J Comb Optim (2010) 19: 304-324
DOI 10.1007/s10878-009-9259-0

Algorithms for storage allocation based
on client preferences

Tami Tamir - Benny Vaksendiser

Published online: 27 August 2009
© Springer Science+Business Media, LLC 2009

Abstract We consider a packing problem arising in storage management of Video
on Demand (VoD) systems. The system consists of a set of video files (movies) and
several servers (disks), each having a limited storage capacity, C, and a limited band-
width (load capacity), L. The goal in the storage allocation problem is to assign
the video files to the servers and the bandwidth to the clients. The induced class-
constrained packing problem was studied in the past assuming each client provides
a single request for a single movie. This paper considers a more general and realistic
model—in which each client ranks all the movies in the system. Specifically, for each
client j and movie i, it is known how much client j is willing to pay in order to watch
movie i. The goal is to maximize the system’s profit. Alternatively, the client might
provide a ranking of the movies and the goal is to maximize the lexicographic profile
of the solution.

We prove that the problem is NP-complete and present approximation algorithms
and heuristics for systems with a single or multiple disks. For a single disk we present
an (1 — 1/e)-approximation algorithm that is extended for systems with storage costs,
and for k-round broadcasting, in which each client might be serviced multiple times.
For multiple disks we present a (C — 1)(e — 1)/ Ce-approximation algorithm, two
heuristics for determining the storage allocation, and an optimal bandwidth-allocation
algorithm.

In our simulation of a VoD system, we compared the performance of the suggested
heuristics for systems with variable parameters and clients with variable preference
distributions. We focused on systems in which client preferences and payment are
power-law distributed: a few movies are very popular and clients are willing to pay
significantly more for watching them.

T. Tamir (&) - B. Vaksendiser
School of Computer Science, The Interdisciplinary Center, Herzliya, Israel
e-mail: tami@idc.ac.il

B. Vaksendiser
e-mail: vaksendise.benny @idc.ac.il

@ Springer

mailto:tami@idc.ac.il
mailto:vaksendise.benny@idc.ac.il

J Comb Optim (2010) 19: 304-324 305

Our results can be applied to other packing and subset selection problems in which
clients provide preferences over the elements.

Keywords Algorithms - Class-constrained packing - Approximation - Heuristics

1 Introduction

This paper considers a variant of the knapsack problem arising in storage manage-
ment of Video on Demand (VoD) systems. VoD services allow users to select and
watch video content at their desired time. Formally, a VoD system services n clients,
that are interested in watching movies from a collection of M movies f1, f2, ..., fu-
The system has limited resources: it consists of N identical disks di, da, ..., dy, each
having a limited storage capacity, C, and a limited bandwidth (load capacity), L. Each
transmission requires a dedicated stream of one bandwidth (load) unit. This implies
that each of the NV disks can store movies of total size C and can transmit broadcasts
to at most L clients simultaneously. The L transmissions are of movies stored on
the disk, with no restrictions on their distribution (in particular, all L streams might
broadcast the same movie).

The problem is therefore reduced to a class-constrained packing problem, in
which the items to be packed (streams) are drawn from M classes (movies) and
have the same unit size. The bins (disks) have a limited capacity, L, and can pack
items from at most C classes. This storage management problem motivated the
study of class-constrained packing in recent years (see e.g. Golubchik et al. 2000;
Kashyap and Khuller 2006; Shachnai and Tamir 2001a). In all previous work it is
assumed that each client specifies a single movie he wishes to watch and the goal is
to allocate storage to movies and transmissions to clients in a way that maximizes
the number of clients whose request is granted. In this paper we define and study a
more generalized setting: For each client j and movie i, let b; ; denote the payment
that client j is willing to pay for watching movie i. That is, each client provides
his complete preference over the whole collection of movies. The previously studied
system is in fact the special case in which for each client j, b; ; = 1 for a single
movie i, and by ; =0 for any i’ # i .I The objective is to allocate storage to movies
and transmissions to clients in a way that maximizes the system’s profit given by
P= Z?:ﬁbi,ﬂ movie i is transmitted to client j}.

For this objective, we consider systems with a single disk or with multiple disks.
We distinguish between the single-round problem, in which each client is watching at
most one movie, and the k-round problem, in which there are k synchronized rounds
and the goal is to maximize the total profit. For multiple disks, we assume that all
movie files require the same storage. For single disk our results are suitable also
when movie files have arbitrary sizes or are associated with arbitrary storage costs
(that are reduced from the profit P). Table 1 provides a glossary of the notations used
in the paper.

n practice, naturally, clients will not rank the whole selection of movies. Our model does not require a
complete ranking, and the payment for any number of movies can be zero.

@ Springer

306 J Comb Optim (2010) 19: 304-324

Table 1 Glossary of notations - -
notation meaning

M Number of movies.

Number of clients.

N

b, j The payment that client j is willing to pay for watching
movie i.

Number of disks.

Load capacity of each disk.

Storage capacity of each disk.

System’s profit.

e - T o 4

Number of rounds in the multiple-round problem.

For a single disk, we also consider a variant in which, instead of specifying its
potential payments, each client provides an ordered tie-free list of preferences of the
movies. That is, a list of length M in which the first element is the 1st choice of the
client, etc. We consider two objectives for this variant: maximizing the lexicographic
profile of an assignment, which quantify the total satisfaction of the clients, and max-
imizing the fairness, which measures the satisfaction of the least-satisfied client.

1.1 Related work

VoD systems have been studied extensively in recent years. Many new algorithmic
problems arose with the study of these systems. In particular, the storage allocation
problem got much attention (e.g. Golubchik et al. 2000; Kashyap and Khuller 2006;
Wolf et al. 1997; Wang et al. 2004; Zhu and Xu 2002; Little and Venkatesh 1995). In
particular, the induced class-constrained packing problem was studied in Golubchik
et al. (2000), Shachnai and Tamir (2001a, 2001b) and the generalization to pack-
ing with a sharable dimension in Kashyap and Khuller (2006), Shachnai and Tamir
(2003). In all the above work it is assumed that each client specifies a single request
for a single transmission (no payment vectors), and the goal is to maximize the num-
ber of serviced clients. In Shachnai and Tamir (2001a) the problem is defined and
shown to be NP-hard. The moving window (MW) algorithm is presented and shown
to be optimal for certain systems. The paper Golubchik et al. (2000) gives a general
analysis of the MW algorithm and presents the first PTAS for the storage alloca-
tion problem. More general PTASs were developed for systems with variable disks
(Shachnai and Tamir 2001b), or variable movie files (Kashyap and Khuller 2006).
Other works deal with dynamic storage allocation, where the load on the disks is
balanced using file deletion and replication. The papers Chou et al. (2000), Wolf et
al. (1997), Zhu and Xu (2002) suggest dynamic storage allocation schemes—that are
suitable for systems in which client preferences (movies popularity) is changing over
time. Better performance of the VoD system can be achieved also by data sharing
techniques. i.e., a single stream is used to service several clients. This can be done by
batching (see e.g., in Wolf et al. 1996), stream-merging (Bar-Noy and Ladner 2004),
or buffering (Bar-Noy et al. 2003; Kamath et al. 1995). Each of these techniques can
be applied independently of the data placement scheme, to improve the overall per-
formance of the system. Other techniques that can improve the quality of service in

@ Springer

J Comb Optim (2010) 19: 304-324 307

VoD systems include caching of popular movies, data striping and movie segmenta-
tion (Kang 2004). These techniques are not considered in our work.

Our work is also related to the study of set-cover (Garey and Johnson 1979) and
subset-selection (Khuller et al. 1999; Nemhauser et al. 1978; Sviridenko 2004). Gen-
erally, in traditional covering or selection problems, the input is a collection of sets
S =1{81,9%,...,S,} overelements U, and the goal is to find a subset of S that covers
as many elements from U as possible. Given the selected subset, an element is either
covered (if it is a member of a selected set) or not. The problem considered in this
paper is a generalization of set-cover: the elements of U are not simply covered or
not by the selected set, but there is a profit associated with each element from U and
set from S, and the goal is to find a subset of S that maximizes the total profit (where
the profit from each element is the maximal profit of this element from a selected set).
Note that set cover is the special case in which the profits are in {0, 1}.

1.2 Our results

For a VoD system with a single disk we present a hardness proof (Sect. 2.1) and a
(1 — 1/e)-approximation algorithm (Sect. 2.2). We then extend the approximation
algorithm for systems with variable file sizes and/or storage costs (Sect. 2.3), and for
k-round broadcasting (Sect. 2.4).

Rank-related objectives are considered in Sect. 2.6. We show that the problem of
finding an assignment with maximal lexicographic profile is NP-hard, and present a
greedy algorithm that finds an assignment maximizing the number of clients getting
their top-preference. The fairness assignment problem is also shown to be NP-hard.
Moreover, for some instances some clients are guaranteed to get their (M — C + 1)th
choice. A simple greedy algorithm achieves this bound.

For multiple disks we first present, in Sect. 3.1, a (C —1)(e — 1)/ Ce-approximation
algorithm. Next, we propose algorithms for solving the problem in two stages. In the
first stage an allocation of movies to the disks is determined. In the second stage,
given the storage allocation, the bandwidth allocation problem is to decide which of
the clients will be serviced by which disk. We present two heuristics for the first task
(Sect. 3.3), and an optimal algorithm for the second task (Sect. 3.2). The bandwidth-
allocation problem can be reduced to a special case of a min-cost max-flow problem.
For this flow problem we present and implement an algorithm based on dynamic
programming for efficient detection of negative-cost cycles (in our terms, these are
profit-improving cycles).

In order to better evaluate the performance of our algorithms we simulated a
VoD system, and compared their performances. In our simulated system, as in the
real-world, client preferences and payment vectors are power law distributed (Yu et
al. 2006). We used the Zipf distribution to determine the popularity and payment-
readiness of clients (Zipf 1949). As a result, a few movies are very popular and
clients are willing to pay significantly more for watching them. All the algorithms
suggested in the paper for the single-round problem, and also some intuitive greedy
heuristics, were simulated and their performances was compared. The experiments
and their results are described in Sect. 2.5 (single disk) and Sect. 3.4 (multiple disks).

@ Springer

308 J Comb Optim (2010) 19: 304-324

2 Storage allocation on a single disk

In this section we consider the case in which the system consists of a single disk. The
resulting problem is a C-out-of-M subset-selection problem. For each subset S of C
movies, let bg,; be the profit from servicing client j assuming the movies of § are
stored. Since the client can be transmitted any stored movie, bs j =max f,cs b; ;. Let
P(S) denote the profit gained by storing S on the disk. If L < n, then P(S) is the
sum of the L highest bg ; values. If L > n, that is, all clients can be serviced, then
P(S) = Z;=1 bs, ;.

We show that the problem is NP-complete and prove that a greedy algorithm
achieves (1 — 1/e)-approximation to the maximal profit. Note that the problem can
be solved by a brute-force O (min(2™, M))-time algorithm. Thus, we assume that
M and C are non constants.

2.1 Hardness proof

Theorem 2.1 The storage allocation problem is NP-complete even for a single disk,
unit-size files, and unlimited load capacity.

Proof First, the problem is in NP since it is possible to check efficiently if a given
subset of files provides a specific profit. The hardness proof is by reduction from the
maximum coverage problem. An instance of maximum coverage consists of elements
U=1,2,...,n,afamily of subsets § = S1, S2, ..., Sy of U, and a number C. The
goal is to select C members of S that cover as many items of U as possible. Given an
instance for maximum coverage we construct the following instance for the storage
allocation problem: There are |U| clients and M = |S| movies. Define b; ; to be 1 if
J € S; and otherwise b; ; = 0, also define the load capacity of the single disk to be
L =n and its storage capacity to be C. We get that a selection of C subsets covers z
elements if and only if the associated set of movies satisfies z clients (who are willing
to pay 1 for at least one of the selected movies). O

We note that the above reduction is approximation-preserving, therefore, by Feige
(1998) the best we can expect is a (1 — 1 /e)-approximation. The next section provides
a (1 — 1/e)-approximation algorithm.

2.2 An (1 — 1/e)-approximation greedy algorithm

The paper Nemhauser et al. (1978) presents a general greedy algorithm for maximiz-
ing the profit gained by selecting a subset of C out of M elements given that the profit
function is nondecreasing, polynomially computable, and sub-modular. A function f
is sub-modular for a given set system if for every collection of subsets S and T it sat-
isfies f(S)+ f(T)= f(SUT)+ f(SNT). The greedy algorithm, Ag,, starts with
an empty set S and performs C iterations in each of which the element v maximiz-
ing f(SU{v}) — f(S) is added. This algorithm is shown to achieve approximation
(1 — 1/e) to the optimal profit.

In our setting, as explained above, the profit P(S) from a subset S of movies is
the sum of min(L, n) highest bg_; values. In order to show that A, can be used, we

@ Springer

J Comb Optim (2010) 19: 304-324 309

note that for any movie v and set S, P(S U {v}) — P(S) can be calculated efficiently
(see below), and we prove below that the profit function P fulfills the requirements
in Nemhauser et al. (1978).

Claim 2.2 The profit function P is nondecreasing, polynomially computable, and
sub-modular.

Proof Clearly, P is nondecreasing since by adding more movies to the stored set,
clients might be assigned to more profitable movies. Also, P is computable in O (n M)
by summing the most profitable available movie for each of the n clients. To show
that P is sub-modular, assume w.l.0.g that min(L, n) = L (the proof for the other case
is identical). Consider two sets S, 7. Assume that out of the L clients contributing to
P(SUT), ng clients are watching a movie in S \ T and their total profit is Ps; nr
clients are watching a movie in 7 \ S and their total profit is Pr; and n, clients are
watching a movie in S N T and their total profit is P,. Clearly, ng +nr +n, = L.
This implies that out of the L values contributing to P(S N T), ny values are the
corresponding n, values contributing to P(SU T), whose total profitis P,. Similarly,
out of the L values contributing to P (S), ns + n, values appear also in P(SUT) and
their total profit is Ps + P>, and out of the L values contributing to P(T), nt + n»
values appear also in P (S U T) and their total profitis Py + P;.

Summing up we get that P(S) + P(T) = Ps + Pr + 2P, + P/, where P’ is
the profit from the remaining (2L — 2ny — ng — nr) = L — nyp values in P(T)
and P(S) that do not contribute to P(S U T). Also, P(SUT)+ P(SNT) =
(Ps+ Pr+ P2)+ (P> + P"), where P” is the profit from the remaining L — n; values
in P(SNT) that do not contribute to P(SUT). Since SNT C Sand SNT C T, each
value contributing to P” is a potential value in composing P’. In other words, when
composing P’ clients have a wider collection of movies, so P’ might include higher
values achieved by selecting movies from §\ 7 and 7 \ S. Thus P’ > P”, implying
PS)+P(T)=PSUT)+ P(SNT). O

When implementing Ag,, we keep for each client its potential profit from the
set S. When S is extended, for each movie v, P(S U {v}) — P(S) can be calculated
in O(n), thus, selecting the best extension takes O(nM) and the total running time
is O(nMC).

Corollary 2.3 The greedy algorithm Ag, achieves (1 — 1/e)-approximation to the
single disk storage allocation problem with unit-size movies. Its running time is
OnMC).

2.3 Storage costs

Another version of the problem is when there is a cost associated with storing movies
on the disk. In this section we consider two possible ways to measure this cost. First,
the case in which different movie files have different sizes, and the goal is to maxi-
mize the profit from a disk having C storage units. Formally, let s; denote the stor-
age requirement of movie i, then the goal is to select a subset S of movies such

@ Springer

310 J Comb Optim (2010) 19: 304-324

that) ;_¢s; < C and P(S) is maximized. The paper Sviridenko (2004) presents a
general greedy algorithm for subset selection problems in which (i) elements are
weighted, (ii) there is a constraint on their total weight, and (iii) the profit func-
tion is nondecreasing, polynomially computable, and sub-modular. The algorithm,
denoted A, below, considers all possible subsets of three elements, extends each
such subset greedily, and picks the best output.

In our setting, in each iteration the greedy algorithm adds the file f; for which
(P(SU{fi}) — P(S))/s; is maximal. Note that the sub-modularity proof given in
Claim 2.2 is independent of the file sizes and is therefore valid also here. Also, P (S)
is nondecreasing and polynomially computable.

Another way to consider storage costs is when there is a cost ¢; associated with
each movie i. The goal is to maximize the profit from the movies minus the total
storage cost. Le., to find the most profitable subset of movies S, where the profit is

defined by
P(S)= Y bsj—) ci)

J is serviced ieS

This function is still submodular since the second term is modular: cost(S) +
cost(T) = cost(SUT) + cost(S N T). The first term is submodular as before. How-
ever, in order to apply the greedy algorithm from Sviridenko (2004) we need to as-
sume that the storage costs are relatively low so that P(S) is nondecreasing and it
worth using the whole storage capacity. Finally, it is possible to combine storage
costs with variable movie-file sizes. We get the following result.

Theorem 2.4 The greedy algorithm Ag, given in Sviridenko (2004) achieves
(1 — 1/e)-approximation to the single disk storage allocation problem with variable
size movies and/or storage costs for which P (S) given in (1) is nondecreasing.

2.4 k-round broadcasting

In previous sections it is assumed that every client is watching a single movie. In the
k-round problem, there are k synchronized rounds and the goal is to maximize the
total profit. We assume that each client j provides the payment vector b; ;, and is
willing to watch any subset 7 of the movies in arbitrary order during the k rounds.
The profit from client j for this service is) ;. b; j. Also, it is assumed that no
changes in the storage are allowed, that is, the set of movies available to the clients is
fixed along the k rounds.

In the following we show that the greedy algorithm A, from Sviridenko (2004)
can be applied here. In particular we show that the profit function defined over sets
of movies can be calculated efficiently and is sub-modular. Our results hold when the
number of rounds k is a constant or O (M), and also when movie-files have variable
sizes or storage costs.

For a given set S of movies, let P(S) denote the total profit it is possible to gain
from § during all k rounds. In order to use the greedy algorithm we need to be able
to calculate P(S). Practically, each client is expecting to watch a different movie in
each round; therefore, a client can watch at most &’ = min(k, |S|) movies during the

@ Springer

J Comb Optim (2010) 19: 304-324 311

whole broadcast. If L > n then all clients can be serviced in each round. The profit
P;(S) gained from client j is simply the sum of the top k' values in {b; j|i € S}.
Therefore, the total profit is P(S) = Zj P;i(S).

The other case, in which L < n, is more complicated as it might be that some
clients are serviced only in some of the rounds. For k = 1, it was clear that the clients
with the top L payments will be serviced. However, for k > 1, one challenge of the
algorithm is to select the set of clients serviced in any round.

We present an algorithm, based on dynamic programming that outputs, for a given
set S, which clients are serviced in which round, what movie each of these clients is
watching, and the resulting total profit P(S). Assuming that clients do not limit the
order in which they wish to watch the movies, we can assume w.l.0.g that in the ith
round in which it is serviced, a client is watching its ith top selection (in S). This
implies that for a given set S of movies, the algorithm only needs to determine how
many transmissions will be allocated to each client.

Given the set S, we consider for each client j only the top k' values in {b; ;|i € S}.
For any € € {1,...,k}, let Hy ; be the sum of the highest ¢ payments of client j
for movies from S. Define P, ; to be the maximal possible profit from a total of £
transmissions assuming only clients 1..z are in the system. For z =1, ..., n, initialize
Py ; to 0 and Py to be the maximal single payment of any of the first z clients.
Finally, initialize Py = Hy 1, that is, the sum of top £ payments of client 1, for
L=1,...,k.

Next, calculate the values of Py ; for z =2,...,n,and £ =2, ..., kL, using the
formula

Pe ;= max (Pe—a,z;—1+ Ha 2).
a=1,...,min(¢,k")

In the above formula, we combine for any number a, 1 < a < min(¢, k'), the trans-
mission of @ movies to client z, with the best allocation of £ — a transmissions to the
first z — 1 clients. The optimal solution is given by P(S) = Pir . For any ¢, z, the
value of Py, can be calculated in O (k’), thus, the whole table is calculated in time
O(Lkk') < O(Lk?).In order to determine the actual transmission schedule, the num-
ber of transmissions per client should be traced for each entry of the table P.

Once it is determined in how many rounds each client is going to be serviced, the
schedule is done greedily: in each round, the L clients with the maximal number of
remaining views are serviced. Since each client gets at most k" broadcasts and the
total number of broadcasts is kL, it is immediate to see (using exchange arguments)
that this greedy approach always terminates with a valid transmission schedule.

Corollary 2.5 Given a feasible subset of movies S, it is possible to determine in time
O (Lk?) what is the profit P(S) that can be gained from storing S and how to achieve
this profit.

Finally, in order to use algorithm A¢,, we also need to show that the profit function
is submodular and nondecreasing. In fact, the proof of Claim 2.2 is valid, only replace

the number L of transmissions with min(kL, k'n).

Claim 2.6 The profit function P in k-round broadcasting is sub-modular.

@ Springer

312 J Comb Optim (2010) 19: 304-324

As in the single round problem, the following is valid also for variable size movie-
files having storage costs (assuming that P (S) is non-decreasing).

Theorem 2.7 The greedy algorithm Ag, given in Sviridenko (2004) achieves
(1 — 1/e)-approximation to the single disk storage allocation problem for k-round
broadcasting.

2.5 Experiments for a single disk

We have implemented the greedy algorithm .4, and compared it with some natural
heuristics. Our main challenge was to create instances reflecting real life scenarios.
As suggested by Zipf (1949), human behavior and preferences tend to have a power-
law distribution; that is, there are a few movies that are very popular and clients are
willing to pay significantly more for watching them. A recent study of user behav-
ior in VoD systems (Yu et al. 2006) confirmed this suggestion. In order to create
such instances we used Zipf distribution functions. In a Zipf distribution over M
items with parameter 0 < 6 < 1, the probability of the i-th item is p; = ¢/(i'~?).
The normalization constant ¢ ensures that all probabilities sums up to 1, that is
c=1/CQ ciep 1/G 1=0)). When 6 = 1 the result is a uniform distribution, while
as 0 decreases and approaches 0, the distribution is more skewed.

Two Zipf functions over M elements were used in our experiments. The first one
was used to create the values b; ; associated with a client j whose total budget is
given (a higher 6 value implies more uniform payments). A second Zipf was used
to define, for each 1 <i < M, what is the probability that movie i is the client’s top
preference, and was used to create the client’s ranking. The first distribution was used
to match the i-th ranked movie to the ith largest b; ; value.

We compared the performance of Ag, with some intuitive heuristics. The first,
denoted Greedy Profit, selects the C movies with the highest total payments (given
by > j b;, j). The second, denoted First Choice, selects the C movies that were ranked
as first by most clients. It can be shown that this algorithm maximizes the number of
clients that get their top preference movie. For small values of M, for which it was
reasonable to calculate an optimal solution, we compared the algorithms with the
optimal solution.

Some of our experiments considered systems with variable storage costs. For these
systems, in the Greedy Profit heuristic, the storage cost is reduced from the movie’s
profit. We also considered a third heuristic, denoted Take Cheapest, that simply se-
lects the C cheapest movies. The real-life scenario guided us also when determining
the storage costs—popular movies are more expensive than unpopular movies. For-
mally, the cost of each movie was determined to be some basic constant multiplied
by (1 + t), where 0 < t < 1.5 increases as a function of the movie popularity.

Finally, the other parameters of our system were as follows: The number of clients,
n, and the load capacity, L, were both set to 1000. The number of movies, M, was set
to 200, and the storage capacity, C was varying between 1 and 150. The 6 parameters
of the Zipf functions were varying between 0.2 and 0.8. We run each experiment 5
times; the results were consistent in all runs and those presented are simply the last
ones.

@ Springer

J Comb Optim (2010) 19: 304-324 313

100 180 4

95 1
%01 160
85 140 1 ——our greedy
// —=—first choice
80 / 120 —— greedy profit
. Vi
100
70 / / /
80

P PP PO P

(@) (b)

Fig. 1 Profit as a function of storage (a) clients have identical budget and preference distributions, (b) rich
are strange instances

Experimental results Figure 1 shows two sample results of our experiments for a
single disk with no storage costs. In all the experiments the profit achieved by the
greedy algorithm was always higher than those achieved by the other two heuristics.
Figure 1(a) presents one extreme, in which all clients have the same budget and share
the same popularity distribution. Moreover, both Zipf functions are highly skewed
(with & = 0.2). In this non-challenging instance, the movies selected by all three al-
gorithms were close to coincide and the achieved profit is similar. Figure 1(b) presents
the results for a more challenging instance, in which 10% of the clients are rich and
strange: the budget of a rich client is 10 times higher than the budget of a non-rich
client, and their preferences are totally different—determined by the same Zipf func-
tion but applied on a reversed order of the movies. For such instances the superiority
of the greedy algorithm is significant. In general, we found out that the more the sets
selected by the three algorithms differ from each other, the higher the gap between
the profits. We also found out that the first choice heuristic performs better than the
greedy profit one when the preferences are more skewed.

Figure 2 shows two sample results of our experiments for a single disk with stor-
age costs. In both experiments all clients have the same budget and preference dis-
tributions that are highly skewed (8 = 0.2). In experiment (b) the storage costs are
on average 2.5 times higher than the costs in experiment (a). Once again, the greedy
algorithm achieves the best results. It is interesting to note the good performance of
the simple fake cheapest heuristic when costs and available storage become higher. In
all the experiments, we found out that as 6 decreases, (that is, the preference distrib-
ution becomes skewer), the problem becomes ‘easier’ in a sense that even the simple
heuristics perform very good. This is explained by the fact that with low 6 value,
the difference in the profit between different storage allocation is high, and therefore
clearer and can be revealed even by a simple heuristic Ag, . On the other hand, with
high 6 value, it is more challenging to identify the best storage allocation.

Finally, we note that for small values of M (at most 15) we calculated also the
optimal profit and find out that the greedy algorithm performs much better than its
theoretical bound—within 5% of the optimal profit, for variable values of n and pay-
ments distributions.

@ Springer

314 J Comb Optim (2010) 19: 304-324

90 65

~-our greed
55 greedy

/ /‘///ﬂ,‘kkk_ —first choice
50 . — -— greedy profit

= take cheapest
45 /

R e e S e s e e 40 WL :
5 25 45 65 85 105 125 145
° P ® @

40

(a) (b)

Fig. 2 Profit as a function of storage (a) low costs (b) high costs

2.6 Rank-related objectives

In this section we consider a variant in which, instead of specifying its potential
payments, each client provides an ordered tie-free list of preferences of the movies.
That is, a list of length M in which the first element is the 1st choice of the client, etc.
In this section we consider two objectives that are suitable for this variant.

2.6.1 Lexicographic profile

The profile of an assignment is a vector in which the jth element is the number
of clients allocated their j-ranked movie. An assignment is rank-maximal if it has
the maximal possible lexicographic profile. We show that the problem of finding a
rank-maximal assignment is NP-hard and present a greedy algorithm that finds an
assignment that maximizes the first element in the profile.

Theorem 2.8 Finding a rank-maximal assignment is NP-hard.

Proof The proof is by reduction from vertex cover of regular graphs that is known
to be NP-hard (Feige 2003). Given a d-regular graph G = (V, E) and the question
whether G has a vertex cover of size C, construct the following instance of the as-
signment problem: The VoD system consists of a single disk having C storage units.
There are 2|E| clients, two for each edge, and |V | movies, one for each vertex. The
preference-lists of the two clients originated from an edge e = (1, v) begin with u, v
and with v, u. The order of the remaining |V| — 2 vertices in each of these lists is
arbitrary. g

Claim 2.9 The graph G has a vertex cover of size C if and only if the profile of the
rank-maximal assignment is (dC,2|E| —dC,0,...,0).

Proof First, note that for any selection of C movies, the number of clients who
receive their 1st choice movie is exactly dC—since for any v, there are exactly
d clients for which v is the 1st choice movie. Having 2|E| clients, it means that
(dC,2|E|—dC,0,...,0) is the best possible profile for this instance.

@ Springer

J Comb Optim (2010) 19: 304-324 315

Assume that G has a vertex cover of C vertices. In the assignment problem, se-
lect the C movies associated with these vertices. We show that the resulting profile
is (dC,2|E| —dC,0,...,0). As mentioned above, there are dC clients whose 1st
choice movie is one of the C movies selected. Also, for each client, ¢, one of the
two movies associated with the vertices at the endpoints of e was selected, therefore,
each client is allocated one of its top-2 preferences.

Assume now that there is an assignment with profile (dC,2|E| —dC,0,...,0). It
means that each client is allocated one of its top-2 preferences. That is, for each edge
(u, v), at least one of u, v is one of the C selected movies. Clearly this implies that
the movies associated with the selected movies form a vertex cover. |

Consider the greedy algorithm that runs in C iterations and selects in each iteration
the movie that improves the ranking the most (relative to lexicographic order).

Claim 2.10 The greedy algorithm maximizes the number of clients getting their 1st-
choice movie.

Proof The proof is by induction on the number of iterations. Formally, we show that
after i iterations (selections of movies), the number of clients getting their 1st-choice
is the maximal possible. The base case is i = 1. The movie selected in the 1st iteration
is the one maximizing the lexicographic profile achieved from a single movie. Since
the Ist and most significant element in the profile vector is the 1st one, the selected
movie maximizes the number of clients getting their 1st choice. Assume that the
claim is valid up to the (i — 1)th iteration. In the ith iteration the added movie is the
one improving the profile the most. Again, since the 1st and most significant element
in the profile vector is the 1st one, the greedy choice will maximize the increment of
this element—which is equivalent to maximizing the number of clients getting their
1st-choice movie. O

2.6.2 Fairness

For the variant where the input is given as preference lists (ranking) of the movies
by the clients, another possible objective is Fairness. An assignment is k-fair if each
client gets one of its top k choices. For example, if all the clients get their first choice
except for one client that gets its (3M /4)-th choice, then the assignment is 3 M /4-fair.
The goal is to find a k-fair assignment with a minimal value of k.

We first show that the fairness problem is NP-hard for any k > 1. Note that for
k =1 the problem is simply to determine if the set of first-choice movies is of size at
most C, which can be done in linear time.

Theorem 2.11 The fairness problem is NP-hard.
Proof The proof is by reduction from vertex cover. Given a graph G = (V, E) and the
question whether G has a vertex cover of size C, construct the following instance for

the fairness problem: There are | E| clients, one for each edge, and |V | movies, one for
each vertex. The preference-list of client j originated from the edge e¢; = (vj1,v)2)

@ Springer

316 J Comb Optim (2010) 19: 304-324

begins with v;1, v;2. The order of the remaining |V| — 2 vertices is arbitrary. It is
easy to verify that a vertex cover of size C exists if and only if a 2-fair assignment
exists when C movies can be selected. O

An assignment algorithm is k-fair if it returns a k-fair assignment for any input.
Next, we show that no algorithm that packs C movies can be better than (M — C 4 1)-
fair. We will do so by describing an instance for which every solution is at most
(M — C + 1)-fair. The instance consists of n = M! clients whose preference lists are
the M! possible permutations of 1... M.

For each selection of C of movies there are at least C! clients for which these
movies form the tail of their preference list. Each of these clients will be (M —C + 1)-
fair at most.

On the other hand, as we show below, any selection of C different movies achieves
at least M — C + 1-fairness for all instances.

Theorem 2.12 The greedy algorithm achieves (M — C + 1)-fairness.

Proof Consider the preference list of any client. Since C different movies are selected
by the algorithm, in the worst case these are the C movies forming the tail of its list,
thus at least one of its top M — C + 1 movies is selected. u

3 Multiple disks

We turn to consider the more general case where the system consists of N identical
disks, each having a limited storage capacity, C, and a limited load capacity, L. We
first present an approximation algorithm based on selecting a-priori the movie to
be seen by each client, such that these selections are guaranteed to be granted and
their total profit is within ratio (C — 1)(e — 1)/ Ce from the optimal profit. Next, we
propose algorithms for solving the problem in two stages. In the first stage a storage
allocation of movies to the disks is determined. In the second stage, given the storage
allocation, the problem is to allocate the bandwidth, that is, to decide which of the
clients will be serviced by which disk. We present two heuristics for the first task and
an optimal algorithm for the second task.

3.1 A(C —1)(e — 1)/ Ce-approximation algorithm

The paper Shachnai and Tamir (2001a) considers systems in which each client is
interested in a single movie and the goal is to maximize the number of serviced
clients. The Moving Window algorithm (MW) presented in Shachnai and Tamir
(2001a) assigns movies to the disks in a way that satisfies all clients whenever
C-N> M+ N — 1. This algorithm is used as a subroutine in our algorithm for
the problem with client preferences. In the moving window algorithm it is assumed
that n = N L, that is, the number of clients is exactly the number of available trans-
missions. In the instance we build for the MW problem, we take the min{n, NL}
clients with the highest potential profit (see in step 3).

@ Springer

J Comb Optim (2010) 19: 304-324 317

Algorithm Ay

1. Let M'=N - (C — 1) + 1. Use the greedy algorithm Ag, (Sect. 2.2) to select M’
movies, assuming a single disk with storage capacity M’ and load capacity NL.
Let Sy, be the set of selected movies.

2. For each client j, let i; be the movie in Sy for which b; ; is maximal. In other
words, 7 ; is the movie achieving the maximal profit from client j out of the movies
in!S M’

3. Define an input for the MW algorithm: The single request of client j is for the
movie i j, and take the min{n, N L} requests with the highest b,-,ij values.

4. Run the MW algorithm. Since M’, the total number of different movies requested,
fulfills C - N > M’ + N — 1, the MW algorithm terminates with an assignment in
which each client j is allocated a transmission of 7.

In the first step, the algorithm selects the movies whose copies will be stored. Next,
the algorithm calculates, based on client preferences, how many transmissions from
each of these movies will be required. The result is an input to the MW algorithm, that
is guaranteed to halt with a storage enabling all these transmissions. The total run-
ning time of the algorithm is dominated by the running time of the greedy algorithm
(step 1) and the MW algorithm (step 4). By Corollary 2.3, the execution of A, takes
O(nMC)=0nNC?) steps, while, as shown in Golubchik et al. (2000), the MW
algorithm can be implemented in O((N + M)log(N + M)) = O((NC)log(NC))
steps. Since nC > log(N C), the total running time is O(mNC?).

Theorem 3.1 Algorithm Apw provides (C — 1)(e — 1)/ Ce-approximation to the
optimal profit on multiple disks.

Proof Let Pyp(m) be the optimal profit from storing m movies on a single disk.
In the first step, the greedy algorithm is used to select a set Sy of M' =N - (C —
1) 4+ 1 movies. By Theorem 2.3, the profit from Sy, on a single disk is at least (1 —
1/e) Popi (M "). The moving window algorithm guarantees that each client will get his
top choice from S, as if the movies are stored on a single disk. An optimal solution
can pack at most C - N movies, therefore, Py (M ") is within ratio M’/ N - C from the
optimal solution. Combining the above observations, the approximation ratio of our
algorithm is at least

alg Poypy(M)e—1 N-(C—1)+1 e—1_(C—1)(e—1)
— > > . > .
opt — opt e N-C e Ce O

3.2 Optimal bandwidth allocation for a given storage allocation

In this section we present an algorithm for finding an optimal bandwidth allocation
for a given storage allocation. A bandwidth allocation is also denoted client assign-
ment, since by assigning a client to a disk it is granted one stream of unit bandwidth.
It is easy to see that this problem is not trivial in a sense that a greedy algorithm can-
not do the job. We present a pseudo-polynomial time algorithm based on reducing the
problem to a min-cost max-flow problem. The graph in the resulting flow problem has

@ Springer

318 J Comb Optim (2010) 19: 304-324

Fig. 3 A min-cost max-flow
problem representing the
bandwidth allocation problem.
Each edge is labeled by its
capacity and cost

a special structure, that enables simple detection of negative cost cycles by dynamic
programming. In our experiments, the min-cost max-flow problem was solved using
this method.

The system is represented by a complete bipartite G = (U U V, E) where each
client is represented by a vertex in U, and each disk is represented by a vertex
in V. Let M} denote the set of movies stored on disk k. For each j € {1,...,n}
and k € {1,..., N}, the edge (u;, vr) has weight w; ; = max;ep, b; ;. That is, the
weight represents the profit gained if client j is assigned to disk k—and will natu-
rally watch the most profitable movie among those stored on di. A valid assignment is
a set of edges E’ that forms a semi-matching (Harvey et al. 2006) with the following
properties:

(P1) Each uj € U is an endpoint of at most one edge in E’. These constraints imply
that each client is watching at most one movie.

(P,) Each v € V is an endpoint of at most L edges in E’. These constraints imply
that each disk is servicing at most L clients—as required by its load capacity.

The goal is to find a set E’ with a maximal total weight—reflecting the resulting
profit of the assignment. This problem can be represented as a min-cost max-flow
problem (see Fig. 3): The network consists of the bipartite G, a source s, connected to
all the vertices of U, and a sink ¢ connected from all the vertices of V. The capacities
of each edge (s, u;), or (u;, vg) is 1. The capacity of each edge (v,) is the load
capacity L. Edges of type (s, u;) or (v, t) have cost 0, while edges of type (u;, vk)
have negative cost (= revenue) of value —wj .

Note that the value of the max-flow in this network is n = min{n, NL}. The fol-
lowing claim proves the reduction to the flow problem.

Claim 3.2 A flow having cost —H corresponds to client assignment achieving profit
H, and a client assignment achieving profit H corresponds to a valid flow in the
network whose costis —H .

Proof Given a flow, since all (s, U)-edges have capacity one, it must be that the flow
on all (s, U)- and (U, V)-edges is 0 or 1 (all capacities are integers in {0, 1}). The
flow cost is exactly Zj’k —w; x summing over all j, k pairs for which one unit of
flow travels from u; to vy. This flow induces the following assignment: if the flow
on the edge (s,u;) equals 1, then client j is serviced by the disk k for which the

@ Springer

J Comb Optim (2010) 19: 304-324 319

edge (u;, vi) carries a flow of value 1. This disk transmits to j the most profitable
movie for j among the movies stored on d. Thus, this client contributes w; x to the
total profit. The edge v, ¢ has capacity L guaranteeing that disks do not exceed their
load capacity. The other direction is similar—given a client assignment achieving
profit H, determine the flow to be 1 on an edge (s, u ;) iff client j is serviced, and on
an edge (u;, vy) iff it is serviced by dy. The flow on a (v, 1)-edges equals the number
of clients serviced by d. Since in a valid assignment, each disk is servicing at most
L clients, this flow is at most L. It is easy to verify that the above flow is valid and
has cost —H. O

In particular, the min-cost max-flow induces an optimal assignment of clients to
disks in which n clients are serviced. In the following we describe the technique we
used in order to solve the flow problem. This technique is tailored for bipartite graphs
and is simpler than the general method of detecting negative cost cycles (Klein 1967).
We also find it more efficient in our experiments.

For a given semi-matching E’, we are looking for negative cost cycles alternating
between vertices of V and U, that is, of type P = ({vy, u1}, {u1, v2}, ..., {ue, v1})
with v; € V,u; € U and {v;,u;} € E’ for each i. Each such cycle corresponds to
migrating the service of client u; from disk v; to disk v; 4| (mod £). Note that the
load on each of the disks is preserved. If the total profit of applying these migrations
is positive, then the corresponding cycle has negative cost and is therefore a profit-
increasing cycle (PIC). A similar method was used in Harvey et al. (2006) for finding
an optimal semi-matching in a bipartite. However, in Harvey et al. (2006), edges have
uniform costs and the goal is to find cost reducing paths (not cycles) for which only
the load on the endpoint nodes is changing.

Optimal Bandwidth-Allocation Algorithm

(i) find an initial client assignment having properties (P;) and (P,) above, (ii) im-
prove it by finding profit increasing cycles and apply them on the graph until no profit
increasing cycle exists. The correctness of this algorithm follows from the correctness
of the general method of removing negative cost cycles (Klein 1967).

(i) Finding an Initial Feasible Assignment: This step is done greedily by assigning in
each step the next client j to the disk k enabling the highest w; ; value.

(ii) Finding Profit-Increasing Cycles: Our algorithm for finding profit increasing cy-
cles is based on dynamic programming. This technique ensures that every potential
sub-path is considered only once, and therefore the whole detection is practically ef-
ficient. Define (Sk as the maximal possible change in the total profit achieved when
one unit of load is transmitted from disk i to disk j along a path in which k clients
are re-assigned. In other words, 8 ;. j easures the change in the profit achieved by an
alternating path of 2k edges that starts at vertex v; and ends at vertex v;. Note that
the § values might be negative—if any such path results in decreasing the total profit.

Initially, the values of §; ! are calculated for all pair i, j of disks. For each pair, all
n clients are considered. Formally, recall that M ; denotes the set of movies stored on
disk j, then

n
8}, ax{maxbgz—maxb“]
. =1 LzeM; ZEM;

@ Springer

320 J Comb Optim (2010) 19: 304-324

For k > 1, the values of Sf ; are calculated using the following recursion:
k N k-
8;,j = max{s; , L8).

That is, every path from i to j in which k clients are reassigned can be viewed as a
concatenation of a path from i to some disk % in which k — 1 clients are reassigned,
and a path from 4 to j in which one client is reassigned.

In order to detect a profit increasing cycle, the values (Sll"i , that lay in the diagonal

of the §-table, are considered after Sk is calculated for k > 1. If a positive value is
found, a profit-increasing cycle is 1nduced (and can be retrieved by additional O (1)
book-keeping along the calculation). Else, the algorithm proceeds to calculate the
table 61‘71 The maximal length of a PIC is 2N edges, therefore, if no positive 8/‘
value is detected for k = N, the algorithm terminates with an optimal assignment.
The time complexity of calculating the N x N table 811’ j is O(N?n), the time

complexity of calculating each entry of the N x N table 8£ j is O(N), therefore the
whole calculation of (Sllf j takes O (N?3). Assume that the shortest PIC has 2k edges,

then the total time of detecting this path is O(N2n) + O(kN?3). If no PIC exists,
the algorithm terminates after O (N Zn) + O(N% operations. We note that this time
complexity is higher than the time complexity required to detect a cost-reducing path
in the semi-matching problem (Harvey et al. 2006) because now the profit from the
internal disks in the path is changed, and in the semi-matching only the load on the
endpoint vertices is affected. Due to this crucial difference, the cost of using any sub-
path of any length must be considered. We also note that in practice we found the
above algorithm faster than our implementation of the general method of detecting
negative cost cycles from Klein (1967).

3.3 Heuristics for initial storage allocation

In this section we describe the two heuristics we have used to determine an initial
storage as a preprocessing for the optimal bandwidth allocation algorithm described
in Sect. 3.2. The goal is to determine which movie files will be stored on each disk, in
a way that achieves high profit when combined with an optimal bandwidth allocation.
The first heuristic is based on a round robin algorithm, the second heuristic uses a
variant of the moving window algorithm (Shachnai and Tamir 2001a).

Our experiments show that both algorithms are doing a very good job and have
similar performances, with a slight advantage to the second heuristic.

Weighted Round Robin Assignment

The Weighted Round Robin assignment algorithm is a simple and fast method for
determining an initial storage allocation. It first decides what are the NC copies of
movies that will be stored and then distributes them on the disks using round robin.
Assume that n; < N copies of movie i need to be stored, then n copies of f; are
stored on dj, ..., dy,,; ny copies of f, are stored on dy, 41, ..., dn,+n,, €tc., where
the calculation is modulo N. In order to determine the value of n; we first use the
greedy algorithm (Sect. 2.2) to select NC movies, assuming a single disk with storage

@ Springer

J Comb Optim (2010) 19: 304-324 321

capacity NC, and then each client selects its top preference from this set. We get a
vector of ‘votes’ that sums up to n. This vector serves as input for the apportionment
problem (Ibaraki and Katoh 1988), whose solution determines, for each i, the value
of n; in a way that it is proportional to the number of votes for f;, and >, n; = NC.

Initial Assignment Using the Moving Window Algorithm

In Sect. 3.1 we showed that if we run the Moving Window algorithm with M’ =
N - (C — 1)+ 1 then we get at least (C — 1)/ C-fraction of greedy’s profit on a single
disk having storage M’. When the value of M’ increases then clients have a larger va-
riety of movies but on the other hand there is no guarantee that the MW algorithm will
succeed in granting all requests for these movies. We suggest the following heuristic:
Initially, as in the round-robin solution, select M' = NC movies, and let each client
select its top preference among this set. Then run the MW algorithm for the resulting
set of requests. Indeed, the MW algorithm might allocate to some movies less trans-
missions than their client demand. However, as our experiments reveal (see Sect. 3.4)
this heuristic performs very good in practice.

3.4 Experiments for multiple disks

Our experiments compare the performance of all the algorithms and heuristics sug-
gested for multiple disks. As described in Sect. 2.5 we used two Zipf distributions in
order to build the client preferences and payment vectors in a way that reflects a real
life scenario in which few movies are very popular, and clients are willing to pay sig-
nificantly more for their top choice movies. In our experiments we tried to compare
the various algorithms and to find out which algorithm performs better for specific
system parameters and payment vector distributions.

For the algorithms that are based on two phases (finding a storage allocation and
then assign the bandwidth to clients), the challenge was to isolate the contribution of
each phase to the overall performance. In order to do this we combined two strategies:
(i) we replaced the min-cost max-flow algorithm with a simple greedy algorithm that
for a given storage allocation iterates over the clients and in each step allocates the
next client to the most profitable (and available) disk. (ii) we run each of the two
storage allocation algorithms with the above greedy algorithm and with the min-cost
max-flow algorithm. Therefore, in each experiment we tested 5 algorithms:

1. The (C — 1)(e — 1)/ Ce-approximation algorithm, that runs the MW algorithm
withM'=C(n—1)+1.

2. Storage allocation by weighted round-robin, and optimal bandwidth allocation.

3. Storage allocation by weighted round-robin, and greedy bandwidth allocation.

4. Storage allocation by MW algorithm with M’ = C N, and optimal bandwidth al-
location.

5. Storage allocation by MW algorithm with M’ = C N, and greedy bandwidth allo-
cation.

The other parameters in our experiments were as follows: The number of clients,
n, was set to 1000. The number of movies, M, was set to 200, the number of disks,
N, was varying between 4 to 20. The load capacity L was defined to be n/N. That is,

@ Springer

322 J Comb Optim (2010) 19: 304-324

all clients can be serviced independent of the number of disks. The storage capacity,
C, varies from 1 to 10. Also, in all the experiments all clients have the same bud-
get, Vj, >, b; j = 1. This enables us to isolate the influence of each of the varying
parameters on the system’s profit.

Experimental results Figures 4 and 5 present the experimental results for two dif-
ferent popularity and budget distributions (6 values), and two different storage capac-
ities. The graphs present the profit achieved as a function of the number of disks N.
In all four experiments the total number of broadcasts is n = N L = 1000, therefore,
a system with many disks is more powerful only since it has more storage capacity.
In other words, the bandwidth is better exploited (profit function is increasing), only
thanks to the increased storage.

In all four experiments we see that the combination of the MW algorithm with
the optimal bandwidth allocation achieves the best results. In particular, the MW
algorithm is a better storage allocation algorithm than the round-robin algorithm.
We also learn that the greedy bandwidth allocation algorithm achieves fair results.
Clearly, it is worse than the optimal one, but the average gap in the profit is only about
10%, and it is much faster (O (nN) vs. O(N2n) + O(N*) for the optimal). From
comparing systems with low and high storage capacities ((a) vs. (b) experiments),
we learn that the performance of the MW algorithm with M’ =N - (C — 1) + 1 is
improved, relative to the other algorithms, when the storage capacity is high.

—— mw(c-(n-1)+1)
—=— rr+flow

- - rr+greedy

—s - mw-+flow

—* - mw-+greedy

30

28 1

—— mw(c-(n-1)+1)
—=— rr+flow

- - rr+greedy

—» - mw-+low

—* - mw+greedy

26 1

24 |

22 4

20

(@) (b)

Fig. 5 Profit as a function of N, with fixed NL,and § =0.5,(a) C =3, (b) C =9

@ Springer

J Comb Optim (2010) 19: 304-324 323

From comparing systems with different client-preference distributions (Fig. 4
vs. 5), we learn that when 6 is increased (movie popularity and clients’ payments
are more uniform) then the total profit is decreased. This can be explained by observ-
ing that in high-6 instances there is no small set of movies that is highly requested
and has high payment readiness. Low 6 values are more challenging, and the results
show higher gaps between the different algorithms. This is explained by the fact that
any deviation in the allocation might result in large gaps in the profit, while for high
0’s the storage allocation is less crucial, since any movie is among the top choices of
some clients, and the payments for closely ranked movies are not significantly differ-
ent. Unlike the single disk case, where solving the problem for low 6 values was done
efficiently even by simple heuristic, for systems with multiple disks we conclude that
selecting the right algorithm is crucial as 6 decreases and as the system’s resources
are enlarged.

4 Open problems

In this paper we discussed variants of packing problem arising in storage management
of VoD systems, where clients have preferences defined over the whole collection of
movies. Approximation algorithms and heuristics were suggested for systems with a
single or multiple disks. We list below some of the problems that remain open:

1. In advanced VoD systems, the ranking of movies is done automatically by user-
profiling systems that learn the user preferences along time. Such systems might
have only partial knowledge of the clients preferences. Formally, the payment
vector or the ranking vector of clients might be incomplete. It is desirable to design
algorithm for this setting.

2. A deeper study of the two rank-related objectives should be done. Currently, there
is no mathematical way to measure the quality of a given solution (compared to
the rank-maximal assignment). After such a measure is defined, one can consider
approximation algorithms for this setting. Also, it is desirable to define additional
measurements for the system’s performance, in particular, foe the case that the
ranking provided for each client is partial or is not tie-free.

3. In the k-round problem, it is assumed that the storage system is static, that is,
no changes are allowed during the k rounds. It would be interesting to develop
algorithms that allow (limited) changes in the storage.

4. In our work, as is the case in current VoD systems, it is assumed that all the trans-
missions require the same bandwidth. An interesting, though theoretical, problem,
is to consider systems in which different movies might have different bandwidth
requirements.

5. Our model of VoD system does not exploit advanced technologies such as multi-
casting, caching, data striping or file segmentation. Storage management becomes
more challenging with the development of these techniques, and the correspond-
ing packing problems should be defined and studied.

Acknowledgements We thank Seffi Naor and Hadas Shachnai for valuable discussions and helpful
comments.

@ Springer

324 J Comb Optim (2010) 19: 304-324

References

Bar-Noy A, Ladner RE (2004) Efficient algorithms for optimal stream merging for media-on-demand.
SIAM J Comput 33(5):1011-1034

Bar-Noy A, Ladner RE, Tamir T (2003) Scheduling techniques for media-on-demand. In: Proc of the 14th
ACM-SIAM symposium on discrete algorithms, pp 791-800

Chou CF, Golubchik L, Lui JCS (2000) A performance study of dynamic replication techniques in contin-
uous media servers. In: Proc of the international symposium on modeling, analysis and simulation of
computer and telecommunication systems (IEEE MASCOTS), pp 256-264

Feige U (1998) A threshold of Inn for approximating set cover.] ACM 45(4):634-652

Feige U (2003) Vertex cover is hardest to approximate on regular graphs. Technical Report MCS03-15,
Computer Science and Applied Mathematics, The Weizmann Institute of Science

Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness.
Freeman, San Francisco

Golubchik L, Khanna S, Khuller S, Thurimella R, Zhu A (2000) Approximation algorithms for data place-
ment on parallel disks. In: Proc of SODA, pp 223-232

Harvey NJA, Ladner RE, Lovdsz L, Tamir T (2006) Semi-matchings for bipartite graphs and load balanc-
ing. J Algorithms 59(1):53-78

Ibaraki T, Katoh N (1988) Resource allocation problems—algorithmic approaches. MIT Press, Cambridge

Kamath M, Ramamritham K, Towsley D (1995) Continuous media sharing in multimedia database sys-
tems. In: Proc of the 4th intl conf on database systems for advanced applications, pp 79-86

Kang S (2004) Video-on-demand system using multicast and web-caching techniques. In: Grid and coop-
erative computing. LNCS, vol 3032. Springer, Berlin, pp 273-276

Kashyap S, Khuller S (2006) Algorithms for non-uniform size data placement on parallel disks. J Algo-
rithms 60(2):144-167

Khuller S, Moss A, Naor J (1999) The budgeted maximum coverage problem. Inf Process Lett 70(1):39—
45

Klein M (1967) A primal method for minimal cost flows. Manag Sci 14:205-220

Little TC, Venkatesh D (1995) Popularity-based assignment of movies to storage devices in a video-on-
demand system. Multimedia Syst 2(6):280-287

Nembhauser G, Wolsey L, Fisher M (1978) An analysis of the approximations for maximizing submodular
set functions. Math Program 14:265-294

Shachnai H, Tamir T (2001a) On two class-constrained versions of the multiple knapsack problem. Algo-
rithmica 29(3):442-467

Shachnai H, Tamir T (2001b) Polynomial time approximation schemes for class-constrained packing prob-
lems. J Sched 4(6):313-338

Shachnai H, Tamir T (2003) Approximation schemes for generalized 2-dimensional vector packing with
application to data placement. In: Proc of RANDOM-APPROX, pp 165-177

Sviridenko M (2004) A Note on maximizing a submodular set function subject to knapsack constraint.
Oper Res Lett 32:41-43

Wang Y, Liu JCL, Du DHC, Hsieh J (2004) Efficient video file allocation schemes for video-on-demand
services.] Multimedia Syst 5:1432-1882

Wolf JL, Yu PS, Shachnai H (1996) Scheduling issues in video-on-demand systems. Multimedia Inf Stor-
age Manag 183-207

Wolf JL, Yu PS, Shachnai H (1997) Disk load balancing for video-on-demand systems. ACM Multimedia
Syst J 5:358-370

Yu H, Zheng D, Zhao BY, Zheng W (2006) Understanding user behavior in large scale video-on-demand
systems. In: The 1st ACM SIGOPS/EuroSys European conference on computer systems, pp 333-344

Zhou X, Xu CZ (2002) Optimal video replication and placement on a cluster of video-on-demand servers.
In: Proc of the 2002 international conference on parallel processing (ICPP’02), pp 547-555

Zipf GK (1949) Human behavior and the principle of least effort. Addison-Wesley, Cambridge

@ Springer

	Algorithms for storage allocation based on client preferences
	Abstract
	Introduction
	Related work
	Our results

	Storage allocation on a single disk
	Hardness proof
	An (1-1/e)-approximation greedy algorithm
	Storage costs
	k-round broadcasting
	Experiments for a single disk
	Experimental results

	Rank-related objectives
	Lexicographic profile
	Fairness

	Multiple disks
	A (C-1)(e-1)/Ce-approximation algorithm
	Optimal bandwidth allocation for a given storage allocation
	Heuristics for initial storage allocation
	Experiments for multiple disks
	Experimental results

	Open problems
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

