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Abstract

We study strategic resource allocation settings, where jobs are self-interested players who
choose resources with the objective of minimizing their individual cost. Our framework departs
from the existing game theoretic models of resource allocation in two fundamental ways. First,
while most of the previous work has considered cost structures with either negative congestion
effects or positive ones, we introduce cost functions that encompass both effects. Second, we
do not assume the existence of a fixed set of resources; rather, jobs can always activate new
resources, but activating a new resource is costly. Specifically, in our model there is a set of
heterogeneous jobs and an unlimited supply of identical resources. The cost of a job is the load
on its chosen resource plus its share in the resource’s activation cost, which is proportional to
its length.

We provide results with respect to equilibrium existence and the inefficiency introduced due
to self-interested behavior. We show that if the resource’s activation cost is shared equally among
its users, a pure Nash equilibrium (NE) might not exist. In contrast, under the proportional
sharing rule, a pure NE always exists and we provide a poly-time algorithm for computing it.
The algorithm is a variant of the LPT (Longest processing time) algorithm, whose analysis
requires the establishment of a new non-trivial property of schedules obtained by this rule.

With respect to the inefficiency of equilibria, we prove that there is no universal bound for
the worst-case inefficiency (as quantified by the “price of anarchy” measure). Yet, the best-case
inefficiency (quantified by the “price of stability” measure) is bounded by 5

4 and this is tight.
These results add another layer to the growing literature on the price of anarchy and stability,
which studies the extent to which selfish behavior affects system efficiency. Finally, we observe
that unlike congestion games, best-response dynamics are not guaranteed to converge to a Nash
equilibrium.

∗School of Business Administration and Center for the Study of Rationality, Hebrew University of Jerusalem.
E-mail : mfeldman@cs.huji.ac.il.

†School of Computer Science, The Interdisciplinary Center, Herzliya, Israel. E-mail : tami@idc.ac.il.



1 Introduction

1.1 Background and Motivation

In resource allocation applications, such as job scheduling, telecommunication networks and trans-
portation systems, tasks are assigned to resources to be processed. For example, in job scheduling
models, jobs are assigned to servers to be processed; similarly, in telecommunication networks,
traffic is assigned to network links to be routed. The Operations Research literature has tradition-
ally treated these problems as combinatorial optimization problems. In the last decade, many of
the Operations Research problems have been studied taking into account game theoretic consid-
erations [4, 19, 3]. This research agenda has been put forward, in part, due to the emergence of
the Internet, which is managed and shared by multiple administrative authorities and users with
possibly competing interests. The analysis of applications such as routing in computer networks or
the creation and design of Internet-like networks without any central design or coordination can
benefit a lot from the concepts and tools game theory introduce.

At the heart of the game theoretic view is the assumption that the players have strategic
considerations and act to minimize their own cost, rather than optimizing the global objective.
In resource allocation settings, this would mean that the jobs1 choose a resource instead of being
assigned to a resource by a central designer. Due to the decentralized nature of the Internet, this is
usually the case in many Internet applications. The focus in game theory is on the stable outcomes
of a given setting, or the equilibrium points. A Nash equilibrium (NE) is a profile of the users’
strategies such that no user can decrease its cost by a unilateral deviation from its current strategy
(given that the strategies of the remaining users do not change).

Since the users’ cost functions lead them in their decisions, the structure of the cost function
is a key component of any game theoretic treatment of the problem. The literature is divided into
two main approaches with respect to the cost function. The first class of models emphasizes the
negative congestion effect, and assumes that the cost of a resource is some non-decreasing function
of its load. Job scheduling [11, 24] and selfish routing [4, 19, 3, 14, 10, 21] belong to this class of
models. The second class of models assumes that each resource has some activation cost, which
should be covered by its users. In this case, the cost is a decreasing function in the load, and a user
would wish to share its resource with as many additional users. Positive congestion effects have
been considered in network design games [9, 6, 2].

While the first class ignores the positive congestion effects and the second ignores the negative
congestion effects, both effects take place in practice. On the one hand, a heavy-loaded resource
might be less preferred due to negative congestion effects; on the other hand, resources do have
some activation cost, and sharing this cost with other users releases the burden on a single user.
Our goal is to understand the effect of these two conflicting effects by combining them into a unified
cost function.

Consequently, the cost function of each job is composed of two components: (i) the load on its
chosen resource, and (ii) its share in the activation cost of its chosen resource2. A related model

1Jobs, players, and users are used interchangeably throughout the paper.
2The concept of an activation cost has been studied in a cooperative game theoretic setting of facility location

[13]. In the facility location game, each facility has an activation cost and the cost of each set of players is the sum
of the activation cost of the facilities and the cost of connecting every player to an opened facility. However, facility
location games were studied mainly within the framework of cooperative game theory which is very different from
our framework. Also, the individual cost of a player is independent of the players sharing a facility with it.
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has been studied in [2] for routing identical jobs on a given (fixed) graph. Since they assume that
the jobs are identical and the activation cost is shared equally among each resource’s users, the
resulting game is a congestion game, and thus (automatically) admits a pure NE. In contrast, we
deal with heterogeneous users and more involved sharing rules.

An additional assumption we wish to challenge is the existence of an a priori given set of
resources. In many practical settings a set of users controlling some jobs have the opportunity to
utilize a new resource at their own cost. For example, a user might be able to purchase a dedicated
server for his job if he is willing to cover its cost. Similarly, a service provider might wish to stretch
out new lines in order to reduce the transmission delay of its traffic. Consequently, we consider
settings in which there is no a-priori limit on the number of resources, and refer to them as the
“unlimited supply” case (although, clearly, the number of resources will never exceed the number
of users). In Section 3.1 we also deal with the case of limited supply of resources.

In our model, each resource is associated with some fixed activation cost, which should be jointly
incurred by the set of jobs using it. A crucial question is how the resource’s cost should be divided
among its users. Sharing of joint costs among heterogeneous players is a common problem, for
which a large number of sharing rules have been proposed, each associated with different efficiency
and fairness properties [16, 17, 12]. In departure from the above literature, we analyze different
sharing rules with respect to equilibrium existence, computation, convergence and quality.

In particular, we study the uniform sharing rule, where the resource’s cost is shared evenly
among its users, and the proportional sharing rule, where the resource’s cost is shared among its
users in proportion to their size. Clearly, under both sharing rules, for a sufficiently small activation
cost, the unique NE will be one in which each job is processed by a dedicated resource, and for a
sufficiently large activation cost, the unique NE will be one in which all the jobs will be assigned
to a single resource. Our paper analyzes what happens with intermediate activation costs.

1.2 Our Results

We study four different aspects of Nash equilibrium:
Equilibrium existence: it is well known that every finite game admits a NE in mixed strate-

gies, but not necessarily in pure strategies. In contrast to previous job scheduling models, our game
in its general form does not comply with the family of potential games (or congestion games), which
always admit a NE in pure strategies [20, 15]. Thus we need to pursue new techniques for proving
equilibrium existence. We find that the proportional sharing rule, apart from being a natural rule,
induces a game which always admits a pure NE. This is in contrast to the uniform sharing rule,
where a NE is not guaranteed to exist.

Equilibrium inefficiency: we quantify the inefficiency incurred due to self-interested behavior
according to the price of anarchy (PoA)3 [14, 18] and price of stability (PoS) [2] measures, which
quantify to what extent our systems can benefit from a central coordinator or regulator. The PoA
is the worst-case inefficiency of a Nash equilibrium, and is defined as the ratio between the social
cost of the worst NE and the optimal solution. The PoS measures the best-case inefficiency of
a Nash equilibrium, and is defined as the ratio between the best NE and the optimal solution.
These metrics have been studied in a variety of applications, such as selfish routing [22, 4, 19], job
scheduling [14, 5], network formation [8, 1, 2], facility location [23] and more. The PoA and PoS
measures should be quantified according to a well-defined objective function. Here, we consider the

3This measure has been also termed the “decentralization ratio” [3].
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egalitarian objective function, i.e., we wish to minimize the cost of the highest cost among all jobs.
We find that there is no universal bound for the PoA. This result indicates that the loss due to

strategic behavior can be very severe. On the other hand, we find that the PoS is bounded by 5/4
and this is tight. While a bound on the PoS ensures only that one equilibrium is approximately
optimal, and thus provides a significantly weaker guarantee than a bound on the PoA, it has a
natural interpretation in many network games, where the outcome can be initially designed by
a central authority for subsequent use by self-interested players. Indeed, in many networking
applications, agents interact with an underlying protocol that essentially proposes a collective
solution to all participants.

Computational complexity: while computing a NE may be hard even for potential games,
it is computationally feasible for models that are closely related to our model. For example, it is
well known that under a job scheduling model with a fixed number of machines and where a user’s
cost is the load of its chosen machine, the longest processing time (LPT) algorithm always results
in a NE [10]. In our model, LPT is not well-defined, since the number of machines is not fixed.
Yet, we devise a poly-time algorithm that computes a NE.

Convergence to equilibrium: in general, natural dynamics, such as best-response dynamics
(BRD), do not necessarily converge to a NE, even if one exists. It was shown that in congestion
games [15] and in job scheduling games ignoring activation costs [7] BRD always converge to a NE.
This is, however, shown to be false in our setting. An exception is the case of identical jobs (as in
[2]), which induces a congestion game.

2 Model and Preliminaries

We first present a general game theoretic setting and then describe the resource allocation setting
considered in this paper.

A game is denoted by a tuple G = 〈N, (Sj), (cj)〉, where N = {1, . . . , n} is the set of players,
Sj is the finite action space of player j ∈ N , and cj is the cost function of player j. The joint
action space of the players is S = ×n

i=1Si. For a joint action s = (s1, . . . , sn) ∈ S, we denote by s−j

the actions of players j′ 6= j, i.e., s−j = (s1, . . . , sj−1, sj+1, . . . , sn). The cost function of player j,
cj : S → R, maps a joint action s ∈ S to a real number.

A joint action s ∈ S is a pure Nash Equilibrium (NE) if no player j ∈ N can benefit from
unilaterally deviating from his action to another action, i.e., for every j ∈ N and every a ∈ Sj it
holds that cj(s−j , a) ≥ cj(s).

2.1 Job Scheduling on Identical Machines

While our model describe many resource allocation problems, we present it using the terminology
of job scheduling for simplicity of presentation.

A job scheduling setting with identical machines is characterized by a set of machines M =
{M1,M2, . . .}, a set of jobs N = {1, . . . , n}, where a job j ∈ N has a length (i.e., processing time)
pj . An assignment method produces an assignment s of jobs into machines, where sj ∈ M denotes
the machine job j is assigned to. The assignment is referred to as a schedule, profile, joint action
or configuration (we use all these terms interchangeably). The load of a machine Mi in a schedule
s is the sum of the processing times of the jobs assigned to Mi, that is Li(s) =

∑
j:sj=Mi

pj .
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The makespan of a schedule is the load on the most loaded machines. We denote it Lmax(s) =
maxi Li(s).

Given a job scheduling setting and an activation cost B, a job scheduling game is induced,
where the set of players is the set of the individual jobs, and the action space Sj of each player j
is the set of the individual machines. The cost function of job j in a given schedule is composed
of two components: the load on the job’s machine and the job’s share in the machine’s activation
cost; i.e., given a profile s in which sj = Mi, the cost of job j is given by:

cj(s) = Li(s) + bj(s),

where Li(s) is the total load on machine Mi in s, and bj(s) is j’s share in the activation cost of Mi.
A few notes on the cost function are in order. The load-related component of the cost function

(i.e., total load on the chosen machine) is widely-used in the literature. It characterizes systems in
which jobs are processed in parallel or need to use a shared resource simultaneously; thus there is
no significance to the order of the jobs. One natural example is the setting of network routing, be
it choosing a driving route through a congested highway network, or a transmission route through
a loaded communication network [14]. The cost of each job is the delay or latency incurred on its
chosen route, thus each user aims at minimizing the total load on its chosen route.

The activation cost component in the cost function depends on the sharing rule. Under the
uniform sharing rule, all the jobs assigned to a particular resource share its cost uniformly; i.e., the
cost of job j such that sj = Mi is bj(s) = B

|{k:sk=Mi}| . Under the proportional sharing rule, the jobs
assigned to a particular resource share its cost proportionally to their lengths; i.e., the cost of job
j such that sj = Mi is bj(s) = pjB

Li(s)
.

As an example, consider an instance with activation cost B = 12 and two jobs of lengths 1, 2,
respectively. If both jobs are assigned to the same machine, then their costs under the uniform
sharing rule would be c1(s) = c2(s) = 3 + 12/2 = 9, while their costs under the proportional rule
would be c1(s) = 3 + 12/3 = 7, c2(s) = 3 + 2 · 12/3 = 11.

The social cost function of schedule s, denoted g(s), is the highest cost among all the jobs; i.e.,
g(s) = maxj cj(s). We also denote by OPT the optimal solution; i.e., OPT = mins∈S g(s). With
this we are ready to define the PoA and PoS.

Definition 2.1. Let Φ(G) be the set of Nash equilibria of the game G. If Φ(G) 6= ∅:

• the price of anarchy (PoA) is the ratio between the maximal cost of a Nash equilibrium and
the social optimum, i.e., maxs∈Φ(G) g(s)/OPT ; and

• the price of stability (PoS) is the ratio between the minimal cost of a Nash equilibrium and
the social optimum, i.e., mins∈Φ(G) g(s)/OPT .

2.2 Proportional Sharing Rule - Useful Observations

We present several claims and observations that provide some intuition regarding the behavior of
jobs under the proportional sharing rule. Those observations shall be used repeatedly in the sequel.

We first specify the condition under which a job is better of migrating from one machine to
another. We distinguish between two types of migrations. In a load-increasing migration, the
resulting load on the target machine is larger than the load on the original machine, while in a
load-decreasing migration, the resulting load on the target machine is lower than the load on the
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original machine. Intuitively, a load-increasing (decreasing) migration might be beneficial if the
job’s share in the activation cost is relatively low (high). The following assertion, which follows
from simple arithmetics, specifies the exact threshold for which each type of migration is beneficial.
Clearly, if the target machine has the same load as the source machine, then the job’s cost does
not change.

Claim 2.2. Let s be a schedule in which sj = Mi and let ρ = Li(s)(Li′ (s)+pj)
pj

. It is beneficial for
job j to migrate from machine Mi to machine Mi′ if and only if Li′(s) + pj > Li(s) and B > ρ
(load-increasing migration) or Li′(s) + pj < Li(s) and B < ρ (load-decreasing migration).

The following observations provide lower and upper bounds for a job’s individual cost.

Observation 2.3. In any joint action s, for every job j, cj(s) ≥ 2
√

pjB. Additionally, for every
j such that pj ≥ B, cj(s) ≥ pj + B.

Proof. The cost of j when assigned together with a (possible empty) set of jobs with total length
` is cj(s) = pj + ` + pjB/(pj + `). Simple calculus shows that this term gets its minimal value for
` =

√
pjB − pj , for which cj(s) = 2

√
pjB. If pj ≥ B then the cost is minimized for ` = 0, for

which, cj(s) = pj + B.

Since a job of length pj can always migrate to a dedicated machine and incur a cost pj +B, the
following observation follows trivially:

Observation 2.4. In any NE s, for every job j, cj(s) ≤ pj + B.

The following observation, whose proof can be easily derived from Claim 2.2, provides some
insight into beneficial and non-beneficial migrations of jobs.

Observation 2.5. (i) A job j of length pj < B which is assigned to a machine with load smaller
than B cannot reduce its cost by migrating to a machine with load greater than B or to a dedicated
machine. (ii) Given an assignment s of jobs of lengths smaller than B s.t. Li′(s) + pj ≥ Li(s) for
every i, i′ and j assigned to machine Mi, if Li(s) + Li′(s) > B, then no migration is beneficial.

Finally, one can easily verify that if the total length of all jobs does not exceed B, assigning all
jobs into a single machine is a NE.

Observation 2.6. If B ≥ ∑
j pj, then the schedule s in which all jobs are scheduled on a single

machine is a NE.

2.3 Longest Processing Time (LPT) Rule

LPT is a well-known scheduling heuristic [11]. The LPT rule sorts the jobs in a non-increasing
order of their lengths and greedily assigns each job to the least loaded machine. In the traditional
load-balancing problem, where the number of machines is fixed and the incurred cost includes only
the load on the machine, the LPT rule is known to produce a NE [10]. However, if the number
of machines is not limited by a fixed number, the standard LPT will simply assign each job to a
dedicated machine, which will not necessarily yield a NE.

A natural generalization of LPT which assigns each job to a machine that minimizes its cost
(including both the load and the activation cost components) does not necessarily lead to a NE

5



either, even with unit-length jobs. Consider for example the game G = 〈I = {1, 1, 1, 1}, B = 4− ε〉.
A greedy assignment, trying to minimize the cost of a newly assigned job will result in a schedule
on two machines with respective loads 3 and 1 which is not a NE.

In this paper we show that employing LPT with the “right” number of machines would produce
a NE. Establishing the above assertion requires the following non-trivial property of the LPT
algorithm. Recall that Lmax(s) = maxi Li(s) denotes the makespan of a schedule s.

Lemma 2.7. Let I = {p1, . . . , pn} be a set of job lengths, and let C be some positive real number
satisfying pj < C for every j. Let sk be a schedule of I obtained from LPT with k machines.
Let m be the minimal number of machines such that Lmax(sm) ≤ C < Lmax(sm−1). It holds that
Li(sm) + Li′(sm) > C for every i, i′ ∈ [m].

Proof. Assume for contradiction that the lemma is false and let I be an instance of minimal size
(i.e., minimal number of jobs) contradicting it. Specifically, there are two machines in sm whose
total load is at most C. Let pmin denote the length of the shortest job in I.

Claim 2.8. The most-loaded machine in sm has at least two jobs.

Proof. Assume for contradiction that the most loaded machine in sm has a single job of length pj .
It is easy to see that pj must be a longest job in I.

Consider the schedule sm−1. We claim that job j must be assigned in sm−1 with at least one
additional job. To see this, consider the set I ′ = I \ {j}. We show that if job j is assigned in
sm−1 with no additional jobs then I ′ also contradicts the lemma - contradicting the minimality
of the instance I. Given that j is assigned alone in sm, the assignment of I ′ by LPT on m − 1
machines is identical to its assignment as part of I in sm, and therefore has makespan at most C.
Similarly, if j is assigned alone in sm−1, then the assignment of I ′ on m − 2 machines is identical
to its assignment as part of I in sm−1, and therefore, it has makesman larger than C. By the
contradiction assumption, the two lightly loaded machines in sm have total load at most C. Note
that for m = 2 the lemma trivially holds - if LPT fails assigning the jobs on a single machine
having makespan at most C then the total load of the jobs must be more than C, thus m > 2 and
it is feasible to apply LPT on I ′ and m − 2 machines. Given that m > 2, the machine holding
job j, which is the most-loaded machine in sm, is not one of the two lightly loaded machine in
sm. Therefore, these two machines have exactly the same load as in the schedule of I ′ on m − 1
machines. Therefore I ′ contradicts the lemma, contradicting the minimality of the instance I. We
conclude that job j is not assigned alone in sm−1.

Given that a second job is assigned to j’s machine in sm−1, it must be that all other m − 2
machines have load at least pj (else, LPT will not add the second job to j′s machine). Therefore,
in sm−1, the load on every machine is at least pj . We also know that there exists a machine of load
greater than C. We conclude that sum of the jobs’ sizes, denoted P , must satisfy P > C+(m−2)pj .

Now consider sm again. By the contradiction assumptions, there exist two machines with total
load at most C and the makespan is pj . It follows that P ≤ C + (m− 2)pj , in contradiction to the
above.

We next establish a lower bound on the makespan of sm. Since Lmax(sm−1) > C and all the
jobs are shorter than C, the most loaded machine in sm−1 holds at least two jobs. Moreover, the
most loaded machine in sm−1 holds the shortest job, of length pmin; otherwise, by removing from I
the jobs shorter than pmin we get a smaller instance contradicting the lemma, in contradiction to
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the minimality of I. By LPT, it holds that for every machine i, Li(sm−1) ≥ Lmax(sm−1)− pmin >
C − pmin. In addition, there exists a machine with load greater than C. Therefore, the sum of the
jobs’ sizes, P , is greater than (m− 2)(C − pmin) + C = (m− 1)C − (m− 2)pmin.

On the other hand, by the contradiction assumption, in sm there are two machines with total
load at most C. Therefore, the total load on the remaining (m− 2) machines is at least P − C >
(m− 2)(C − pmin). Thus there must exists a machine with load greater than C − pmin. We obtain
the following lower bound:

Lmax(sm) > C − pmin. (1)

We next provide a lower bound on the load of any machine in sm. Let pm denote the length of
the m-th longest job in I, and let ` be the last job on the most loaded machine in sm. By Claim 2.8,
there exists a longer job than job ` on this machine. Since LPT first assigns a single job on each
machine, p` ≤ pm. Moreover, by LPT, the load on every machine in sm is at least Lmax(sm)− p`.
We obtain the following inequality for every machine i:

Li(sm) ≥ Lmax(sm)− p` ≥ Lmax(sm)− pm > C − pmin − pm, (2)

where the last inequality follows from Equation 1.
In sm, the first job on every machine has load at least pm, while every other job has load at

least pmin. Thus, the load of every machine in sm with at least two jobs is at least pm + pmin. By
the assumption that there exist two machines in sm with total load of at most C, the least loaded
machine has load at most C/2. By Equation 2, its load is greater than C−pmin−pm. This implies
that:

p` + pmin > C/2. (3)

Let M1, M2 denote the least loaded and the second least loaded machine in sm, respectively.
Distinguish between three cases:
case 1: M1 holds at least two jobs. Recall that the load of every machine with at least two jobs is
at least pm + pmin, which is greater than C/2 by Equation 3. Therefore, the total load on any two
machines exceeds C.
case 2: M1 holds a single job and M2 holds at least two jobs. In this case, the load of M2 is at
least pm + pmin, and the load on M1 is greater than C − pmin − pm (by Equation 2). Summed
together, their total load exceeds C.
case 3: each of M1 and M2 holds a single job. We distinguish between two cases:

1. |I| ≤ 2(m − 1): A known property of LPT is that if the total number of jobs is at most
twice the number of machines, then LPT produces a schedule of minimum makespan [11].
Specifically, if |I| ≤ 2(m−1) then any schedule of I on m−1 machines has makespan at least
L(m−1) > C. Consider the schedule s′m−1, induced by sm by merging the jobs on M1 and M2

into a single machine. It holds that Lmax(s′m−1) = max{L1(s′m−1) + L2(s′m−1), Lmax(sm)}.
Since Lmax(sm) ≤ C, it must hold that L1(s′m−1) + L2(s′m−1) > C.

2. |I| > 2(m−1): Since each of M1,M2 holds a single job, there are |I|−2 > 2(m−2) jobs that
are assigned to the other m− 2 machines, implying that there must exist a machine holding
at least three jobs. The first of these jobs is of size at least pm, and the second is of size at
least pmin. By the fact that LPT assigned a third job to this machine and not to M1, it must
be that the load on M1 at the time of the assignment was at least pm +pmin, which is greater
than C/2 by Equation 3.
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We conclude that the total load on any two machines is greater than C, in contradiction to the
assumption. This establishes the assertion of the lemma.

3 Equilibrium Existence, Computation and Convergence

Under the uniform sharing rule a pure NE might not exist. Consider for example the instance
G = 〈I = {1, 10}, B = 4〉. On dedicated machines, the jobs’ costs are 5 and 14 respectively. If they
are assigned together, they both pay 13. Thus, no schedule is stable: the short job will escape to
a dedicated machine, while the long job will always join it.

In contrast, as we next show, under the proportional sharing rule a pure NE always exists and
can be computed in polynomial time by the following algorithm:

Algorithm LPT∗:

1. Assign each job j such that pj ≥ B (henceforth long jobs) to a dedicated machine.

2. Assign the remaining jobs (henceforth short jobs) by algorithm LPT on m machines, where
m is the minimal number of machines such that LPT produces a schedule with makespan at
most B.

Observe that the number of machines used in the second step is well defined, since all the
participating jobs are shorter than B, therefore a schedule having makespan less than B exists.
The running time of LPT∗ is O(nlog2n). In particular, long jobs are identified and scheduled in
time O(n), the short jobs are sorted in time O(nlogn) and then LPT is executed at most logn times
(binary search for the right value of m - which is an integer in the range [1, n]). We next prove that
Algorithm LPT∗ produces a NE. Lemma 2.7 lies at the heart of the proof.

Theorem 3.1. Every profile obtained by algorithm LPT∗ is a NE.

Proof. Let s be a profile that is obtained by algorithm LPT∗. We show that no unilateral migration
from s is beneficial. By Observation 2.3 no long job can benefit from migration, and by Observation
2.5(i) no short job can benefit from joining a long job or from activating a new machine. It remains
to show that no short job can benefit from migrating to another LPT-machine. Let j be a short job
assigned to Mi. We show that it cannot benefit by migrating to some LPT-machine Mi′ . A known
property of LPT is that the load of Mi′ after the migration is at least the load of Mi in s; i.e.,
Li′(s)+ pj ≥ Li(s). Consequently, only load-increasing migrations should be considered. By Claim
2.2, it suffices to show that B ≤ Li(s)(Li′ (s)+pj)

pj
= Li(s)Li′ (s)

pj
+Li(s). Since Li(s) ≥ pj it follows that

Li(s)Li′ (s)
pj

+ Li(s) ≥ Li′(s) + Li(s) ≥ B, where the last inequality follows by Lemma 2.7.

Remark: We defer to the appendix a simpler proof for the existence of a pure NE under the
proportional sharing rule. That proof shows that any lexicographically minimal assignment on m
machines such that m is the minimal number of machines for which the lexicographically minimal
assignment does not exceed B is a NE. However, Algorithm LPT∗ is superior since it computes a
NE in polynomial time, while finding a lexicographically minimal assignment is NP-hard.
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3.1 Limited Supply of Resources

In departure from the assumption made throughout the paper regarding unlimited supply of re-
sources, in this section we consider the more standard case, where there is a given number of
resources, m, but where the cost function is still composed of the load and activation cost compo-
nents. The following theorem shows that the existence of a pure NE holds under a limited number
of resources as well.

Theorem 3.2. For every m, any resource allocation game with m resources induced by the pro-
portional sharing rule admits a pure NE.

Proof. Let m∗ be the number of machines required by Algorithm LPT∗. If m∗ ≤ m then clearly
LPT∗ produces a NE. Otherwise, let s be a schedule produced by LPT on m machines. We show
that s is a NE. Since LPT activates at least the number of machines activated by LPT∗, all m
machines are occupied. Therefore, migrating to a dedicated machine is impossible, and we only
need to consider migrations among active machines. Consider a job j of length pj which is scheduled
on machine Mi. We show that it cannot benefit by migrating to machine Mi′ . It is well known
that in LPT schedules, no migration can cause a decrease of load (i.e., Li ≤ Li′ + pj). In addition,
if a job incurs the same load after the migration, it is indifferent. Therefore, we only need to
consider load-increasing migrations. By Claim 2.2 such a migration is profitable if and only if
B > Li(Li′ + pj)/pj . Therefore, it suffices to show that B ≤ Li(Li′ + pj)/pj . But since Li/pj ≥ 1,
it suffices to show that B ≤ Li′ + pj . We distinguish between two cases: If there is a machine with
a long job and at least one additional job, then the load on any machine is at least B. In particular
Li′ ≥ B, thus Li′ + pj > B. The second case is when all the big jobs are on dedicated machines.
Since m < m∗, the LPT-schedule of the short jobs has makespan larger than B. In particular, it
means that any machine has load larger than B−pmin, implying Li′ +pj > B−pmin +pj ≥ B.

3.2 Convergence of Best-Response Dynamics

Best-Response Dynamics (BRD) is a local search method where in each step some player is chosen
and plays its best-response strategy, given the strategies of the others. We next show that unlike
other job scheduling games, in our model best-response-dynamics (BRD) do not necessarily converge
to a Nash equilibrium.

Observation 3.3. Under the proportional sharing rule BRD might not converge to a NE.

Proof. Consider the instance with four jobs of lengths 10, 10, 10, 20 and B = 72. In a machine with
two jobs of length 10, each of the jobs incur a cost of 36 + 20 = 56. In a machine with two jobs of
lengths 10 and 20, the cost of the jobs of lengths 10 and 20 are 24 + 30 = 54 and 48 + 30 = 78,
respectively. In a machine with three jobs of lengths 10, 10, 20, each of the jobs of length 10 incur a
cost of 18 + 40 = 58 while the long job’s cost is 36 + 40 = 76. Consider a profile in which two jobs
of length 10 are assigned to one machine and two jobs of lengths 10, 20 are assigned to a second
machine. The long job can reduce its cost by migrating to the other machine. Then, one of the
jobs of length 10 assigned to the machine the long job joined can benefit by migrating to the other
machine. That brings the system back to the initial configuration. Thus, BRD are not guaranteed
to converge.

In contrast to the last example, if all jobs have the same length, then the induced game is a
congestion game [20] (with m = n), and thus best response dynamics always converge to a NE.
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One can easily verify that the function Φ(s) =
∑

i B ·H`i
+ 1

2`2
i , where `i denotes the number of

jobs on machine i, H0 = 0, and Hk = 1 + 1/2 + . . . + 1/k, is a potential function for the game. It
would be interesting to study conditions that guarantee the convergence of best response dynamics
or other dynamics that ensure convergence.

4 Equilibrium Quality

In this section we study the inefficiency caused due to strategic behavior, as quantified by the price
of anarchy (PoA) and price of stability (PoS) measures. We compute the PoA and PoS with respect
to the objective of minimizing the highest cost among all the jobs; that is, given a profile s, the
social cost of s is given by g(s) = maxj cj(s).

We first observe that if there exists a job of length at least B, then every NE is optimal.

Observation 4.1. If there exists a job j such that pj ≥ B, then PoA = 1.

Proof. Let j′ = argmaxjpj . In particular, pj′ ≥ B. By Observation 2.4, for every NE profile s and
every job j, cj(s) ≤ pj + B. Therefore, maxjcj(s) ≤ pj + B ≤ pj′ + B. On the other hand, in any
schedule, and in particular the optimal profile s∗, maxjcj(s∗) ≥ cj′(s∗) ≥ pj′ + B, where the last
inequality follows from Observation 2.3. Thus PoA = 1 as required.

In light of the last observation, we study the PoA and PoS for instances in which all the jobs
are smaller than B. For this case, there is no universal bound for the PoA, as the following theorem
shows.

Theorem 4.2. For any given r > 0, there exists an instance for which the price of anarchy is
greater than r.

Proof. Given r, let B = 4 dre2 and consider an instance with B unit-length jobs. An optimal
schedule assigns the jobs in groups of 2 dre =

√
B jobs on each machine. In this schedule, the cost

of every job is 2
√

B. However, a schedule which assigns all the jobs on a single machine is also a
NE, since each jobs incurs a cost of B+1, which cannot be reduced by migrating to a new machine.
We get:

PoA ≥ B + 1
2
√

B
>

4 dre2
2 · 2 dre ≥ r.

While there is no universal bound for the price of anarchy, the following theorems shows that
the price of stability is always smaller than 5/4, and this is tight. This should be contrasted with
load balancing games in which a job’s cost is its machine’s load, where there exists a social optimum
that is a NE [24] and thus the price of stability is 1. The following proof, in addition to bounding
the PoS, also provides a polynomial time algorithm for finding a NE with cost less than factor 5/4
from the social optimum.

Theorem 4.3. In any resource allocation game under the proportional sharing rule, PoS < 5
4 .

10



Proof. Let p = αB be the length of the longest job in the instance, for α < 1. If α > 1/4, then we
show that the price of Anarchy is less than 5

4 . By Observation 2.3 the cost of the longest job is at
least 2

√
pB, thus OPT ≥ 2

√
pB. On the other hand, by Observation 2.4, cj(s) ≤ pj + B ≤ p + B

for every job j and NE profile s. It follows that PoA ≤ B+p
2
√

pB
= 1+α

2
√

α
. It is easy to verify that the

last expression is smaller than 5/4 for α > 1/4. The assertion follows since PoS ≤ PoA.
Otherwise, α ≤ 1/4. Let m be the minimal number of machines such that algorithm LPT on

m machines produces a schedule whose makespan is at most 2(
√

α − α2)B, and let s be a profile
obtained by LPT on m machines. We first provide a lower bound for the load of any machine.

Claim 4.4. The load on any machine in s is greater than (
√

α− α/2− α2)B.

Proof. By Lemma 2.7 (applied with C = 2(
√

α− α2)B), the total load on any two machines must
be greater than 2(

√
α − α2)B. Assume towards contradiction that the load on some machine is

at most (
√

α − α/2 − α2)B. Since s is produced by LPT, the gap in the load between any two
machines cannot exceed the length of the longest job, which is αB. Therefore, the load of any other
machine is at most (

√
α− α/2− α2)B + αB. We get that the total load on these two machines is

at most 2(
√

α− α2)B, in contradiction to Lemma 2.7.

Next, we show that the profile s is a NE.

Claim 4.5. The profile s is a NE.

Proof. Observe that for any α ≤ 1/4, 2(
√

α−α2) < 1, thus the makespan is less than B. Therefore,
by Observation 2.5(i), no job will migrate to a dedicated machine. Since in schedules obtained by
LPT unilateral migrations cannot decrease the load, and since a job is indifferent if its load does
not change, it suffices to show that no load-increasing deviation is profitable. It also follows from
LPT that the gap between any two machines cannot exceed the length of the longest job, i.e., αB,
and by Lemma 2.7 (applied with C = 2(

√
α−α2)B), the total load on any two machines is greater

than 2(
√

α − α2)B. Given a lower bound on the sum of of the two loads, and an upper bound on
the difference between the two loads, one can obtain the following bound on their multiplication.
specifically, for any two machines Mi,Mi′ ,

Li(s)Li′(s) ≥ (
√

α− α2 − α

2
)B(

√
α− α2 +

α

2
)B = (α− 2

√
αα2 + α4 − α2

4
)B2 (4)

By Claim 2.2 a load-increasing migration from load Li(s) into load Li′(s) is profitable for a job of
length pj only if B > Li(s)(Li′(s) + pj)/pj . However,

Li(s)(Li′(s) + pj)
pj

=
Li(s)Li′(S)

pj
+ Li(s)

> (1− 2
√

αα + α3 − α

4
)B + (

√
α− α

2
− α2)B =

= (1−√α(2α− 1)− 3α

4
+ α3 − α2)B,

where the inequality follows from Equation (4 )and Claim 4.4. The last expression is greater than
B for every α ≤ 1/4.
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Let Mi be the machine on which the maximal cost is achieved. Since pj ≤ αB for every job j,

max
j

cj(s) = max
j:sj=Mi

cj(s) ≤ Li(s) +
αB2

Li(s)
.

Let f(x) = x + αB2

x . The function f(x) decreases in x for every x <
√

αB and increases in x
for every x >

√
αB. Since for every i, Li(s) ≤ 2(

√
α − α2)B (by the construction of s) and

Li(s) > (
√

α − α/2 − α2)B (by Claim 4.4), it suffices to bound the maximal cost at these two
points. Since OPT ≥ 2

√
αB, it follows that:

PoS ≤ max
(

f(2(
√

α− α2)B)
2
√

αB
,
f((
√

α− α/2− α2)B)
2
√

αB

)
.

The assertion of the theorem follows by observing that for every α ≤ 1/4 it holds that f(2(
√

α−α2)B)
2
√

αB
<

5
4 , and f((

√
α−α/2−α2)B)

2
√

αB
≤ 1.1125 < 5

4 .

We next show that the above upper bound is tight. That is, for every ε > 0, there exists an
instance for which the ratio between the best NE and the social optimum is greater than 5

4 − ε.
Interestingly, this ratio can be achieved with unit-length jobs.

Theorem 4.6. For every ε > 0 there exists a resource allocation game with unit-length jobs for
which PoS > 5

4 − ε.

Proof. Let b be a sufficiently large integer (to be determined later) and let B = b2. Consider an
instance with n = 2b − 2 unit-length jobs. We claim that the game induced by this instance has
a unique NE in which all the jobs are assigned to a single machine. Since n < B it follows from
Observation 2.6 that this is a NE. To prove uniqueness, assume towards contradiction that there
is a NE schedule s in which the number of activated machines is at least 2, and let ni denote the
number of jobs assigned to machine Mi in s. Having unit-length jobs, the cost of a job that is
scheduled on a machine with load k is c(k) = k+B/k. If m = 2 then for some r > 0, n1 = b−r and
n2 = n− n1 = b− 2 + r. It is easy to verify that for any r > 0, c(b− r) > c(b− 1 + r), thus, jobs
on the first machine benefit from migrating to the second machine, contradicting the assumption
that this is a NE. If m > 2 then since n = 2b − 2, there must exist at least two machines with at
most b− 1 jobs, denote them i, i′. It is easy to verify that for any 0 < ni ≤ ni′ ≤ b− 1 it holds that
c(ni) > c(ni′ + 1). Therefore, a unilateral migration from machine Mi to machine Mi′ is beneficial,
in contradiction to s being a Nash equilibrium. It follows that scheduling all the jobs on a single
machine is the unique NE. The cost of each job in this schedule is c(2b− 2) = 2b− 2 + B

2b−2 .
Consider next a schedule of this instance with two activated machines, each holding b− 1 jobs.

The cost of each job in this schedule is c(b− 1) = b− 1 + B
b−1 . It follows that:

PoS ≥ 2b− 2 + B/(2b− 2)
b− 1 + B/(b− 1)

=
5b2 − 8b + 4
4b2 − 4b + 2

.

One can easily verify that the last expression is greater than 5
4 − ε for every b > 2

ε . This establishes
the assertion of the theorem.

12



5 Conclusions and Open Problems

We study settings with conflicting congestion effects. While most of the literature focused on
cases with either positive or negative congestion effects, we are interested to study equilibrium
properties in settings that admit both effects simultaneously. While the induced game is not a
congestion game [20], we find that it always admits a Nash equilibrium in pure strategies. This
result motivated the evaluation of the inefficiency introduced due to selfish behavior, as quantified
by the price of anarchy and price of stability measures, for which we provide tight bounds.

Our analysis and results suggest several intriguing open questions and future work. First of all, it
is desirable to generalize our results to settings with different sharing rules, different cost structures,
or different social choice functions. In addition, we believe that conflicting congestion effects should
be studied in additional congestion models, such as network creation and routing games. Finally,
it would be interesting to provide a characterization of instances for which best-response dynamics
or some other types of dynamics are guaranteed to converge to a Nash equilibrium.
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A Equilibrium Existence

We show a particular profile which is a pure Nash equilibrium. We first define a complete order on
the profiles.
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Definition A.1. A vector (L1, L2, . . . Lm) is smaller than (L̂1, L̂2, . . . L̂m) lexicographically if for
some i, Li < L̂i and Lk = L̂k for all k < i. A profile s is smaller than s′ lexicographically if
the vector of machine loads L(s) = (L1(s), . . . , Lm(s)), sorted in non- increasing order, is smaller
lexicographically than L(s′), sorted in non-increasing order.

We use the following property of the lexicographically minimal assignment.

Claim A.2. Let s be a lexicographically minimal assignment, and suppose that job j is assigned to
machine Mi. Then, Li′(s) + pj ≥ Li(s) for every i′ 6= i.

Proof. If Li′(s) ≥ Li(s), the statement holds trivially. Otherwise (i.e., Li′(s) < Li(s)), suppose by
way of contradiction that Li′(s) + pj < Li(s), then, the schedule that assigns the job of length pj

to the machine of load Li′(s) produces a lexicographically-smaller assignment, in contradiction to
the minimality of s.

Given an instance of jobs I, Let Ishort ⊆ I be the subset of jobs having length less than B. Let
ŝk be the lexicographically minimal assignment of Ishort on k machines. Let m be such that the
makespan under ŝm is smaller than B whereas the makespan under ŝm−1 is at least B. Note that
m is well defined, since all the participating jobs are shorter than B.

Let ŝ be the profile in which: (i) every j s.t. pj ≥ B is assigned to a dedicated machine, and
(ii) The jobs of Ishort are assigned according to ŝm.

Theorem A.3. The profile ŝ is a NE.

Proof. We show that none of the possible migrations is beneficial. By Observation 2.3, no long job
can benefit from migration, and by Observation 2.5(i) no short job can benefit from joining a long job
or from activating a new machine. It remains to show that no short job can benefit from migrating
to another machine of ŝm. Let j be a short job assigned to Mi. By Claim A.2, Li′(ŝ) + pj ≥ Li(ŝ)
for every i′ 6= i. In other words, only load-increasing migration can be performed. By Claim 2.2,
such migrations are beneficial for job j if and only if B >

Li(ŝ)(Li′ (ŝ)+pj)
pj

. Assume pj = αLi(ŝ)

for some 0 < α ≤ 1. Then the migration condition can be written as B >
Li(ŝ)(Li′ (ŝ)+αLi(ŝ))

αLi(ŝ)
=

Li′ (ŝ)
α + Li(ŝ) ≥ Li′(ŝ) + Li(ŝ). Therefore, to obtain a contradiction, it is sufficient to show that

for every i, i′, Li(ŝ) + Li′(ŝ) ≥ B. Assume by way of contradiction that there exist i, i′, s.t.
Li(ŝ) + Li′(ŝ) < B. Consider the schedule which is identical to ŝ except the jobs assigned to
machines i and i′ are jointly assigned to a single machine. This schedule produces a makespan
smaller than B on m− 1 machines, which is a contradiction to the choice of m.
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