2Ny (o), and ry > v/c. n
1 2 3
1 2 3
1 2 3
1 2 1 2 1 2 3
3 2 3 2 1 3 1 2 3
Next-Fit Optimal

Fig. 3. Lower bound for next-fit (v = 5,¢ =2, and Ny = 3)

3 Online Class-Constrained Packing of Temporary Items

In this section, we consider a generalization of online class-constrained bin-
packing to the case where items may leave the system after a while. We first
consider the case where each departure is associated with specific item (of
specific color, placed in specific bin). In Section 3.2 we discuss the case in
which a departure event is associated with a color; thus, we may choose which
item of that color to remove. In both cases we do not know in advance the
expected departure time of a packed item.

3.1 Departures of Specific Items

In the model where all items are permanent, we showed (in Section 2.2) that
first-fit is superior to other any-fit algorithms, and that its competitive-ratio is
less than 2. When some items are temporary, this is no longer true. We prove
a lower bound of v/c on the competitive ratio of any deterministic algorithm.
Then, we show that all any-fit algorithms achieve this bound. Note that, as in
Section 2, we conclude that a-priori knowledge of n, M, cannot help.

Theorem 3.1 For any deterministic algorithm Ag, rq4 > v/c.

Proof: Given v, ¢, for any Ny such that £ = %(NO — v+ 1) is an integer,
we construct an input sequence, o, such that Ny(o) = fv, while N, (o) =
le +v —1 = Ny. The construction of ¢ is done in fc iterations. In the jth
iteration, 1 < j < ¢, we add and remove items of color j. Specifically, the jth
iteration in o consists of:

(1) Arrivals of v(v—1)+1 items of color j. These items are placed in at least
v distinct bins.

(2) Departures of v(v —2) + 1 items of color j, selected such that each of the
v remaining items of color j is placed in a different bin.

15

Note that after the iteration fc, there are vfc items in the bins. Since the items
of each color are placed in different bins, each bin holds at most ¢ items. Thus,
A, uses at least fv bins.

Consider now an optimal algorithm, A,,:, which knows the whole sequence,
and in particular, the items that will leave during the second step in each
iteration. For each color, A,y will pack the v items that will not be removed
in the first available bin, and the v(v — 2) + 1 items that are about to leave, in
the next v — 1 bins. Thus, after the first step of iteration j, 1 <j </c, Ay
uses (j —1)+wv bins, and during the second step of the jth iteration it retreats
to j full bins. Hence, the maximal number of bins used by A, is fc +v — 1.

We get that r4(c) = ;2. Recall that £ was selected such that Ny = fe+v—1.

letv—1"
Thus,
S (No—v+1) w v+1
- cr - @00 - _]_ —
rlo) = S = 2=),
and
Ny(o)

lim sup (maax{

v
| Nozlt(a) = NO}) =
No—)OO &
[]

Theorem 3.2 If A is an any-fit algorithm, then for any instance with bins
having volume v and ¢ compartments, T4 < v/c.

Proof: Let o be an input sequence for A. Let N4 be the number of bins used
by A for packing 0. When analyzing the competitive ratio of A, we can assume
w.l.o.g. that o ends when bin number N4 is opened. Indeed, after this point,
the number of bins used by an optimal algorithm can only increase, and we
need to bound the largest]f]\i?—t(&_)) ratio. Since A is an any-fit algorithm, when
Ny is opened, all the other bins are either full or occupied, and therefore each
open bin contains at least c items. Let n be the number of packed items at that
time. Then N4 (o) < 2+ 1. Clearly, Nop(0) > 2. Thus, Na(0) < ZNypi(0)+1,

and r4 < v/ec. n

3.1.1 A Lower Bound for Randomized Algorithms

We now show that randomization cannot help in packing temporary items.
Specifically,

Theorem 3.3 For any randomized algorithm Ag for CCBP', rp > v/ec.

Proof: Following the technique developed by Azar and Epstein [2], we rep-
resent the lower bound for deterministic algorithms (as given in Theorem 3.1)
by a set of sequences. Denote this set by 7T'; each sequence is associated with
the operation of a deterministic algorithm. These sequences specify the items
that leave during the second step of each iteration. The selection of items is
adapted to the decisions made by the algorithm. Thus, instead of defining o
online, we include in 7" all the possible sequences.

16

Next, we modify the sequence o, by adding at the end a sequence of departures,
of the fvc items that remained after the last phase. This extension of ¢ is
applied to all the sequences in 7. Hence, for any extended sequence in 7T,
all bins are empty when the sequence ends. Note that since we measure the
number of bins used along the execution of o, rather than the number of open
bins at the end, this extension does not affect the number of bins used by Aq4
or by an optimal algorithm.

Now, we use the adaptation of Yao’s theorem for online algorithms. It asserts
that a lower bound on the competitive ratio of deterministic algorithms, for
any distribution on the input, is also a lower bound for randomized algorithms,
given by E(Na/Ny). We construct randomly a sequence, og, in which on one
hand, the value Nj is the same as the known optimal value for the original
non-extended o, and on the other hand, with high probability, the value of
N, is also the same as the value for the original non-extended o.

The sequence og is constructed by choosing uniformly at random sequences
from T'. We call each such sequence a segment. We repeat the choice of seg-
ments |7'|b times, for some b > 1, and concatenate the segments to one long
sequence. This defines a distribution on the set of possible long sequences.
Since the offline optimal algorithm uses the same number of bins for all possi-
ble segments (Ny(o) = fc+ v — 1, as in Theorem 3.1), and since any segment
ends with all the bins empty, the offline optimal algorithm uses Ny bins for
any or.

Now, for any deterministic algorithm, A, there exists a segment in 7" for which
A uses Na(o) = fv bins. Thus, with probability at least 1/|T°|, the online
deterministic algorithm uses N4 (o) bins for a specific segment (and thus for
the whole sequence). The probability that less than N4(o) bins are used is
therefore at most (1 — ﬁ)IT\b < e’ We conclude that with probability at
least 1 — e~ the competitive ratio of A4 is Na(c)/Ny(o), and with probability
at most e~ it is at least 1. Let N(og) and Ny(ogr) be the number of bins used
to pack the long sequence o by A and by an optimal algorithm, respectively.
Then,

+e". (3)

For sufficiently large b, the RHS of (3) approaches the ratio (¢c+v —1)/(¢v),
and taking ¢/ — oo we get that rz — v/c. [

3.2 Departures of Items of Specific Colors

We now show that any-fit algorithms achieve a poor ratio, even if departures
are associated only with a color, and the algorithm may select the item to

17

be removed in this color. Our result holds for any removal policy. Clearly,
Theorem 3.2 is valid also for this model, thus, v/c is an upper bound for the
competitive-ratio of any-fit algorithms. We show that this bound is tight for
bins with v < ¢(c — 1).

Theorem 3.4 For any any-fit algorithm A, r4 > min(v/c,c — 1).

Proof: Given v,c, let z =v —c+1, and let 2z = max([2°], [%

Ny such that ¢ = %(NO + z — x) is an integer, we construct a sequence o such
that N4(o) = £z, while Nyy(0) = €z — 2+ z = Nj.

1)- For any

The construction of o is done in ¢ iterations. In the jth iteration (1 < j < £) we
handle items in the v colors (j —1)v+1,..., jv. Specifically, the jth iteration
in o consists of:

(1) Arrivals of zv items that fill the = bins (j — 1)z + 1,..., jz as follows.
For i = 1 to z: o contains a sub-sequence of arrivals of (¢ — 1) items in
colors (j —1)v+1,...,(j —1)v + ¢ — 1, followed by v — ¢+ 1 arrivals of
items of color (j — 1)v +c¢+ ¢ — 1. Since A is an any-fit algorithm, there
is at most one possible open bin for each item as it arrives; thus, the bins
(j— Dz +1,...,jx are filled sequentially one after the other.

(2) For ¢ = 1 to x: remove v — ¢ items of color (j — 1)v + ¢+ i — 1. Now,
regardless of the removal policy of the algorithm, we end up with each of
the bins (j — 1)z + 1,..., jx containing exactly ¢ items, one in each of
the colors (j —1)v+1,...,(j —1)v+ ¢ — 1, and one item whose color is
in(j—1lv+e,...,jv.

Note that after each iteration, 1 < j < /¢, each bin contains ¢ items of ¢
different colors. Thus, the arriving items in each iteration, which are of new
colors, must be packed in new bins. It follows that after the jth (1 < j < /)
iteration, A uses jx bins, each containing c items.

Claim 4 An optimal placement of o uses Ny = £z — z + x bins.

Proof: Consider an optimal algorithm, Ay, which knows the entire se-
quence, and in particular, the items that will leave during the second step
of each iteration. In each iteration, A,, can pack the items that are not re-
moved in the first available bins. We show that these permanent items can be
packed in z bins. Note that this set of items consists of xzc items of x + ¢ — 1
colors. We distinguish between two types of colors: (i) repeated, from each
of which there are z items (In the jth iteration, these are the (¢ — 1) colors
(j—Dv+1,...,(j—1)v+c—1), and (4i) single-items, from each of which there
is only one item (in the jth iteration, these are the z colors (j—1)v+c,. .., jv).

Suppose that [2¢] > [-£:], then A,y can pack the permanent items in [2¢]
bins as follows. At first, each bin contains ¢ —1 items of single-item colors, and
x =v — c+ 1 items of some repeated color. Once all the ‘singles’ are packed,
we fill the remaining bins greedily with the remaining items of the repeated

18

colors. Since all the bins are filled to capacity v, Aoy uses [5°] bins.

Suppose that [Z¢] < [-%;], then we can pack the permanent items in [-%]
bins as follows. First, we pack in each bin ¢ —1 single items, and x = v—c+1
items of some repeated color. Once all the items of the repeated colors are
packed, we use the remaining bins greedily to pack c single items in each.
Since each bin contains at least ¢ — 1 single items, and there are x such items,
all the single items are packed. Also, since [%°] < [-%5], there is enough
capacity for the other items.

Thus, after the first step of iteration j, 1 < j < ¢, A,y uses (j —1)z+z bins,
and during the second step of the jth iteration it retreats to jz full bins. The
maximal number of bins is (£ — 1)z + 2 = Ny, used during the last iteration. m

We get that r4(0) > szgﬂ, and

NA(O')

ra =lim sup (max{
N()-)OO g

3.2.1 The Color-Sets Algorithm

We now show that any algorithm based on packing by color sets achieves the
ratio v, even if departures are associated only with a color. Our result holds
for any removal policy and any algorithm which packs items by color-sets.
Note that since each active bin accommodates at least one item, the ratio v
is the worst possible.

Theorem 3.5 Let Acs be a color-sets algorithm with any remowal policy, then
rcs 2> .

Proof: Recall that Acg partitions the M, colors in o into [#=] color-sets,
where the jth set, C;, contains the jth set of ¢ colors in o. The items of each
color-set are packed greedily.

Given v and ¢, for any Ny, let £ = Ny — v + 1. We construct a sequence o
such that N4 (o) = fv, while Nypi(0) = €+v—1 = Ny. W.lo.g., the colors are
numbered by the order of their first appearance in ¢; thus, for each 1 < j </,
C; ={(—1)c+1,...,jc}. The construction of ¢ is done in / iterations. In
the jth iteration, 1 < j </, we add and remove items whose colors are in Cj.
Specifically, the jth iteration consists of two steps:

(1) Arrivals of v? items whose colors are in C;. This sequence consists of
repeating v times a sub-sequence of arrivals of a single item of color jc,
followed by v — 1 arrivals of items whose colors are in the set {(j — 1)c+
1,...,jc¢ — 1}. The sequence contains at least one item in each of the
colors in C; (so Acg can define C}).

(2) Departures of the v(v — 1) items in the colors (j — 1)c+1,...,j5¢c— 1.

19

Note that in the first step of iteration j, Agg fills the bins (j —1)v+1,..., ju,
and after the second step of iteration j, regardless of the removal policy of
Acs, each of these bins contains a single item (of color jc). However, these
bins cannot be used by Acg in the next iterations, since the arriving items
belong to different color-sets. Thus, in each iteration, the arriving items are
packed in new bins. It follows that after the /th iteration, Acs has fv open
bins, each contains a single item.

Consider now an optimal algorithm, A,,, which knows the entire sequence,
and in particular, the items that will leave in the second step of each iteration.
In each iteration, A,y packs the v permanent items in the first available bin
and the temporary items in the next v — 1 bins. Thus, after the first step of
iteration j, 1 <j </, A,y has j— 14w full bins, and during the second step
of the jth iteration it retreats to j full bins. The maximal number of bins is
¢+ v —1, used during the last iteration.

We get that TCS(O') = E—l—e:—l' Since NO =f{+v— 1, TC’S(O') _ Nov],\]z2_|_v _
(1 — vjvfov), and limsup y, _, ., (max,{Nos(0)/Ny | Nppe(0) = No}) = v. .

Remark: The same ratio of v can be shown also for variants of Acg that use
different partition rule (that is, the color sets are not necessarily determined by
the first appearance of each color in o). In this case, if the algorithm switches
during the jth iteration to a new color-set (i.e., an arriving item is assigned to
Cy, > j), then the item in C, is temporarily ‘ignored’ by the adversary, and
the jth iteration continues as described above. The item in C, will be handled
in the rth iteration.

4 The Online Class-Constrained Multiple Knapsack Problem

Recall that in the CCMK problem we have m identical knapsacks, of volume v
and ¢ compartments, and our goal is to maximize the number of packed items
from the input sequence o.

In this section, we show that the best possible competitive ratio for a deter-
ministic algorithm for CCMK is ¢/v. This bound is achieved by any greedy
algorithm, i.e., an algorithm that rejects an arriving item only if it cannot be
packed in any of the knapsacks. We show that any greedy algorithm achieves
the ratio c¢/v, regardless of the way the items are packed. For the temporary
CCMK problem, note that the number of packed items may be larger than
mv. We show that no deterministic algorithm is competitive.

Theorem 4.1 For anyv > ¢, and any deterministic algorithm, Ay, for CCMK,
rq < c/v.

Proof: Consider the following sequence that is constructed online by the
adversary for an algorithm A,.

20

(1) Foralli=1,...,mc, repeat items of color 7 until one such item is packed,
or until mv items of color ¢ are rejected. In the latter case, the sequence
ends.

(2) muv items of color mc + 1.

If no color is rejected in muv steps, then each of the knapsacks filled by Aq4
contains exactly c items of ¢ distinct colors, thus, only mc items are packed.
An optimal algorithm can pack the muv items of color mc+ 1. If some color, 7,
is persistently rejected, then an optimal algorithm can pack the muv rejected
items of color ¢, while A, packs only 7+ — 1 items of the colors 1,...,2— 1. In
both cases rqy < 2 = c/v. n

A greedy algorithm never rejects an item that can be packed, at the time it
arrives. We show that the competitive ratio of any greedy algorithm matches
the ¢/v bound, regardless of the way the items are packed.

Theorem 4.2 For any greedy algorithm Ag, the competitive ratio of Ag is
re > c/v.

Proof: For any m > 0 and a sequence o, consider the knapsacks when
o terminates. If some knapsack contains less than c items, then, since Ag is
greedy, no item was rejected and rg(o, m) = 1. Otherwise, there are at least
c items in each of knapsack, and ng(o,m) > cm. Since ngy (o, m) < vm, we
get the desired ratio. N

Next we show that when some of the items are temporary no algorithm is
competitive.

Theorem 4.3 For any v > ¢, any deterministic algorithm, Aq, for CCMK?,
and any p > 0, the competitive ratio of Ag is rq > p.

Proof: Consider a sequence, o, that first ‘blocks’ all the m knapsacks (as
in the proof of Theorem 4.1). After all the knapsacks are full or occupied, o
continues with a sequence of arbitrary length, p, of pairs of arrival-departure of
some item (of a new color). Clearly, these repeated arrivals cannot be accepted
by the algorithms, while an optimal algorithm can pack them all. Any ratio
can be obtained by picking the value of p large enough. [

Acknowledgment

We thank an anonymous referee for many insightful comments on the paper.

References

[1] A. Armon, Y. Azar, L. Epstein, and O. Regev, Temporary tasks assignment
resolved. In Proc. of the 18th ACM-SIAM Symposium on Discrete Algorithms

21

(SODA), pages 116-124, 2002.

[2] Y. Azar and L. Epstein, On-line load balancing of temporary tasks on identical
machines. Proc of 5th ISTCS, 119-125, 1997.

[3] Y. Azar, J. Boyar, L. M. Favrholdt, K. S. Larsen, M. N. Nielsen and L. Epstein.
Fair versus unrestricted bin packing. Algorithmica 34(2): 181-196, 2002.

[4] Y. Azar, A. Broder and A. Karlin. On-line load balancing, Theoretical
Computer Science, vol. 130, pages 73-84, 1994.

[5] L. Babel, B.Chen, H. Kellerer and V. Kotov. On-line algorithms for cardinality
constraint bin packing problems. Technical report, Institut fuer Statistik und
Operations Research, Universitaet Graz, 2001.

[6] A. Borodin and R. El-Yaniv. Online computation and competitive analysis.
Cambridge University Press, 1998.

[7] J. Boyar, K. S. Larsen, M. N. Nielsen The accommodating function: a
generalization of the competitive ratio. SIAM J. on Computing, 31(1): 233—
258, 2001.

[8] A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger. = Approximation
algorithms for knapsack problems with cardinality constraints. Furopean
Journal of Operations Research, 123:333-345, 2000.

[9] W. J. Davis, D. L. Setterdahl, J. G. Macro, V. Izokaitis, and B. Bauman. Recent
advances in the modeling, scheduling and control of flexible automation. In
Proc. of the Winter Simulation Conference, pages 143-155, 1993.

[10] A. Fiat and G.J. Woeginger. Online Algorithms: The State of the Art. LNCS.
1442, Springer-Verlag, 1998.

[11] M.R. Garey, R.L.Graham, and J.D.Ullman. Worst-case analysis of memory
allocation algorithms. In Proc. of the 4th ACM Symposium on theory of
Computing, 1972.

[12] S. Ghandeharizadeh and R.R. Muntz. Design and implementation of scalable
continuous media servers. Parallel Computing Journal, 24(1):91-122, 1998.

[13] L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu.
Approximation algorithms for data placement on parallel disks. In Proc. of
the 11th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 223—
232, 2000.

[14] D.S. Hochbaum. Approzimation Algorithms for NP-Hard Problems. PUS
Publishing Company, 1995.

[15] D.S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT,
Cambridge, MA, 1973.

[16] D.S. Johnson. Fast algorithms for bin packing. J. Comput. System Sci., 8:272—
314, 1974.

22

[17] D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, and R.L. Graham. Worst-
case performance bounds for simple one-dimensional packing algorithm. STAM
Journal of Computing, 3:256-278, 1974.

[18] H. Kellerer and U. Pferschy. Cardinality constrained bin-packing problems.
Annals of Operations Research, 92:335-349, 1999.

[19] S.O. Krumke, W. de Paepe, J. Rambau and L. Stougie. Online bin-coloring. In
Proc. of the 9th Annual European Symposium on Algorithms (ESA), 2001.

[20] S. Martello and P. Toth. Algorithms for knapsack problems. Annals of Discrete
Math., 31:213-258, 1987.

[21] H. Shachnai and T. Tamir. Polynomial time approximation schemes for class-
constrained packing problems. Journal of Scheduling, 4:313-338, 2001.

[22] H. Shachnai and T. Tamir. On two class-constrained versions of the multiple
knapsack problem. Algorithmica, 29:442-467, 2001.

[23] H. Shachnai and T. Tamir. Multiprocessor scheduling with machine allotment
and parallelism constraints. 2001. Algorithmica, Vol. 32:4, 651-678, 2002.

[24] A. van Vliet. On the asymptotic worst case behavior of harmonic fit. J. of
Algorithms, 20:113-136, 1996.

[25] J.L. Wolf, P.S. Yu, and H. Shachnai. Disk load balancing for video-on-demand
systems. ACM Multimedia Systems Journal, 5:358-370, 1997.

[26] A. Yao. New algorithms for bin packing. Journal of the ACM, 27:207-227,
1980.

23

