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Abstract

We study truthful mechanisms for auctions in which the
auctioneer is trying to hire a team of agents to perform a
complex task, and paying them for their work. As com-
mon in the field of mechanism design, we assume that the
agents are selfish and will act in such a way as to maximize
their profit, which in particular may include misrepresent-
ing their true incurred cost. Our first contribution is a new
and natural definition of the frugality ratio of a mechanism,
measuring the amount by which a mechanism “overpays”,
and extending previous definitions to all monopoly-free set
systems.

After reexamining several known results in light of this
new definition, we proceed to study in detail shortest path
auctions and “r-out-of-k sets” auctions. We show that
when individual set systems (e.g., graphs) are considered
instead of worst cases over all instances, these problems ex-
hibit a rich structure, and the performance of mechanisms
may be vastly different. In particular, we show that the well-
known VCG mechanism may be far from optimal in these
settings, and we propose and analyze a mechanism that is
always within a constant factor of optimal.

1 Introduction

The design of protocols for resource allocation and elec-
tronic commerce among parties with diverse and selfish in-
terests has spawned a great deal of recent research at the
boundary between economics, game theory, and theoretical
computer science. In many settings, a natural way to assign
resources to, or obtain goods or services from, such selfish
parties is by means of auctions, in which the parties submit
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bids to the auctioneer, who then chooses one or more win-
ners and purchases their services (or sells them resources).

The case of buying or selling a single item at a time has
a long history of study in economics [15, 14], and is well
understood. The problem becomes more intriguing, how-
ever, when the auctioneer is trying to buy or sell a set of
items, interacting with multiple parties. Several recent pa-
pers have studied the resulting auctions and their properties.
We adopt here the general framework of hiring a team of
agents [4, 27, 10]: The auctioneer is intent on hiring a team
of agents to perform a complex task. Each agent i can per-
form a simple task at some cost ci known only to himself.
Based on the agents’ bids bi, the auctioneer must select a
feasible set — a set of agents whose combined skills are
sufficient to perform the complex task — and pay each se-
lected agent individually some amount pi. In the absence of
the agents’ costs and bids, the problem is therefore defined
entirely by the set system of feasible sets.

Two special cases of this general setting have been stud-
ied extensively in the past: (i) In a path auction [22, 4, 8],
the agents own edges of a known graph, and the auctioneer
wants to purchase a path between two given nodes s, t. (ii)
In a minimum spanning tree (MST) auction [27, 5, 10], the
agents again own edges of a graph, and the auctioneer wants
to purchase a spanning tree.

As mentioned above, agents in the real world will be self-
ish, and thus take whichever action benefits them most. In
particular, they may report a value different from their true
cost ci to the auctioneer, in order to increase the payments
they receive. The area of mechanism design [17, 22, 25]
studies the design of auctions so that no agent, motivated
only by self-interest, has an incentive to cheat.

A desirable property for mechanisms is that it be in each
agent’s best interest to report his actual cost ci as his bid, no
matter how other agents bid. This property of truthfulness
obviates the need for agents to perform complex computa-
tions or gather data about their competition, and at the same



time simplifies the design and analysis of auction protocols,
as there is no need for assumptions about agents’ knowledge
of each other or the distributions of their costs. In addition,
the revelation principle ([17], p. 871) shows that there is no
loss of generality in restricting attention to truthful mech-
anisms, so long as mechanisms are required to have domi-
nant strategies; i.e., each agent has an optimal bid b̂i based
only on his own cost ci, and independent of all other agents’
bids.

For single-item auctions, the classical truthful mecha-
nism is the Vickrey or Second-Price Auction [28], in which
the lowest bidder is awarded the contract and is paid the
second-lowest bid;1 its generalization to the problem of hir-
ing a team of agents and many other problems is called the
VCG mechanism [28, 6, 12]. In the VCG mechanism, the
feasible set S selected is always the one with lowest total
cost b(S) according to the agents’ bids; each agent is then
paid the highest amount it could have bid to still be part
of the winning feasible set, all other agents’ bids remaining
the same. The VCG mechanism is truthful, and hence the
winning set is in fact a cheapest feasible solution with re-
spect to the true cost. However, the payments made by the
VCG mechanism can be significantly greater than the cost
of achieving truthfulness.

1.1 Frugality

In one traditional economical view, this overpayment has
not been a major concern, as the auctioneer was assumed to
be a central authority with a common social good in mind.
Hence, any payments that were not directly applied toward
actual costs increased the “social welfare”, independently
of whether they were in the hands of the auctioneer or the
agents. An alternative goal, however, is for the auctioneer to
maximize his own benefit, which includes hiring the team
of agents as cheaply as possible. Hence, analyzing the fru-
gality [4, 27, 10] of a mechanism — the amount by which
it overpays — becomes an important aspect of mechanism
design. The fundamental issues are:

• How do we design truthful mechanisms that are as fru-
gal as possible?

• How costly is the restriction to truthfulness?

Here, we build on research initiated by Archer and Tardos,
Talwar, and others [3, 4, 27, 10, 22, 8, 5, 11], and study the
frugality of mechanisms for several classes of the “hiring a
team” problem.

1We assume here and in the sequel that there actually is a second-lowest
bid. If there is only one bidder, or, more generally, if one agent is part of
all feasible solutions, then that agent has a monopoly, and can dictate an
arbitrary price. This case is not very interesting from the point of view of
analysis, and not very pleasant from the point of view of the auctioneer.
Hence, we focus only on monopoly-free instances.

When analyzing the overpayment of a mechanism, the
first important question is “Overpayment compared to
what?”. The first naı̈ve approach would be to compare to
the cost of an actual cheapest solution: however, even for
the simple case of a single-item auction with two bidders,
any mechanism can be forced to perform arbitrarily badly
with respect to this measure. Instead, the second-lowest ac-
tual cost is the natural baseline for single-item auctions.

In order to analyze mechanisms for the “hiring a team”
problem, this notion needs to be extended to set systems.
One definition suggested and used previously in the lit-
erature [4, 27, 10] compares the payments p(S) made to
the winning feasible set S with the actual cost c(S′) of
the cheapest feasible set S′ disjoint from S; their ratio
p(S)/c(S′) is called the frugality ratio, and measures the
overpayment of the mechanism. However, this measure is
not useful when there is no such disjoint set S′ (and hence
c(S′) may be assumed to be infinite). This may happen
even when no element of S has a monopoly, as evidenced
by the case of computing an MST on a cycle, or a shortest
s-t path in the graph depicted in Figure 1 below:2 Thus, for
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Figure 1. A graph with no monopoly and no
solution disjoint from the cheapest one.

large classes of path auctions and MST auctions (let alone
other “hiring a team” problems), up to this point, the ques-
tion of how to define the problem of evaluating the frugality
of truthful mechanisms has been unresolved.

1.2 Our Results

As our first contribution, we present a new and natural
definition of the frugality ratio of a mechanism. Our new
definition is essentially based on the Nash Equilibrium of a
non-truthful mechanism. We propose this as a benchmark
against which to compare truthful mechanisms. The bound
attempts to capture the minimum payments we could ex-
pect any mechanism, truthful or untruthful, to pay. In many
cases, our new definition coincides with the one in [4, 27],
but also extends it in a natural way to all monopoly-free
collections of feasible sets.

With this new definition in hand, we proceed to inves-
tigate mechanisms for several subclasses of the “hiring a

2We thank Éva Tardos for suggesting this example.
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team” problem. First, we extend known results about MST
auctions [5, 10], showing that the VCG mechanism has fru-
gality ratio 1 for all two-connected (i.e., monopoly-free)
graphs. The main result we prove here is that VCG has fru-
gality ratio 1 if and only if the feasible sets are the maximal
independent sets of a monopoly-free matroid.

We then turn to the study of shortest path auctions.
Archer and Tardos [4], and Elkind et al. [8] have shown
that if the graph consists of just two node-disjoint s-t paths
of length n/2 each, then not only does VCG have a frugal-
ity ratio of Ω(n), but so does any truthful mechanism. As
O(n) is trivially an upper bound on the frugality ratio in all
monopoly-free settings, this settles the worst-case frugality
ratio of shortest-path auctions on worst-case graphs.

However, this worst case in no way applies to all graphs
(see e.g. [18, 9]). The frugality ratio of a mechanism should
therefore be bounded in terms of properties of the specific
set system under consideration (in this case, the specific
graph), rather than by the worst case over a class of set sys-
tems. We present a new, polynomial-time implementable
mechanism, called the

√
-Mechanism, whose frugality ra-

tio we show to be within a constant factor of optimal, for
any given graph. In contrast, VCG’s frugality ratio for some
graphs can be as much as Ω(

√
n) larger than that of our

mechanism. Hence, VCG is in a sense far from the best
possible for shortest path auctions on many graphs.

At the heart of the
√

-Mechanism for path auctions lies a
simple mechanism for deciding which of two disjoint sets of
different sizes should win. Similarly, the VCG mechanism
for selecting an MST on a cycle can be seen as choosing
n − 1 out of n sets of size 1. A common generalization of
both is to select r out of k sets (which may have different
sizes). For such r-out-of-k systems, we present a mecha-
nism whose frugality ratio is at most twice that of the opti-
mum mechanism.

1.3 Related Work

Motivated by the need to deal with selfish users, in par-
ticular in network settings, there has been a large body of
recent work at the intersection of game theory, economic
theory and theoretical computer science (see, e.g., [20, 25]).
For instance, the seminal paper of Nisan and Ronen [22],
which introduced mechanism design to the theoretical com-
puter science community, studied the tradeoffs between
agents’ incentives and computational complexity. The loss
of efficiency in network games due to selfish user behavior
has been studied in the contexts of the “price of anarchy”
(see, e.g., [25, 26]), and the “price of stability” (see [2]).

The problem of hiring a team of agents in complex set-
tings, at minimum total cost, has been shown to have many
practical economic applications (see [9, 1, 23, 16, 21] for
examples). In particular, the path auction problem we study

here has been the subject of a significant amount of prior
research. The traditional economics approach to payment
minimization (or profit maximization) is to construct the
optimal Bayesian auction given the prior distributions from
which agents’ private values are drawn. Indeed, path auc-
tions and similar problems have been studied recently from
the Bayesian perspective in [8, 7]. By way of contrast, we
follow the approach pioneered by Archer, Tardos, Talwar
and others [4, 27, 5], and study the problem of hiring a
team from a worst-case perspective. As we have repeatedly
seen in computer science, significant insight can be gained
from an understanding of worst-case performance, and it
enables an uninformed or only partially informed auction-
eer to evaluate the trade-off between an auction tailored to
assumptions about bidder valuations (which may or may not
be correct) versus an auction designed to work as well as
possible under unknown and worst-case market conditions.

2 Preliminaries

We formally define the class of “hiring a team” auctions
we study. A set system (E,F) is specified by a set E of
n elements, each representing an agent, and a collection
F ⊆ 2E of feasible sets. We assume that (E,F) is common
knowledge to the auctioneer and all agents. A set system is
monopoly-free if no element is in all feasible sets, i.e., if⋂

S∈F S = ∅. Each agent e ∈ E has a cost ce, its true in-
curred cost if it is selected by the mechanism.3 This value
is private, i.e., known only to agent e. An auction consists
of two steps:

1. Each agent submits a sealed bid be.

2. Based on the bids be, the auctioneer selects a feasible
set S ∈ F as the winner, and computes a payment
pe ≥ be for each agent e ∈ S. We say that the agents
e ∈ S win, and all other agents lose.

Both the selection rule and the algorithm for computing
payments are assumed to be common knowledge among the
agents. We assume that the agents will exploit this knowl-
edge to choose a bid maximizing their own profit, where an
agent’s profit is pe − ce if the agent wins, and 0 otherwise.
We also assume that agents do not collude.

A mechanism is truthful if, for any fixed vector b−e of
bids by all agents other than e, it is in agents e’s best interest
to bid be = ce, i.e., agent e’s profit is maximized by bidding
be = ce. Hence, we can use be and ce interchangeably in
discussing truthful mechanisms.

It is well-understood which selection rules yield truthful
mechanisms. In fact, the selection rule uniquely determines
the payments for truthful mechanisms.

3For costs, bids, etc., we extend the notation by writing c(S) =P
e∈S ce, etc.
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Theorem 1 [3, 15]

1. A mechanism is truthful only if the selection rule is
monotone: No losing agent can become a winner by
raising his bid, given fixed bids by all other agents.

2. Given a monotone selection rule, there is a unique
truthful mechanism with this selection rule. This mech-
anism pays each agent his threshold bid, i.e., the high-
est value he could have bid and still won (all other
agents’ bids being fixed).

Theorem 1 will allow us to describe truthful mechanisms
by only specifying a monotone selection rule, which implic-
itly defines the payments. We will also use the following
immediate corollary.

Corollary 2 If element e wins with costs c under a truthful
mechanism M, then e must also win with cost c′e ≤ ce,
when the costs of all other elements e′ are unchanged,
i.e. c′e′ = ce′ . Moreover, with costs c′, the payment by M to
e must be at least ce.

2.1 Nash Equilibria and Frugality Ratios

We define a new notion of the frugality ratio of a mech-
anism. Intuitively, the frugality ratio should capture the
overpayment of a mechanism, with respect to a “natu-
ral” lower bound. We argue that a natural choice for this
lower bound is essentially the minimum payment by a non-
truthful mechanism; hence, the frugality ratio characterizes
the cost of insisting on truthfulness.

Consider the mechanism N which, given the bids be, se-
lects the cheapest feasible set with respect to these bids (us-
ing some tie-breaking rule), and pays each winning agent
his bid. This mechanism is a “first-price auction” and is not
truthful, and hence has no dominating strategies. In the ab-
sence of dominating strategies, it is common to study Nash
Equilibria, bid vectors b such that no agent e, given the bids
b−e by all other agents, can increase his profit by changing
his bid to something other than be. Hence, Nash Equilibria
could be considered “natural outcomes” of the mechanism
N , and the resulting payments thus good candidate bounds.
As we are interested in a lower bound, we wish to define the
cheapest Nash value ν(c) to be the minimum payments by
N over all of its Nash Equilibria.

Unluckily, as observed by Immorlica et al. [13], Nash
Equilibria often do not exist for first-price auctions. We
will discuss this issue in more detail below; however, we
can still define the quantity ν(c) analytically based on the
intuition we gained from the concept of Nash Equilibria.

Definition 3 Let (E,F) be a set system, and S the cheapest
feasible set with respect to the true costs ce (where ties are

broken lexicographically). We define ν(c) to be the solution
to the following optimization problem.

Minimize
∑

e∈S be subject to

(1) be ≥ ce for all e

(2)
∑

e∈S\T be ≤ ∑
e∈T\S ce for all T ∈ F

(3) For every e ∈ S, there is a Te ∈ F such that
e /∈ Te and

∑
e′∈S\Te

be′ =
∑

e∈Te\S ce

The first constraint simply states that no agent is willing
to incur a loss, and the second constraint ensures that the set
S indeed has the lowest total bid among feasible sets. Fi-
nally, the third constraint states that for each element, there
is a reason why it cannot raise its bid further to increase its
profit. We say that the set Te in the third constraint is tight
for e or simply tight.

To illustrate this bound, consider the case of an s-t path
auction in which there are k parallel paths. Then, ν(c) is
precisely the cost of the second-cheapest path. Our intu-
ition, derived from the notion of Nash Equilibria, is that the
agents on the cheapest path will raise their bids until the sum
of their bids equals the cost of the second-cheapest path, at
which point they can no longer raise their bids. None of the
other edges have an incentive to raise their bids (as they are
losing either way), nor to lower their bids, as they would
incur a negative profit. Thus, the new metric in this case is
identical to that used in previous studies of path auctions.
This coincidence extends to many set systems and cost vec-
tors.

Unfortunately, the intuition that the quantity ν(c) from
Definition 3 is the value of the true cheapest Nash is not
quite correct (although we will sometimes abuse terminol-
ogy and refer to ν(c) as the cheapest Nash value). As noted
by Immorlica et al. [13], depending on the tie-breaking of
the first price auction, there may not even be a Nash Equi-
librium to a first-price auction. Moreover, even when the
Nash Equilibrium does exist, the one yielding lowest total
payments may have a winning set different from the actu-
ally cheapest set S. There are several technical ways to deal
with these issues, including: (1) We could consider strong
ε-Nash equilibria, in which there is no group of agents that
can deviate in a way that improves the payoff of each mem-
ber by at least ε. We could then take the limit for ε → 0.
(2) We could consider strong Nash equilibria for a first price
auction that uses oracle access to the true costs of the bid-
ders to break ties. For a discussion and results about these
and related issues in the context of obtaining upper bounds
on the payments in first price auctions, see [13]. We do not
elaborate on these issues here as they are incidental to our
main goal of providing a well-motivated lower bound on the
payments of any mechanism — instead, we use as our new
metric the very intuitive value given by Definition 3.

This metric is defined in all monopoly-free set systems.

4



As mentioned above, for path auctions with several node-
disjoint s-t paths, ν(c) is equal to the cost of the second
cheapest path. In the graph of Figure 1, the value of ν is 1,
and occurs when the middle edge bids 1, and all other edges
bid their true cost. For the spanning tree auction on a cycle
of n nodes, where one edge has true cost 1 and the rest have
cost 0, the value of ν(c) is n − 1.

Using the quantity ν(c), we can now proceed to de-
fine the frugality ratio of a mechanism M for a set system
(E,F).

Definition 4 Let M be a truthful mechanism for the set sys-
tem (E,F) and let pM(c) denote the total payments of M
when the actual costs are c. Then, the frugality ratio of M
is

φM = supc
pM(c)
ν(c) .

The frugality ratio of the set system (E,F) is Φ(E,F) =
infM φM, where the infimum is taken over all truth-
ful mechanisms M for the set system (E,F). We call
a mechanism M competitive for a class of set systems
{(E1,F1), (E2,F2), . . .} if φM is within a constant factor
of Φ(Ei,Fi) for all i.

3 Spanning Trees and other Matroids

In this section, we generalize the results of Talwar [27, 5]
and show that under the new definition of frugality ratio,
the VCG mechanism has frugality ratio 1 if and only if the
feasible sets are the maximal independent sets (bases) of a
monopoly-free matroid. In particular, VCG has frugality
ratio 1 for spanning tree auctions, even when there are no
two disjoint spanning trees (e.g., when the graph is a cycle).

Interestingly, under the previous definition of frugality
ratio, in which the payments were compared to the cost of
the cheapest solution disjoint from the true cheapest solu-
tion, the set systems with frugality ratio 1, termed frugoids,
were a strict superset of matroids [27]. With our new defi-
nition, this is no longer the case.

Theorem 5 VCG has frugality ratio 1 for an auction on the
set system (E,F) if and only if the feasible sets F are the
bases of a monopoly-free matroid.

The proof is quite similar to the one in [27] for frugoids.
It depends on the following well-known characterization of
matroids [24]:

Proposition 6 A collection F of sets forms the bases of a
matroid if and only if for every two sets S, T ∈ F , there is a
bijection f between S\T and T \S such that S\{e}∪{f(e)}
is in F for every e ∈ S \ T .

A central part of the proof will be relating the VCG pay-
ments to the bids be in Definition 3.

Proposition 7 The VCG payment to each winning element
e is at least the bid be from Definition 3.

Proof. Let S be the winning set, and e ∈ S arbitrary.
VCG’s payment to e is pe = ce+c(T )−c(S), for some fea-
sible set T with e /∈ T . Because be′ ≥ ce′ for all elements
e′, and b(S) ≤ c(T ), we obtain be ≤ c(T ) − b(S \ {e}) ≤
c(T ) − c(S \ {e}) = pe.

Proof of Theorem 5. For the “if” direction, assume that
the feasible sets are bases of a monopoly-free matroid. Fix
an arbitrary cost vector c, and let S be the winning set under
the VCG mechanism. So S has minimum cost with respect
to c.

For each e ∈ S, let Te be the set which is tight for e, i.e.,
b(S \Te) = c(Te \S). By Proposition 6, there is a bijection
f between S \ Te and Te \ S, such that S \ {e′} ∪ {f(e′)}
is feasible for every e′ ∈ S \ Te, implying that be′ ≤ cf(e′).
Together with the above equality, this in fact implies that
be′ = cf(e′) for all e′ ∈ S \ Te. VCG pays at most cf(e′) to
each element e′ ∈ S \ Te, so VCG has frugality ratio 1.

For the “only if” direction, assume that (E,F) is not a
matroid, and let S, T be two sets violating the condition of
Proposition 6, with |T | ≤ |S|. If |T | < |S|, then let c
be such that all elements of S have cost 0, all elements of
T \S have cost 1, and all elements outside S ∪T have very
large cost. Then, S is the cheapest set, and hence also the
winning solution under VCG. Because T is also feasible,
b(S \T ) ≤ c(T \S) = |T \S| in Definition 3. On the other
hand, VCG has to pay each element e ∈ S \ T at least 1, so
its total payment to S \ T is at least |S \ T | > |T \ S| by
assumption. For the elements in S ∩ T , VCG pays at least
be by Proposition 7, so VCG’s total payments are strictly
greater than b(S).

When |S| = |T |, consider the bipartite graph with node
sets S \ T and T \ S, containing an edge (e, e′) (for e ∈
S, e′ ∈ T ) if and only if S \ {e} ∪ {e′} is feasible. By the
assumption and Hall’s Theorem, there is a set S′ ⊆ S \ T
such that its neighborhood T ′ = Γ(S′) in the bipartite graph
has size |T ′| < |S′|. Let c be the cost vector in which all
elements of T ′ have cost 2, all elements of T \ T ′ have cost
1, all elements of S \T have cost 0, and all elements outside
S∪T have very large cost. Again, S is the cheapest set, and
thus wins under VCG. Because T is feasible, the bids b of
S \ T in Definition 3 are at most

b(S \ T ) ≤ c(T \ S) = |T \ S| + |T ′|.

On the other hand, any single element e ∈ S′ cannot be
replaced by a single element of T \ T ′, so VCG must pay
each e ∈ S′ at least 2, and each e ∈ S \ (S′ ∪ T ) at least 1.
Hence, the total payments by VCG to S \ T are at least

|S \ T | + |S′| = |T \ S| + |S′| > c(T \ S).
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Using Proposition 7 for the elements in S ∩ T now com-
pletes the proof that VCG’s total payments are strictly
greater than b(S).

4 r-out-of-k Systems

In this section, we develop a competitive mechanism
with near-optimal frugality ratio for an interesting general
class of symmetric set systems. The solution we develop
for this case will help us obtain competitive mechanisms
for path auctions in Section 5.

Definition 8 A set system (E,F) is an r-out-of-k-system if
there exists a partition of E into k disjoint sets S1, . . . , Sk,
such that every set F ∈ F contains exactly r out of these k
sets of elements.

Notice that these set systems generalize both spanning
trees on a cycle (with all sets Si having size 1 and r = k−1),
and a shortest path chosen from among k vertex-disjoint
paths (with r = 1).

Our mechanism for these set systems is based on the ob-
servation that if a large set is chosen as a winner, then each
of its elements will have to be paid a certain amount (de-
pending on the other sets’ bids). Hence, to avoid overpay-
ments, a mechanism should — within reason — give prefer-
ence to smaller sets. Our mechanism achieves this by com-
paring not the costs of sets themselves, but the costs c(Si)
weighted by coefficients γi which capture the relative size
of Si compared to other sets. The precise magnitude of the
γi is chosen to balance the worst-case frugality ratio over
all potential combinations of winning sets. Specifically, for
a (k − 1)-out-of-k-system, we define the γi as the solution
to the system of equations

α =
1

(k − 1)γi
·
∑

j �=i

γj |Sj |, (1)

for i = 1, . . . , k. We begin by proving that such γi actually
exist.

Lemma 9 There is a solution α, γ1, . . . , γk to the system of
k equations (1).

Proof. We write si = |Si|. Multiplying the ith equation
with (k − 1)γi, subtracting the ith equation from the first
one, and rearranging shows that we can equivalently write

(k − 1)αγ1 =
∑k

i=2 γisi,

γi = s1+(k−1)α
si+(k−1)α · γ1 for all i ≥ 2.

Substituting γi into the first equation, canceling out γ1,
and multiplying by the common denominator, we obtain the

following kth degree polynomial equation for α:

(k − 1)α · ∏k
j=2(sj + (k − 1)α)

−∑k
j=2 sj ·

∏
i�=j(si + (k − 1)α) = 0.

For α = 0, the polynomial is negative, whereas for suffi-
ciently large α, it is positive (because the coefficient of αk is
positive). Therefore, there must be a solution α, and hence
a solution to the original system of equations (for instance
fixing arbitrarily γ1 = 1).

We now use these values in order to define our mecha-
nism. To deal with a general r-out-of-k-system, we discard
the most expensive k − r − 1 sets, and then consider only
the problem for the r-out-of-(r+1)-system. Our full mech-
anism is thus:

r-out-of-k-system Mechanism:

Input: r-out-of-k-system S1, S2, . . . , Sk, with bids
be for each element in E.

1. Rename the sets Si so that they are sorted by
non-decreasing sums of bids b(Si).
(Discard all but the r + 1 cheapest sets.)

2. For 1 ≤ i ≤ r + 1, let γi be defined by Equation
(1) (with k = r + 1).

3. Let � = argmaxi
b(Si)

γi
.

Output: F = ∪i�=�Si

Theorem 10 For any r between 1 and k−1, the r-out-of-k-
system mechanism is truthful and competitive (i.e., achieves
a frugality ratio within a constant factor of optimal).

Proof. Since the selection rule is monotone, it follows
from Theorem 1 that the r-out-of-k-system mechanism is
truthful. Hence, we can assume that be = ce for all ele-
ments e.

The rest of the proof consists of two parts. We first show
a lower bound of α

2 on the frugality ratio of any truthful
mechanism for a (k−1)-out-of-k-system. This lower bound
extends straightforwardly to an r-out-of-k-system. To show
competitiveness, we then verify that our mechanism has a
frugality ratio of at most α.

Lemma 11 Let (E,F) be a (k − 1)-out-of-k-system with
set sizes |S1|, . . . , |Sk|, and let α be defined by the system
of equations (1). Then α

2 is a lower bound on the frugality
ratio of any truthful mechanism for this set system.

Proof. Let M be any truthful mechanism for (E,F). We
define a directed graph G with node weights as follows: The
nodes are the elements e ∈ E, and element e has weight
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w(e) = γi(e), where i(e) is the unique index such that
e ∈ Si(e), and the γi are defined by the system of equa-
tions (1). The graph contains an arc (e, e′) if node e′ wins
under the mechanism M when element e bids γi(e), ele-
ment e′ bids γi(e′), and all other nodes bid 0. Notice that by
the definition of the set system, the graph contains at least
one of the two arcs (e, e′) or (e′, e) whenever i(e) 
= i(e′).
Thus, for any node e,

∑
e′:e→e′ w(e′) +

∑
e′:e′→e w(e′) ≥∑

j �=i(e) γj |Sj |.
Any node-weighted directed graph contains a node v

such that
∑

u:v→u w(u) ≥ ∑
u:u→v w(u) so there is a

node e (and set Si � e) satisfying
∑

e′:e→e′ w(e′) ≥
1
2

∑
j �=i γj |Sj |.

Now consider what happens when the mechanism M is
run with element e’s cost being ce = γi(e), and all other
costs being 0. By definition of the graph G and Corollary
2, all elements e′ with an incoming arc from e win, and
their threshold bid is at least their weight. Hence, the total
payments by M are at least 1

2

∑
j �=i γj |Sj |. For this input

c, we have ν(c) = (k − 1)γi, so the frugality ratio of M is

at least
1
2

P
j �=i γj |Sj|

(k−1)γi
= α

2 .

Let e be a winning element in our r-out-of-k-system
mechanism. Assume e is in set Si. The payment to e is
its threshold bid, i.e., the largest value e could have bid and
still won. If e’s bid were so large that the set Si (instead
of S�) were to become the argmax in step 3 of our mecha-
nism, then e would clearly lose, so we can upper-bound the
payment to e by γi

γ�
c(S�). Thus the total payment is upper-

bounded by
∑

1≤i≤r+1,i�=�
γi|Si|

γ�
c(S�).

On the other hand, we have ν(c) = r · c(Sr+1). Since
c(S�) ≤ c(Sr+1), the frugality ratio is upper-bounded by
1

rγ�
· ∑1≤i≤r+1,i�=� γi|Si| = α.

Finally, we can show that α is a lower bound on the fru-
gality ratio Φ(E,F) for this set system, by considering only
bid vectors where all elements of Sj for j > r+1 have very
large (essentially infinite) cost, so that no frugal mechanism
will ever include them. Then, we can apply Lemma 11 to
obtain the desired lower bound, completing the proof.

4.1 A tighter lower bound for 1-out-of-2-systems

The lower bound from Lemma 11, when applied to 1-
out-of-2 systems, shows that any truthful mechanism for
selecting exactly one of two disjoint sets S1, S2 must have
frugality ratio at least 1

2

√|S1||S2|, which matches the up-
per bound to within a factor of 2. We now show that the
lower bound can be tightened somewhat.

Lemma 12 Any truthful mechanism M for a 1-out-of-2
system with sets S1 and S2 has frugality ratio at least
1√
2

√|S1||S2|.

We conjecture that any truthful mechanism must have
frugality ratio at least

√|S1||S2|, i.e., that our mechanism
is optimal. It can be shown to be optimal within the smaller
class of Min-Function mechanisms, defined by Archer and
Tardos [4].

Proof. Let s1 = |S1|, s2 = |S2|, and let e1, . . . , es1 and
e′1, . . . , e

′
s2

denote the elements of S1 resp. S2. We let aij

denote the supremum of all values a such that if element ei

bids a, element e′j bids 1, and all others bid 0, then set S1

wins under the mechanism M.
If element e′j has cost 1, and all other elements have cost

0, then by Corollary 2, the set S1 wins, and each element ei

is paid at least aij − ε, for arbitrarily small ε. Hence, the
total payments, and thus also the frugality ratio, are lower
bounded by

∑
i aij (omitting the ε).

Conversely, fix an element ei, and consider a non-
decreasing sorting Aip of the aij , i.e. Aip is the pth smallest
one among the aij . Then, if element ei has cost Aip +ε, and
all other elements have cost 0, the set S2 wins, and each el-
ement e′j with aij ≤ Aip is paid at least 1. Thus, the total
payment is at least p, whereas ν(c) = Aip +ε, so the frugal-
ity ratio is lower-bounded by p

Aip
for all i, p (again omitting

ε). The frugality ratio φM therefore satisfies the following
inequalities:

∑
i aij ≤ φM for all j

Aip ≥ p
φM

for all i, p.

As each aij appears as exactly one Aip, their sums are
equal, i.e.,

s1
φM

· s2(s2+1)
2 ≤ ∑

i,p Aip =
∑

i,j aij ≤ s2φM.

Solving for φM yields that φ2
M ≥ s1(s2+1)

2 , i.e.,

φM ≥ √
s1(s2 + 1)/2 ≥ √

s1s2/2.

5 Path Auctions Revisited

The mechanism for the 1-out-of-2-system can be used as
a building block in order to get a near-optimal mechanism
for path auctions. Recall that for the case k = 2, the so-
lution to the system of equations (1) is particularly simple.
For sets S1, S2 of sizes s1, s2, the solution is α =

√
s1s2,

with γ1 = 1√
s1

and γ2 = 1√
s2

.
Thus, for a directed graph consisting of two node-

disjoint s-t paths P1, P2 of lengths s1, s2, Theorem 10
implies that the mechanism which selects the path P1 iff√

s1 · c(P1) ≤ √
s2 · c(P2) has frugality ratio

√
s1s2, and

by Lemma 12, is within a factor of
√

2 of optimal. We call
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this mechanism the
√

-Mechanism. In contrast, the VCG
mechanism has frugality ratio max (s1, s2) for this graph,
and thus can perform by a factor of

√
n worse in the case

when s1 = 1 and s2 = n. (When s1 = s2, VCG and
the

√
-Mechanism are identical. The deviation in behavior

increases with the ratio s1
s2

.)
The following generalized version of this mechanism is

competitive for any monopoly-free graph.

√
-Mechanism for s − t Paths:

Input: A directed graph G = (V, E) with bids be

on the edges.

1. Find two edge-disjoint paths P, P ′ minimizing
b(P ) + b(P ′).
(Ignore the rest of the graph G from now on.)

2. Let s = v1, v2, v3, . . . , vk+1 = t be the vertices
that P, P ′ have in common, in the order in which
they appear in P and P ′. Let Pi (resp. P ′

i ) be the
subpath of P (resp. P ′) from vi to vi+1.

3. For each i, include Pi in the solution iff
√|Pi| ·

c(Pi) ≤
√|P ′

i | · c(P ′
i );

otherwise, include P ′
i .

Output: An s-t path consisting of the winners from
each of the (Pi, P

′
i ) pairs.

Theorem 13 The
√

-Mechanism for s-t paths is truthful,
competitive (i.e., has frugality ratio within a constant factor
of the optimal frugality ratio), and polynomial time imple-
mentable.

Proof. Since the path selection rule is monotone, it fol-
lows from Theorem 1 that the

√
-Mechanism for s-t paths

is truthful. Hence, we can assume that be = ce for all edges
e.

The payments made to the winner among Pi, P
′
i are at

most
√|Pi||P ′

i | · max(c(Pi), c(P ′
i )), and hence the total

payments are at most
∑k

i=1

√|Pi||P ′
i | ·max(c(Pi), c(P ′

i )).
By Lemma 14 below, we have ν(c) ≥ 1

2 (c(P ) + c(P ′)) ≥
1
2

∑k
i=1 max(c(Pi), c(P ′

i )). Hence, the
√

-Mechanism has
frugality ratio at most 2 maxi

√|Pi||P ′
i |.

Let i be the index maximizing |Pi||P ′
i |. By consid-

ering inputs with very large costs for all edges e outside
P ∪ P ′ and costs 0 for all Pj , P

′
j with j 
= i, we can apply

Lemma 12 to the sets Pi and P ′
i , obtaining a lower bound

of 1√
2

√|Pi||P ′
i | for the frugality ratio of any truthful mech-

anism. Hence, the
√

-Mechanism is within a factor of 2
√

2
of optimal for all graphs.

Finally, to see that the mechanism is polynomial time
implementable, we observe that step 1 can be implemented
in polynomial time by finding a minimum cost circulation

where s has a demand of -2, t has a demand of 2 and all
other nodes have demand 0, and that in step 3, any good
approximation to the square root of the path lengths will
change the frugality ratio of the mechanism by a corre-
sponding (insignificant) amount.

To complete the proof of the theorem, it remains to es-
tablish the following lemma, bounding ν(c) from below.

Lemma 14 Let P, P ′ be two edge-disjoint s-t paths mini-
mizing c(P ) + c(P ′). Then, ν(c) ≥ 1

2 (c(P ) + c(P ′)).

Proof. Fix a vector b of bids from Definition 3 of ν(c).
Let x be minimal such that there are at least two edge-
disjoint s-t paths Q, Q′, with costs at most x each. We will
show that x ≤ ν(c), which implies the lemma, as Q, Q′ are
candidate paths for P, P ′, and hence 1

2 (c(P ) + c(P ′)) ≤ x.
Assume for contradiction that x > ν(c). Then, the sub-

graph consisting only of paths with true costs at most ν(c)
is not two-connected, and must have a cut-edge e. All s-t
paths P minimizing b(P ) must have ν(c) = b(P ) ≥ c(P ),
and hence must contain e. But then, there is no tight set for
e, contradicting the third (tightness) constraint in Definition
3.

Lemma 14 only gives a lower bound on the value of
ν(c), but no precise characterization. It is an interesting
open question whether ν(c) can be characterized in terms
of properties of the graph G and the costs c, and whether
it can be computed in polynomial time. The lower bound
in Lemma 14 is off by at most a factor of 2, as it can be
shown that the payments in any Nash Equilibrium are at
most c(P )+c(P ′)−c(P̂ ), where P, P ′ are two edge-disjoint
s-t paths minimizing c(P ) + c(P ′), and P̂ is a cheapest s-t
path.

6 Conclusions and Open Problems

In this paper, we studied the problem of hiring a set of
agents to perform a complex task, and the design and analy-
sis of truthful mechanisms for interacting with selfish agents
in this setting. We proposed a natural measure of the fru-
gality of a mechanism, and revisited several known results
under this new definition.

We propose studying mechanisms not in their worst-case
behavior over large classes of set systems, but rather by an-
alyzing them for individual set systems. Such a more de-
tailed analysis exhibits a rich structure among mechanisms.
In particular, we showed that the VCG mechanism is far
from optimal for many instances of shortest-path or r-out-
of-k auctions, and presented a different truthful mechanism
that is always within a constant factor of optimal for these
classes.
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Our work should be considered as a first step toward un-
derstanding auctions in a worst-case setting for arbitrary set
systems. The ultimate goal is to give natural, efficiently
computable when possible, mechanisms that achieve a fru-
gality ratio that is within a constant factor of optimum on
every input. This problem is likely to be quite difficult, as
there will be very complex interactions between agents. In
order to extend our results to other set systems (and because
it is of interest in its own right), it appears necessary to gain
a deeper understanding of ν(c) for these set systems. In-
deed, while we can pin its value down for shortest path auc-
tions to within a factor of 2, we have no precise character-
ization; we do not even know whether it can be computed
in polynomial time. For several problems, it seems that the
main obstacle in proving competitiveness for natural exten-
sions of the

√
-Mechanism is a lack of characterization of

the value of ν(c).

The converse of designing new mechanisms is to ask for
which set systems known mechanisms — say, VCG — are
competitive. Notice that this would not require the frugality
ratio to be 1 (as Theorem 5 characterizes those set systems);
rather, it requires the frugality ratio to be within a constant
factor of that of any other mechanism.

As we trace out the boundaries between the (traditional
economics) Bayesian analysis for known cost distributions,
and the (computer science) worst-case analysis, we may
want to study the design of mechanisms given partial in-
formation: can our mechanisms be modified in a natural
and principled way to take advantage of information such
as an upper or lower bound on the cost of certain edges?
Further natural extensions would consider the case where
a single agent may own multiple elements (but obviously
no monopoly), or where the auctioneer is constrained by a
target budget B. In the latter case, the goal would be to pur-
chase a feasible solution at an expense of at most B when-
ever there exists a feasible solution of cost at most αB for
some α < 1. Our goal would then be to find a mechanism
achieving large α. For the case of s-t path auctions, for in-
stance, it may be possible to adapt cost-sharing techniques
[19] to achieve α = Ω( 1

log k ), where k is the length of the
cheapest path; on the other hand, we conjecture that it is not
possible to achieve larger values of α.

Finally, as we mentioned above, the value of ν(c) should
be investigated further. In particular, while it is a “natural”
candidate for a lower bound on a non-truthful mechanism’s
payments, it would be desirable to come up with a more
rigorous proof for this intuition. More importantly, per-
haps, an extension of this concept to combinatorial auctions
may help in providing a similar appropriate benchmark for
the design of truthful, profit-maximizing combinatorial auc-
tions.
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