
Real-Time k-bounded Preemptive Scheduling

Sivan Albagli-Kim∗ Baruch Schieber† Hadas Shachnai∗ Tami Tamir‡

Abstract

We consider a variant of the classic real-time schedul-
ing problem, which has natural applications in cloud
computing. The input consists of a set of jobs, and an
integer parameter k ≥ 1. Each job is associated with a
processing time, a release time, a due-date and a posi-
tive weight. The goal is to feasibly schedule a subset of
the jobs of maximum total weight on a single machine,
such that each of the jobs is preempted at most k times.

Our theoretical results for the real-time k-bounded
preemptive scheduling problem include hardness proofs,
as well as algorithms for subclasses of instances, for
which we derive constant-ratio performance guarantees.
We bridge the gap between theory and practice through
a comprehensive experimental study, in which we also
test the performance of several heuristics for general
instances on multiple parallel machines. We use in
the experiments a linear programming relaxation to
upper bound the optimal solution for a given instance.
Our results show that while k-bounded preemptive
scheduling is hard to solve already on highly restricted
instances, simple priority-based heuristics yield almost
optimal schedules for realistic inputs and arbitrary
values of k.

1 Introduction

1.1 Background and Problem Statement The
emergence of cloud systems as a common computation
resource gives rise to plenty of optimization problems,
many of which deal with scheduling jobs that require
cloud services. Such jobs are often business critical and
time-sensitive, mandating strict service level agreements
on completion time. Thus, cloud systems are required
to support real-time scheduling, where each job must be
processed within a given time-window.

Preemption is a key factor in real-time scheduling,
since it allows the operating system to immediately al-

∗Computer Science Department, Technion, Haifa 3200003,
Israel. E-mail: {hadas,sivanal}@cs.technion.ac.il. This work was

partly carried out during a visit to DIMACS supported by the
National Science Foundation under grant number CCF-1144502.

†IBM T.J. Watson Research Center, Yorktown Heights, NY
10598, USA. E-mail: sbar@us.ibm.com

‡School of Computer Science, The Interdisciplinary Center,
Herzliya, Israel. E-mail: tami@idc.ac.il

locate the processor to incoming jobs requiring urgent
service. In fully preemptive systems, a running job can
be interrupted at any time by another job with higher
priority, and be resumed to continue when all higher
priority jobs have completed. In other systems, pre-
emption can be completely forbidden to avoid unpre-
dictable interference among jobs. The question of en-
abling or disabling preemption during task execution
has been widely investigated (see, e.g., [21, 6, 9], and
the comprehensive survey in [8]).

While non-preemptive scheduling introduces addi-
tional blocking time in higher priority jobs, in many
practical scenarios (e.g., I/O scheduling or communica-
tion in a shared medium), preemption is either impos-
sible or prohibitively expensive [11]. This calls for a
bounded-preemptions scheduling model, which allows to
reduce costs and runtime overhead caused by preemp-
tions.

In this model, we study the following natural prob-
lem. Let J be a set of n jobs, available for processing
on a single machine, which can process at most one job
at any time. Each job j ∈ J is associated with a triple
⟨rj , dj , pj⟩, denoting the job release time, deadline, and
processing time. Also, each job j has a positive weight
wj . We are also given an integer parameter k ≥ 1. The
objective is to feasibly schedule on the machine a subset
of the jobs of maximum total weight, such that each of
the jobs is preempted at most k times.

We also consider a variant of the problem with mul-
tiple machines. We note that in a feasible schedule
on multiple parallel machines, the processing of a job
may consist of at most (k+1) disjoint segments, which
can be arbitrarily distributed among the machines. For
example, in a feasible 2-bounded schedule on m = 2
machines, a job may start processing on one machine,
then migrate to proceed running on the second ma-
chine, and complete its execution on the first machine.
Such scenarios beg the following question: “Are mi-
grations essential for maximizing system throughput?”
We explore the power of migrations in the bounded-
preemptive scheduling model, by comparing heuristics
that allow migrations to those in which jobs may be pre-
empted, but must resume their processing on the same
machine (see Section 5).

1.2 Our Results The contribution of this paper is
two-fold. Our main theoretical contribution includes
hardness results as well as approximation algorithms for
the problem. We complement these results by extensive
experimental analysis, bridging the gap between theory
and practice.

We first study (in Section 3) the computational
complexity of our problem. Specifically, we show
that real-time k-bounded preemptive scheduling is NP-
hard already for uniform-length job instances with unit
weights for k = 1, and strongly NP-hard for k >
1. Thus, we establish for this subclass, of uniform-
length unit-weight instances, an interesting distinc-
tion between the hardness status of non-preemptive,
or (unbounded) preemptive scheduling, which are both
solvable in polynomial time, and bounded-preemptive
scheduling. For more general instances, our results show
that while unbounded preemptive scheduling is solvable
in pseudo-polynomial time, real-time scheduling with
bounded number of preemptions is as hard as the clas-
sic non-preemptive real-time scheduling problem.

In Section 4, we present constant factor approxi-
mation algorithms for two subclasses of instances. This
includes a k+1

k -approximation algorithm for general in-
stances with the same (unit) weights and any k ≥ 1, and
a 4-approximation algorithm, AlgMU , for the maximum
utilization version of the problem, in which the weight
of each job is equal to its processing time.

We evaluate the performance of our algorithms in
practice through a comprehensive experimental study,
in which we also test the performance of several heuris-
tics for general instances on multiple parallel machines.
Our experimental results (in Section 5) show that while
k-bounded preemptive scheduling is hard to solve al-
ready on highly restricted instances, simple priority-
based heuristics yield almost optimal schedules for real-
istic inputs and arbitrary values of k.

The two heuristics that outperform the greedy
scheme (see Section 5.1) assign jobs on idle-intervals
that are less likely to be requested by other jobs.
Specifically, a job j not considered yet generates load
lj =

pj

dj−rj
in the interval [rj , dj). Thus, each idle-

interval of the machine is associated with a demand,
given by the sum of loads on this interval. Our
heuristics give higher priority to intervals with lower
demand, justified by the fact that the demand for
other idle-intervals remains high also when excluding
the currently considered job. Our experiments show
that the performance of these heuristics is close to the
optimal. The implementation of the heuristics is simple
and scalable; thus, we believe they will prove useful in
solving other utilization problems.

We compare the performance of our heuristics to an

optimal solution, by using a non-trivial linear program-
ming (LP) relaxation, whose solution yields an upper
bound for the optimum (see Section 2). Due to the large
size of the program, we could solve it for relatively small
instances. These instances were carefully generated, to
maintain the characteristics of large instances, through
adjustment of job processing times and densities (see
Section 5). Comparing the performance of AlgMU to
the LP solution, we conclude that in practice our algo-
rithm yields performance guarantee much better than
the theoretical bound of 4.

Finally, our study offers interesting insights into the
power of migration on parallel machines (see Section
5.2). Specifically, we show that as k grows larger, the
power of migration (subject to a threshold parameter)
becomes predominant, in particular, for ‘challenging’
job instances (see Figure 6).

1.3 Related Work The non-preemptive real-time
scheduling problem, which has been widely studied, is
known to be NP-hard in the strong sense, even if all
jobs have the same (unit) weights [10]. The best known
approximation ratio of 2 is due to Bar-Noy et al. [5, 4].
Several branch and bound algorithms were proposed for
the unweighed version of the problem [3, 13, 19].

Some special cases are solvable in polynomial time.
In particular, when all jobs have the same (unit) weight
and the same release time, non-preemptive real-time
scheduling can be solved in O(n logn) time, using
Moore’s algorithm [18]. Also, when release times and
due dates of jobs are ordered similarly (i.e., ri < rj ⇒
di ≤ dj), the problem is solvable in O(n2)-time using
dynamic programming [15]. An improved O(n log n)-
time algorithm was proposed by Lawler [16]. The prob-
lem with uniform-length jobs and unit weights can be
solved in O(n3 log n) steps [12]. Baptise [1] proposed a
strongly polynomial algorithm for the weighted version
with uniform-length jobs. Other polynomially-solvable
subclasses can be found, e.g., in [7].

The problem of (unbounded) preemptive real-time
scheduling was extensively studied as well. It is known
to be NP-hard, but can be solved in pseudo-polynomial
time, using an algorithm of Lawler [17]. In the un-
weighed case, the algorithm becomes strongly polyno-
mial. Baptiste gave a strongly polynomial time algo-
rithm for the weighted problem with uniform processing
times [1, 2]. These results leave open the complexity of
our real-time bounded-preemptive scheduling problem.

There has been earlier work on bounded preemp-
tive scheduling in the parallel machine environment.
The paper [20] considered the generalized multiproces-
sor scheduling (GMS) problem, in which there is a total
bound on the number of preemptions throughout a fea-

sible schedule, and the goal is to find a schedule that
satisfies the preemption constraint, such that the maxi-
mum job completion time (or, makespan) is minimized.
The paper presents approximation schemes for identical
and uniform machines.

Real-time bounded-preemptions scheduling has
been studied earlier from a practical viewpoint (see, e.g.,
[21, 6, 9] and the references therein); however, the un-
derlying assumptions and the objective functions were
different than ours. For example, preemptions may be
associated with a cost, or allowed only during a specific
period throughout the time-window of a job.

To the best of our knowledge, the real-time k-
bounded preemptive scheduling problem is studied here
for the first time.

2 A Linear Programming Formulation

We describe below a linear programming (LP) formu-
lation of the k-bounded preemptive scheduling problem,
in which the integrality constraints are relaxed. We use
this program in our empirical study to obtain an upper
bound on the value of an optimal schedule for a given
instance. Let xj be an indicator for the selection of job
j; that is, xj = 1 if j is scheduled, and xj = 0 otherwise.
Let L = max1≤j≤n dj be the latest due-date of any job.
For each job j and t ∈ [rj , dj+1), let xj,t be an indicator
variable for processing job j at time t; that is, xj,t = 1
if j is processed during the time slot [t, t+ 1).

In the integer programming formulation of our
problem, Constraints (2.6) and (2.7) are xj ∈ {0, 1}
and xj,t ∈ {0, 1}, respectively. Thus, a schedule of
a job corresponds to a binary sequence of length L,
describing the time slots in which the job is processed.
Constraints (2.2) ensure that the machine processes
at most one job in any time slot. Constraints (2.4)
ensure that each job is processed before its deadline.
Constraints (2.5) correspond to the bounded number of
preemptions. Specifically, each job j can move from the
status of being processed to not-processed at most k+1
times. This implies that the number of preemptions j
experiences is at most k. Note that xj,t is defined also
for t = dj , for all 1 ≤ j ≤ n. By Constraints (2.4), these
variables are set to 0. They are only used to count the
completion of job j, which may occur at its deadline.

To eliminate the max operation, we add a variable
zj,t for any t ∈ [rj+1, dj] and replace (2.5) by three sets
of constraints (2.8), (2.9) and (2.10).

3 Computational Complexity

In this section we study the computational complexity
of real-time k-bounded preemptive scheduling. Recall
that for uniform-length jobs, real-time scheduling is
solvable on a single machine in polynomial time when

maximize
n∑

j=1

wjxj

subject to:

xj,t ≤ xj ∀j, t(2.1)
n∑

j=1

xj,t ≤ 1 ∀t(2.2)

∑
t

xj,t ≥ pj · xj ∀j(2.3)

xj,t ≤ 0 ∀j, t : t ≥ dj(2.4) ∑
t∈[rj+1,dj]

max{xj,t−1 − xj,t, 0} ≤ k + 1 ∀j(2.5)

0 ≤ xj ≤ 1 ∀j(2.6)

0 ≤ xj,t ≤ 1 ∀j, t(2.7)

∑
t∈[rj+1,dj]

zj,t ≤ k + 1 ∀j(2.8)

zj,t ≥ xj,t−1 − xj,t ∀j, t(2.9)

zj,t ≥ 0 ∀j, t(2.10)

preemptions are either not allowed [1] or unlimited
[17]. We show that bounded-preemptive scheduling is
NP-hard. Our reductions rely on scheduling instances
containing tight jobs, namely, jobs j for which pj = dj−
rj . The existence of tight jobs adds constraints on the
schedule of the remaining jobs, that should utilize the
idle-segments left on the machine after the assignment
of tight jobs. We obtain the following results.

Theorem 3.1. The problem of real-time k-bounded
preemptive scheduling with uniform-length jobs is NP-
hard for k = 1, and strongly NP-hard for k > 1.

Proof. Clearly, in a feasible k-bounded preemptive
schedule, the processing of each job splits into at most
k + 1 parts. Let k′ = k + 1. For k > 1, we show a
reduction from k′-Partition. Given a set of k′m num-
bers A = {a1, ..., ak′m} and a number Z, such that

∀i, ai ∈ (Z
k′+1 ,

Z
k′−1) and

∑k′m
i=1 ai = Zm, the goal is

to divide A into m subsets S1, · · · , Sm ⊆ A such that,
for all 1 ≤ j ≤ m,

∑
a∈Sj

a = Z. The k′-Partition prob-

lem is known to be strongly NP-complete for any k′ > 2
[10].

Given an instance of k′-Partition, we construct
the following input for real-time k-bounded preemptive
scheduling. We have (k′ + 1)m jobs, all have the same

processing time, Z. There are k′m tight jobs, for each
of which dj − rj = Z, and m jobs for which rj = 0 and
dj =

∑
j pj = (k′+1)mZ. Specifically, for 1 ≤ j ≤ k′m,

the window of job j is [
∑j

i=1(ai)+(j−1)Z, rj+Z), and
pj = Z. For each k′m+1 ≤ j ≤ (k′ +1)m: the window
of job j is [0, (k′ + 1)mZ), and pj = Z.

For example, consider an instance for 3-Partition
with A = {6, 7, 8, 8, 8, 9}, and Z = 23. The
corresponding instance refers to k = 2 and
m = 2. There are six tight jobs that must
be placed in [6, 29), [36, 59), [67, 90), [98, 121), [129, 152)
and [161, 184), and two jobs that need to be scheduled
in [0, 184), each in at most 3 pieces. Note that the tight
jobs leave idle-segments of lengths 6, 7, 8, 8, 8 and 9. A
feasible schedule of the two other jobs must utilize these
idle-segments.

Lemma 3.1. A k′-partition of A exists iff there is a
feasible schedule of all jobs, using at most k = k′ − 1
preemptions per job.

Proof. Assume there exists a k′-partition of A, then
we construct the following feasible schedule. We first
assign all the tight jobs in their corresponding windows.
Since dj − rj = Z for each tight job, these jobs
are processed with no preemptions. Their assignment
leaves idle-segments of lengths a1, a2, . . . , ak′m. The
remaining jobs will be assigned to these idle-segments
in the following way. Let S1, · · · , Sm be a partition
of A such that for all 1 ≤ j ≤ m,

∑
a∈Sj

a = Z.

For any subset Sj = {aj1 , aj2 , · · · , ajk′}, schedule the
jth job in the corresponding k′ idle-segments of lengths
aj1 , aj2 , · · · , ajk′ . Since aj1 + aj2 + · · · + ajk′ = Z, we
have a feasible k-bounded preemptive schedule.

For the other side of the reduction, suppose we
have a feasible k-bounded preemptive schedule of all
jobs. First, since dj − rj = Z for each tight job, these
jobs must be processed with no preemptions, leaving
k′m idle-segments of total length Zm. The bounded
preemptions imply that each of the other jobs is assigned
on at most k′ idle-segments. Since there are k′m idle-
segments and m jobs, and the total length of the idle-
segments equals the sum of the processing times of the
jobs, each job must be assigned to exactly k′ holes of
total length Z. Such a schedule induces a k′-partition
of A.

For k = 1 we show a reduction from equal-Partition.
Given a set of 2m numbers A = {a1, ..., a2m} such that∑2m

i=1 ai = 2S, the goal is to divide A into two subsets,
each of cardinality m and total sum S. The equal-
Partition problem is known to be NP-complete [10].

Given an instance of equal-Partition, we construct
the following input for real-time 1-bounded preemptive

scheduling. We first choose the uniform job size Z,
such that Z is larger than the sum of any two numbers
in the set A. There are 4m + 2 jobs, all have the
same processing time, Z. There are 2m + 2 tight jobs,
for each of which dj − rj = Z. The windows of the
tight jobs are defined such that their assignment leaves
2m + 2 idle-segments. The first 2m idle-segments have
lengths a1, . . . , a2m, and each of the two additional idle-
segments have length mZ − S. For the 2m additional
non-tight jobs, rj = 0 and dj =

∑
j pj = (4m+ 2)Z.

Similar to the proof for k > 1, a feasible schedule
corresponds to an equal-partition: All idle-segments
must be utilized by the non-tight jobs, and since each
of them must be scheduled in at most two pieces, and
Z is larger than any two of the first 2m idle-segments,
every non-tight job must utilize exactly one of the first
2m idle-segments and complete its process in one of the
last two idle-segments. The utilization of the two last
idle-segments induces an equal-partition of A. It is easy
to see also that an equal-partition induces a feasible
schedule.

For non-uniform-length jobs, we show that the
problem is strongly NP-hard already for k = 1.

Theorem 3.2. For any ϵ > 0, the problem of real-time
k-bounded preemptive scheduling on a single machine is
strongly NP-hard, for all 1 ≤ k ≤ |J |1−ϵ.

Proof. We show a reduction from 3-Partition. Given a
set of 3m numbers A = {a1, ..., a3m} and a number Z,

such that ∀i, ai ∈ (Z4 ,
Z
2) and

∑3m
i=1 ai = Zm, the goal is

to divide A intom subsets S1, · · · , Sm ⊆ A such that for
all 1 ≤ j ≤ m

∑
a∈Sj

a = Z. The 3-Partition problem

is known to be strongly NP-compete[10]. We assume
that mini ai > 1 (otherwise, we can set a′i = ai + 1 and
Z ′ = Z + 3, and the assumptions holds).

We construct the following input for the scheduling
problem. There are n = 3m(k + 1) + m jobs. 3m
jobs correspond to the elements of A, and (3km + m)
jobs are tight. All tight jobs j have length 1 and
must be processed along the specific interval [rj , dj),
where dj − rj = 1. There is one tight job for each
of the m triples, and k tight jobs for each element.
The tight jobs are defined such that their assignment
leaves 3mk +m idle-segments on the machine: m idle-
segments of length Z, and 3mk idle-segments of length
1. Formally, for 1 ≤ i ≤ m, job i has pi = 1 and
it must be processed in [i(Z + 1) − 1, i(Z + 1)). For
m+ 1 ≤ i ≤ 3mk +m, job i has pi = 1 and it must be
processed in [m(Z+1)+2(i−m)−1,m(Z+1)+2(i−m)).

The 3m element-jobs are defined as follows. For
3mk +m+ 1 ≤ i ≤ 3mk + 4m, let pi = ai−3mk−m + k,
ri = 0 and di = m(Z + 1) + 6mk. Note that element-
jobs can be assigned along the whole schedule, and that

di =
∑n

j=1 pj . This implies that the machine is not idle
throughout a feasible schedule that assigns all the jobs.

Lemma 3.2. A 3-partition of A exists iff there is a
feasible schedule of all jobs, using at most k preemptions
per job.

Proof. Assume that a 3-partition of A exists, then we
construct the following feasible schedule. We first assign
all the tight jobs in their corresponding windows. As
explained above, the assignment of the tight jobs leaves
3mk+m idle-segments on the machine. m idle-segments
of length Z and 3mk idle-segments of length 1. The
element jobs will be assigned to these idle-segments in
the following way: Let S1, · · · , Sm be a partition of A
such that for all 1 ≤ j ≤ m,

∑
a∈Sj

a = Z. For any

subset Sj = {aj1 , aj2 , aj3}, recall that aji induces a job
of length aji +k. Assign this job on aji processing units
in the j’s Z-length idle-segment, and on k arbitrary
unit-length idle-segments. The resulting schedule is a
feasible k-bounded preemptive schedule of the whole
instance.

For the other side of the reduction, suppose we
have a feasible k-bounded preemptive schedule of all
jobs. First, since dj − rj = pj = 1 for each tight
job, these jobs must be processed with no preemptions,
leaving 3mk+m idle-segments as described above. The
bounded preemptions imply that each of the element
jobs is assigned on at most k + 1 idle-segments. Since
pi > k + 1 for each element job (recall we assume that
ai > 1), no element job can utilize more than k unit-
length idle-segments. Since there are 3m such jobs and
3mk unit-length idle-segments, each of them utilizes
exactly k unit-length idle-segments. We conclude that a
job of length ai + k must be assigned to exactly k unit-
length idle-segments and a single Z-length idle-segment.
The assignment of jobs to the Z-length idle-segments
induces a 3-partition.

To show that the proof holds for any 1 ≤ k ≤ n1−ε,
recall that in the reduction, given a 3-partition instance
with 3m elements, we construct an instance with n =
3m(k+1)+m = 3m(k+ 4

3) jobs. Thus, given n > 1 and
ε > 0, setting k ≤ n1−ε would still keep m polynomial
in n. Consequently, we take the number of elements in
the 3-partition instance, 3m, to be the maximum value
satisfying: 3m ≤ n

n1−ε+ 4
3

for some m ≥ 1.

4 Approximation Algorithms

4.1 Unweighed Problem Lawler [17] studied our
problem assuming the number of preemptions is un-
bounded, that is, k = ∞. For the unweighed case,
Lawler presented an optimal polynomial-time algo-
rithm, and for the weighed case he gave a pseudo-

polynomial-time algorithm. Let Ou,∞ be the value of
an unweighed optimal solution, and let Su be the set of
Ou,∞ jobs in an unweighed optimal solution output by
Lawler’s algorithm.

Our algorithm, Ac, for the unweighed case, runs
Lawler’s algorithm and ‘repairs’ Su to obtain a k-
bounded preemptive schedule. Formally, Ac omits the
infeasible jobs from the schedule, i.e., all jobs that were
preempted at least k + 1 times.

Theorem 4.1. Ac yields a k+1
k -approximation for un-

weighed real-time k-bounded preemptive scheduling.

Proof. Denote by ALGu the number of jobs in the
resulting schedule. The optimal solution obtained
by Lawler’s algorithm has the property that a job
is preempted only when another job is released [17].
Therefore, the total number of preemptions is at most
Ou,∞ − 1. Hence, the number of infeasible jobs is at

most
Ou,∞−1

k+1 and ALGu ≥ Ou,∞ − Ou,∞−1
k+1 =

kOu,∞+1
k+1 .

Denote by Ou,k the value of an optimal solution for
unweighed real-time k-bounded preemptive scheduling.
Clearly, Ou,∞ ≥ Ou,k. Hence, we have ALGu ≥
kOu,∞+1

k+1 ≥ k
k+1Ou,∞ ≥ k

k+1Ou,k.

4.2 Maximum Utilization In the maximum uti-
lization problem, for each job, j, wj = pj . Thus, maxi-
mizing the weight of processed jobs is equivalent to max-
imizing the utilization of the machine. In this section,
we present a 4-approximation algorithm for the maxi-
mum utilization k-bounded preemptive scheduling prob-
lem. The algorithm consists of a preprocessing phase
in which the jobs are sorted by their processing-times
(or weights), and a scheduling phase in which every job
is considered once, some of the jobs are scheduled and
some are rejected.

Algorithm 1 - AlgMU

1: Sort the jobs in non-increasing order of processing
times, that is, p1 ≥ p2 ≥ · · · ≥ pn.

2: Consider the jobs in the sorted order
3: for the current job j do
4: If j can be added to the schedule, that is, if the

total length of at most k + 1 idle-segments in
[rj , dj) is at least pj , schedule j in the leftmost
feasible way. Otherwise, reject j.

5: end for

A schedule in the leftmost feasible way is obtained
by considering the idle-segments in j’s window from
left to right. If the job can fit into the first k + 1
idle-segments, then we assign it to the leftmost ones.
Otherwise, we replace the smallest idle-segment in this

set by the next one (k + 2 from left) and repeat, until
we find an adequate set, or until the job is rejected − if
it cannot fit into the k + 1 longest idle-segments.

We use in the analysis the following notation. Given
a (partial) schedule, let s = [t1, t2) be a continuous time-
segment. During s, the machine alternates between
being idle and busy. For α ≤ 1, we say that s is α-
loaded if the total length of its busy-segments is α·|s|. If
the machine is busy at time t1 or t2, then let expand(s)
denote the segment in which we extend s to the left
and to right to include the whole busy-segments that
include t1 and t2. If the machine is idle at t1 and t2
then expand(s) = s.

For an instance J , let Jin and Jout denote the sets of
jobs that AlgMU schedule and reject, respectively. We
first show that at the time job j is rejected, every busy-
segment in the schedule is longer than pj . Formally,

Lemma 4.1. Let j ∈ Jout, and consider the schedule at
the time j is rejected. For every busy-segment b, it holds
that |b| ≥ pj.

Proof. Consider a busy-segment b at the time j is
rejected. Let j′ be the longest job among the jobs
processed by the machine along b. Since jobs are
considered in non-increasing order of length, at the time
j′ is considered, the machine is idle along b. Since j′ is
assigned in the leftmost feasible way, without intended
preemptions, it must be that pj′ ≤ |b|. Since j is
considered after j′, we have pj ≤ pj′ , thus, pj ≤ |b|.

Let U denote the union of the expanded segments
corresponding to windows of rejected jobs. Formally,
U =

∪
j∈Jout

expand([rj , dj)). We show that U is at
least 1/3-loaded. In fact, we show a stronger claim:
we show that U is 1/3-loaded even if we exclude from U
busy-segments corresponding to jobs that were assigned
in some segment [t1, t2) ⊂ U after some job j ∈ Jout for
which [t1, t2) ⊆ expand[rj , dj) was rejected. That is, we
first scan U and remove all the busy-segments that are
included in the expanded window of some rejected job,
j, and belong to a job shorter than j.

Next, scan U from left to right. Let i be the next
idle-segment in U . Assume first that i is fully included
in the window of some rejected job, and let j ∈ Jout be
the longest rejected job whose window includes i. Since
j is rejected, i is shorter than pj . The idle-segment i is
surrounded by two busy-segments that, by Lemma 4.1
and the exclusion of busy-segments of shorter jobs, are
at least as long as pj , thus, longer than i.

If i is not fully included in a single window of a
rejected job, then it can split into two adjacent idle-
segments. Specifically, if i = [t1, t2) is not fully included

in a single window of a rejected job, then there are two
rejected jobs, j1, j2 with windows [r1, d1) and [r2, d2)
respectively, such that t1 < d1 < t2, r2 ≤ d1, and
d2 > t2. Split i into i1 = [t1, d1) and i2 = [d1, t2).
Since both j1 and j2 were rejected, we have |i1| < pj1
and t2 − r2 < pj2 , thus, |i2| < pj2 . By Lemma 4.1,
the busy-segment that precedes i1 has length at least
pj1 > |i1|, and the busy-segment that follows i2 has
length at least pj2 > |i2|.

We conclude that U consists of busy-segments and
a collection of idle-segments − each adjacent to at least
one busy-segment in U of at least the same length. We
can therefore define a mapping f : SI → SB from the
collection of idle-segments in U to the busy-segments
in U . The mapping f assigns every idle-segment to
an adjacent busy-segment and by the above discussion,
it fulfills the following properties: (i) For every i ∈
SI , |f(i)| ≥ |i|, and (ii) For every b ∈ SB, f(i) = b
for either a single idle-segment adjacent to b, or for the
two idle-segments surrounding b.

These properties imply the following:

Corollary 4.1. U is at least 1/3-loaded.

We can now conclude the analysis of Algorithm
AlgMU .

Theorem 4.2. For any k > 0, algorithm AlgMU yields
4-approximation for the maximum utilization k-bounded
preemptive scheduling problem.

Proof. For an instance J , let Jin and Jout denote the
sets of jobs that AlgMU schedule and reject, respec-
tively. Let w(Jin) be the total weight of the jobs in
Jin, and recall that U is the union of the expanded
windows corresponding to jobs in Jout. The utiliza-
tion that an optimal algorithm can achieve from Jout
is at most the union of Jout’s windows. Therefore,
OPT ≤ w(Jin)+∪j∈Joutexpand([rj , dj)) ≤ w(Jin)+|U |.
By definition, AlgMU = w(Jin). Using Corollary 4.1,
we have that |U | ≤ 3w(Jin). Hence, OPT ≤ 4w(Jin) =
4AlgMU .

The following example shows that our analysis of
AlgMU is tight. The instance J consists of four jobs
{a, b, c, d}, where pa = pb = pc = 1 and pd = 1+2ε. The
windows of jobs a, b, c are [0, 1), [1, 2), [2, 3), respectively,
and the window of d is [1− ε, 4+2ε). For this instance,
for any k ≥ 0, AlgMU assigns job d in time interval
[1 − ε, 2 + ε) and all other three jobs are rejected. An
optimal solution assigns all four jobs to the machine (see
Figure 1).

5 Experimental Results

We have implemented several heuristics for the problem
and simulated their execution on instances of variable

Figure 1: A tight example.

characteristics. The performance of the different heuris-
tics was compared also to an upper bound on the op-
timal solution, calculated by solving a linear program-
ming relaxation of our problem (given in Section 2).
We describe below the heuristics and the experimen-
tal results. We distinguish between a single-machine
environment, and an environment of identical parallel
machines.

5.1 Experiments for a Single Machine In the sin-
gle machine environment, we implemented three differ-
ent heuristics, which consider the jobs in specific or-
der. Therefore, each experiment is characterized by the
heuristic used and the job order.

The jobs were sorted in four different ways: (i)
non-decreasing order of processing-times (p1 ≤ p2 ≤
. . . ≤ pn), (ii) non-increasing order of weights (w1 ≥
w2 ≥ . . . ≥ wn), (iii) non-decreasing order of the ratio
processing-time/weight (p1

w1
≤ p2

w2
≤ . . . ≤ pn

wn
), and (iv)

non-increasing order of loads (l1 ≥ l2 ≥ . . . ≥ ln), where
the load of job j is defined to be lj =

pj

dj−rj
.

The schedule S output in each experiment consists
of a collection of pairs {j, P}, where j is a job and P is a
set of at most k+1 pairs ⟨t, ℓ⟩ such that rj ≤ t ≤ dj −ℓ,
0 < ℓ ≤ pj , the intervals [t, t + ℓ) do not overlap, and∑

⟨t,ℓ⟩∈P ℓ = pj ; that is, S contains the set of intervals
in which every job was processed.

The greedy heuristic simply adds jobs to the sched-
ule, one after the other, in the leftmost feasible way (see
Algorithm 2).

Note that the general greedy scheme coincides with
our 4-approximation algorithm, AlgMU , when run on an
instance of the maximum utilization problem, and the
jobs are considered in non-increasing order of weights.

The next two heuristics give higher priority to
idle-intervals that are less likely to be required by
other jobs. Specifically, prior to considering job j, the
load generated by j on the interval [rj , dj) is lj =

pj

dj−rj
. Consequently, every idle-interval of the machine

is associated with a demand, given by the sum of loads
on it. Our heuristics give higher priority to intervals
having low demand. The two heuristics differ in the
way they invoke preemptions. In the first heuristic, after

allocating an idle-interval of lowest demand, we extend
the processing of the job to adjacent idle-interval, so
as to minimize preemptions and to keep the machine
with few idle-busy toggles. In the second heuristic, we
simply allocate the job to at most k + 1 idle-intervals
with lowest demands.

Algorithm 2 - General Greedy Scheme

1: S = ∅.
2: Use a certain rule to sort the jobs; consider the jobs

in this order.
3: for the current job j do
4: If j can be added to the schedule, that is, if

the total length of at most k + 1 idle-segments
in [rj , dj) is at least pj , then schedule j in the
leftmost feasible way and update S. Otherwise,
reject j.

5: end for
6: Return S.

Formally, let s = [t1, t2) be a continuous time-
segment on the machine. The demand for s is the sum of
the loads of all jobs containing s in their window, i.e.,
load(s) =

∑
{j|s⊆[rj ,dj)} lj . The demand is calculated

for a set of ‘interesting’ intervals, defined as follows.
Initially, we scan the interval [0, L) in which the machine
is available and start a new interval at any time point
which is a release time or a deadline of a job. Whenever
a job is assigned, some intervals become unavailable,
and the last interval (which may be partially allocated
to the job) may be replaced by a shorter interval. The
heuristics H1 and H2 differ only in Step 6: H2 does not
attempt to save on preemptions (see Algorithm 3).

In addition to the above heuristics, we have used the
LP presented in Section 2, whose optimal solution yields
an upper bound on the weight of an optimal schedule.

In each experiment we first determine the machine
length L, and the maximal length and weight of a
job, pmax and wmax, respectively. We then create
the set of jobs J such that [rj , dj) ⊆ [0, L) for all
j ∈ J . This is done by selecting at random for
each job j, independently and uniformly, the values
pj ∈ [1, pmax], wj ∈ [1, wmax], rj ∈ {0, . . . , L − pj} and
dj ∈ {rj + pj , . . . , L}. Note that the heuristics as well
as algorithm AlgMU do not require integral parameters.
In the experiments we assume that time is slotted, and
for all jobs j ∈ J , pj , rj and dj are all integers. This
enables a comparison with the value of the upper bound
obtained by solving the linear program − in which these
parameters are integers.

We tested the heuristics on a large set of instances,
characterized also by their expected density. The

density of an instance is given by
∑n

j=1 pj

L . To create

instances with expected density D, we set the value of
pmax and the number of jobs n such that npmax

2L = D.
In the first experiment, we examined the heuristics

on instances of the maximum utilization problem, where
for each job j, pj = wj . The three heuristics considered
the jobs in non-increasing order of weights. Note that,
with this order, the greedy heuristic is identical to
Algorithm AlgMU , analyzed in Section 4.2. We run all
the algorithms as well as the LP on the same inputs
on instances of different densities. In these runs, we
set L = 50 and pmax = 5. The number of jobs was
determined to achieve the desired density. The bound
on number of preemptions was k = 4.

We run the experiment with each density value 25
times. The results (average of all runs) are presented
in Figure 2. Note that in practice, the performance
of greedy (AlgMU) is much better than the theoretical
4-ratio. The heuristics H1 and H2 preform better than
greedy for low densities, and are close to each other,
while for very high density, greedy performs better.

Algorithm 3 - The heuristics H1 and H2

1: S = ∅
2: Use a certain rule to sort the jobs; consider the jobs

in this order.
3: for the current job j do
4: If no interval in j’s window is available, or if j

was already scheduled in k+1 segments, reject j.
5: Let I be an interval with lowest demand in j′s

window; schedule j in I.
6: (H1) If j is not fully scheduled, and at least one of

the two intervals adjacent to I is idle, schedule j
on the one having minimal demand, and proceed
in the same way. If both of the adjacent intervals
are busy, go to step 4.
(H2) If j is not fully scheduled, go to step 4.

7: Update S and the demands on all intervals.
8: end for
9: Return S.

In the second experiment we examined the heuris-
tics on instances having uniform length jobs. As in the
previous experiment, we run all heuristics and solved
the LP on the same inputs, for instances with different
densities. In all these runs, we set L = 50, ∀j, pj = 5
and wmax = 200. The number of jobs was determined
to achieve the desired density. The preemption bound
was k = 4.

We run the experiment with each density value 25
times. The jobs were sorted either by weight, or by
load. The results (average of all runs) are presented
in Figure 3, which shows that our heuristics perform
similarly. The main factor is the order by which the

Figure 2: Maximum utilization instances

Figure 3: Instances with uniform processing times

jobs are considered. Sorting the jobs by weights is much
better than prioritizing by the loads.

In the third experiment, we examined the heuristics
on arbitrary instances. In these runs, we set L = 1000,
pmax = 16 and wmax = 200. The number of jobs was
correlated with the desired density, and the preemption
bound was k = 4.

We run the experiment with each density value 100
times. The results (average of all runs) are presented in
Figure 4. As in the previous experiment, the heuristics
performance is mainly affected by the order in which the
jobs are considered. Sorting the jobs in non-decreasing
order of the ratio processing-time/weight yields the
best performance. Comparing the different heuristics
with the same order of jobs, we conclude that the best
heuristic is H2.

In the fourth experiment, we tested ‘challenging’
general instances, in which half of the jobs are tight
(i.e., pj = dj − rj) of length 1, and half have a time
window of length at least twice their processing time
(2pj ≤ dj − rj). We evaluated the schedule output
by each algorithm on the same input, taking different
values of k. The machine was available for L = 1000

Figure 4: Arbitrary instances

Figure 5: Challenging instances

time units. Also, pmax = 33, wmax = 200 and n = 120.
Thus, the expected density was close to 2.

We run the experiment 100 times with each value
of 0 ≤ k ≤ 6. The results (average of all runs)
are presented in Figure 5. In this experiment, again,
sorting the jobs in non-decreasing pj/wj ratio yields
best performance. The superiority of H2 is more
significant than in previous experiments.

For the next experiment we used a real data-set
from workload logs collected from large scale parallel
production systems (specifically, LPC-EGEE-2004-1.2-
cln.swf in [22]). The results for L = 2000, n = 1000 and
k = 2 are presented in Figure 7. The instance density
is 1. The weights were chosen randomly between 1 and
10.

Note that here as well, the different heuristics
perform similarly, and the main factor is the order by
which the jobs are considered. In addition, H1 and H2

preform better than greedy, as in the simulated data.

5.2 Experiments for Parallel Machines In the
environment of identical parallel machines, another
main goal was to evaluate the power of migrations.

We implemented three different heuristics. As in our
experiments for a single machine, the heuristics consider
the jobs in one of several possible orders.

The first heuristic, GP , allows no migrations. It
applies the General Greedy Scheme in a ‘first-fit’ man-
ner on the machines. Specifically, the considered job is
assigned on the first machine that can accommodate it,
using the general greedy scheme. A job is rejected if
none of the machines can accommodate it.

The second heuristic, GPM , allows migrations.
It examines the idle-segments on all machines and
assigns the considered job on the leftmost available idle-
segments, namely, job j is assigned at most k+1 disjoint
idle-segments in [rj , dj) whose total length is pj .

The third heuristic, GPMT , allows job migration
only above certain threshold. Specifically, job j is
assigned to machine i only if, for some ℓ ≥ 1, machine
i can process j for at least pj/ℓ time units, using
at most ⌊k/ℓ⌋ preemptions. We choose the minimum
value of ℓ satisfying the condition. We proceed to the
next machine with the remaining processing time and
remaining budget of preemptions.

We have implemented the above heuristics and com-
pared their performance on three different instances: (i)
maximum utilization, where the jobs are considered in
non-increasing order of processing-times, (ii) arbitrary
instances, and (iii) challenging instances (see Section
5.1). In the two latter experiments, the jobs are consid-
ered in non-decreasing order of processing-time/weight
ratio. In all of the experiments, we set the machine
length L to 50, the number of machines to m = 5,
the number of jobs to n = 100, and wmax = 50. We
run the experiment with each value of 1 ≤ k ≤ 5 100
times. The results (average of all runs) are presented in
Figure 6. In all the experiments, GPMT outperforms
the other two heuristics, or competitive with GPM on
higher values of k. For low values of k, GP outperforms
GPM , since the assignment of GPM leaves many short
idle segments on the machines and thus requires more
preemptions from jobs that are scheduled late. An im-
portant conclusion is that migrations are helpful, but
not crucial for maximizing system utilization.

We tested our heuristics also on real data, (specifi-
cally, ‘SDSC-BLUE-2000-4.2-cln.swf’ in [22]). We used
8 machines, each available for L = 2000 time units.
The input consisted of 8000 jobs (inducing density 8 on
a single machine). As before, job time windows were
selected randomly and uniformly in the available time
span; job weights can take values in [1, 5]. In the first
experiment, we examined the heuristics on a maximum
utilization instance. In the second experiment, we ex-
amined the heuristics on the above instance, setting the
preemption bound to be k = 2. The results are pre-

Figure 6: Results for parallel machines.

sented in Figure 8. Note that also here, GPMT outper-
forms the other two heuristics on the general instance,
and achieves comparable performance on the maximum
utilization instance.

References

[1] P. Baptiste. Polynomial time algorithms for minimizing
the weighted number of late jobs on a single machine
with equal processing times. Journal of Scheduling,
2:245–252, 1999.

[2] P. Baptiste, M. Chrobak, C. Dürr, W. Jawor and
N. Vakhania. Preemptive scheduling of equal-length
jobs to maximize weighted throughput. CoRR, 2002.

Figure 7: Real data single machine

Figure 8: Real data parallel machines

[3] P. Baptiste, C. Le Pape and L. Péridy. Global Con-
straints for Partial CSPs: A case study of resource and
due-date constraints. In Proc. of Conf. on Principles
and Practice of Constraint Programming, 1998.

[4] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor and
B. Schieber. A unified approach to approximating re-
source allocation and scheduling. J. ACM, 48(5):1069–
1090, 2001.

[5] A. Bar-Noy, S. Guha, J. Naor and B. Schieber. Ap-
proximating the throughput of multiple machines in

real-time scheduling. SIAM J. Comput. 31(2):331–352,
2001.

[6] S.K. Baruah. The limited-preemption uniprocessor
scheduling of sporadic task systems. In Proc. of
ECRTS, 137–144, 2005.

[7] P. Brucker and S. Knust. Complexity results for
scheduling Problems. http://www.mathematik.uni-
osnabrueck.de/research/OR/class, 2009.

[8] G. C. Buttazzo, M. Bertogna and G. Yao. Limited
preemptive scheduling for real-time systems. A Survey.
IEEE Trans. Industrial Informatics, 9(1):3–15, 2013.

[9] B. Chattopadhyay and S. K. Baruah. Limited-
preemption scheduling on multiprocessors. In Proc. of
RTNS, 2014.

[10] M.R. Garey and D.S. Johnson, Computers and
Intractability, A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[11] M. Grenier and N. Navet. Fine-tuning MAC-level pro-
tocols for optimized real-time QoS. IEEE Trans. In-
dustrial Informatics, 4(1):6–15, 2008.

[12] J. Carlier. Problèmes d’ordonnancements à contraintes
de ressources: Algorithmes et Complexité. Thèse
d’Etat, 1984.

[13] S. Dauzère-Pérès. Minimizing late jobs in the general
one-machine scheduling problem. European Journal of
Operational Research, 81:134–142, 1995.

[14] T. Ebenlendr and J. Sgall. Optimal and online preemp-
tive scheduling on uniformly related machines. In Proc.
of 21st Symp. on Theoretical Aspects of Computer Sci-
ence, pp. 199–210, 2004.

[15] H. Kise, T. Ibaraki and H. Mine. A solvable case of the
one-machine scheduling problem with ready and due
times. Operations Research, 26(1):121–126, 1978.

[16] E.L. Lawler. Knapsack-like scheduling problems, the
Moore-Hodgson algorithm and the ’Tower of Sets’
property. Mathl. Comput. Modelling, 20(2):91–106,
1994.

[17] E.L. Lawler. A dynamic programming algorithm for
preemptive scheduling of a single machine to minimize
the number of late jobs. Annals of Operations Research,
26:125–133, 1990.

[18] M.J. Moore. An n job, one machine sequencing algo-
rithm for minimizing the number of late jobs. Manage-
ment Science, 15(1):102–109, 1968.

[19] L. Péridy, P. Baptiste and E. Pinson. Branch and
bound method for the problem 1|ri|

∑
Ui. In Proc.

of 6th Int. Workshop on Project Management and
Scheduling, 1998.

[20] H. Shachnai, T. Tamir and G.J. Woeginger. Minimizing
makespan and preemption costs on a system of uniform
machines. Algorithmica, 42:309–334, 2005.

[21] Y. Wang and M. Saksena. Scheduling fixed-priority
tasks with preemption threshold. In Proc. of Int. Conf.
Real-Time Comput. Syst. Appl, 1999.

[22] The parallel workloads archive.
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html,
2013.

