
Windows Scheduling as a Restricted Version of Bin
Packing

AMOTZ BAR-NOY

Brooklyn College.

RICHARD E. LADNER

University of Washington.

and

TAMI TAMIR

The Interdisciplinary Center.

Given is a sequence of n positive integers w1, w2, . . . , wn that are associated with the items
1, 2, . . . , n respectively. In the windows scheduling problem, the goal is to schedule all the items
(equal length information pages) on broadcasting channels such that the gap between two consec-
utive appearances of page i on any of the channels is at most wi slots (a slot is the transmission
time of one page). In the unit fractions bin packing problem, the goal is to pack all the items in
bins of unit size where the size (width) of item i is 1/wi. The optimization objective is to minimize
the number of channels or bins. In the off-line setting, the sequence is known in advance; whereas
in the on-line setting, the items arrive in order and assignment decisions are irrevocable. Since a
page requires at least 1/wi of a channel’s bandwidth, it follows that windows scheduling without
migration (all broadcasts of a page must be from the same channel) is a restricted version of unit
fractions bin packing.

Let H =
⌈∑n

i=1(1/wi)
⌉

be the bandwidth lower bound on the required number of bins (chan-
nels). The best known off-line algorithm for the windows scheduling problem used H + O(ln H)
channels. This paper presents an off-line algorithm for the unit fractions bin packing problem with
at most H + 1 bins. In the on-line setting, this paper presents algorithms for both problems with
H + O(

√
H) channels or bins where the one for the unit fractions bin packing problem is simpler.

On the other hand, this paper shows that already for the unit fractions bin packing problem, any
on-line algorithm must use at least H + Ω(ln H) bins. For instances in which the window sizes
form a divisible sequence, an optimal online algorithm is presented. Finally, this paper includes a
new NP-hardness proof for the windows scheduling problem.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; G.2.3 [Mathematics of Computing]: Discrete Mathematics—Appli-
cations

General Terms: Algorithms

Additional Key Words and Phrases: periodic scheduling, approximation algorithms, bin-packing,
on-line algorithms

A preliminary version appeared in the 15th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 217–226, 2004.
Author’s address: A. Bar-Noy, Computer & Information Science Department, Brooklyn College,
2900 Bedford Ave., Brooklyn, NY 11210. amotz@sci.brooklyn.cuny.edu..
R. Ladner, Department of Computer Science and Engineering, Box 352350, University of Wash-
ington, Seattle, WA 98195. ladner@cs.washington.edu.

T.Tamir, School of Computer Science, The Interdisciplinary Center, Herzliya, Israel,
tami@idc.ac.il. Work done while the author was at the University of Washington.

ACM Transactions on Algorithms, Vol. 3, No. 3, 2007



2 · Bar-Noy, Ladner, Tamir

1. INTRODUCTION

The input for the well known bin packing problem (BP) is a set of n item sizes
s1, s2, . . . , sn where 0 < si < 1 for all 1 ≤ i ≤ n. The goal is to pack these items in
unit size bins using as few as possible bins where the total size of items packed in one
bin does not exceed one. We study a variant of bin packing, called the unit fractions
bin packing problem (UFBP), in which all sizes are unit fractions, i.e, of the form
1/w for some integer w ≥ 2. In particular, we are interested in a packing that forms
a solution to the windows scheduling problem (WS): given a sequence of n positive
integers w1, w2, . . . , wn, called windows, that are associated with n equal length
information pages (requests), the goal is to schedule all the pages on broadcasting
channels such that the gap between two consecutive appearances of page i on the
channels is at most wi slots, where a slot is the time to broadcast one page. For
example, the sequence of windows (and page names) 〈2, 4, 5〉 can be scheduled on
one channel by repeatedly transmitting the sequence [2, 4, 2, 5] and the sequence of
windows 〈2, 3, . . . , 9〉 can be scheduled on two channels by repeatedly transmitting
the sequence [2, 4, 2, 5] on the first channel and the sequence [3, 6, 7, 3, 8, 9] on the
second channel.

The following example illustrates the difference between UFBP and WS. Consider
the sequence of windows 〈2, 3, 6〉. Since 1/2+1/3+1/6 = 1, the three items can be
packed in one bin. On the other hand, there is no schedule of these pages for WS
that uses only one channel since gcd(2, 3) = 1, and the only two ways to schedule 2
and 3 on the same channel is by repeatedly transmitting either the sequence [2, 3]
or the sequence [2, 2, 3], which leaves no slots for scheduling the 6. In general, since
a page requires at least 1/wi of a channel’s bandwidth, it follows that windows
scheduling without migration (that is, when all broadcasts of a page must be from
the same channel) is a restricted version of unit fractions bin packing.

The objective of our work is to compare the hardness of the two problems UFBP
and WS in both the on-line and the off-line settings. In particular, we present the
first off-line results for UFBP and the first on-line results for both UFBP and WS.
As UFBP is a special case of BP, we expect algorithms for UFBP to have a better
performance than the performance of known algorithms for BP. On the other hand,
because WS without migrations is a restriction of UFBP, we expect algorithms for
WS to have a worse performance than the performance of algorithms for UFBP.

There are two difficulties in solving WS. The first is the assignment of requests
to channels and the second is determining the transmission slots for each request.
The UFBP problem isolates the first difficulty. In a way, UFBP is the fractional
version of WS that measures the power of unlimited preemptions. That is, UFBP
demonstrates what can be achieved when a request is not necessarily transmitted
non-preemptively in one slot, but instead can be partitioned into small segments
as long as the total length of these segments in any window of wi slots is one.

1.1 Notations and Definitions

Given a sequence σ of n item widths 〈1/w1, . . . , 1/wn〉 and a UFBP algorithm B,
define NB(σ) to be the number of bins of unit size used by the algorithm to pack
all the n items. Similarly, given a sequence σ of request windows 〈w1, . . . , wn〉,
and a WS algorithm W, define NW(σ) to be the number of channels used by the
ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



Windows Scheduling as a Restricted Case of Bin Packing · 3

algorithm to schedule all the n requests. Note that we use σ to denote both a
sequence of items width 〈1/w1, . . . , 1/wn〉 for the UFBP problem, and a sequence
of windows 〈w1, . . . , wn〉 for the WS problem. In both cases, wi is an integer for all
1 ≤ i ≤ n.

In the off-line setting, for either UFBP or WS, the sequence σ is completely
known to the algorithm in advance. In the on-line setting, for either UFBP or WS,
the sequence σ is provided one item at a time and the algorithm must augment
its current solution to accommodate a new item. That is, a decision made about
which bin to pack an item in UFBP or how to schedule a request on the channels
in WS, cannot be revoked.

Let OPTB denote an optimal off-line algorithm for UFBP and OPTW denote an
optimal off-line algorithm for WS. The quantity

∑n
i=1(1/wi) is the total width of

all the items in σ. Since the number of bins in UFBP and the number of channels
in WS must be an integer,

H(σ) =

⌈
n∑

i=1

(1/wi)

⌉
(1)

is a lower bound on the performance of any algorithm for UFBP and WS on the
sequence σ.

We do not know if the problem of finding the minimum number of bins in UFBP
is NP-hard, but we do know that a compact representation of WS is NP-hard1.
We conjecture that both problems are NP-hard, and thus, we seek approximation
algorithms for the off-line UFBP and WS problems and competitive algorithms for
their on-line versions. We express the bounds on the performance of an algorithm
A in the form

H(σ) ≤ NA(σ) ≤ H(σ) + f(H(σ)) (2)

for all σ, where f is a non-decreasing function. These bounds translate to upper
bounds on approximation and competitive ratios in a natural way: The approxima-
tion ratio for an off-line algorithm A or the competitive ratio of an on-line algorithm
A is

ρ(A) = sup
σ

{
NA(σ)

NOPT(σ)

}
.

Suppose that for algorithm A there exists a bound of the form in inequality (2).
Since f is non-decreasing and H(σ) is a lower bound on NOPT(σ) we have:

NOPT(σ) ≤ NA(σ) ≤ NOPT(σ) + f(NOPT(σ)) . (3)

Hence,

ρ(A) ≤ 1 + sup
σ
{f(NOPT(σ))/NOPT(σ)} .

This ratio can be interesting, but does not yield as much information as inequalities
(2) and (3). Consequently, we prefer the form of the right inequalities of (2) and
(3).

1In a compact representation the number of different windows is polynomial but the number of
items could be exponential. See Section 2

ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



4 · Bar-Noy, Ladner, Tamir

1.2 Related Work

There is a wide literature on the general bin packing problem, see the survey [11].
First, bin packing is an NP-hard problem [13]. For the off-line problem, there exists
an asymptotic PTAS that uses (1+ε)NOPT(σ)+1 bins [25]. The performance of the
on-line algorithms first-fit (FF) and best-fit (BF) is analyzed in [17], where it is shown
that ρ(FF), ρ(BF) ≤ 1.7. The best known lower bound for any on-line bin packing
algorithm A, is ρ(A) ≥ 1.540 [24]. The best known on-line bin packing algorithm
is Harmonic++ whose competitive ratio is 1.589 [22]. In [10], the special case of
BP with divisible item sizes, where in the sorted sequence a1 < a2 < · · · < am of
item sizes, ai−1 divides ai for all 1 < i ≤ m, is shown to be optimally solvable with
a polynomial time algorithm. Another special version of the bin-packing problem,
considered in [9], is bin packing with discrete item sizes, i.e., when items sizes are
in {1/k, 2/k, . . . , j/k} for some 1 ≤ j ≤ k. This version is not directly related to
our problem, but its study demonstrates how the classic bin packing problem can
be handled when the input set is restricted.

The windows scheduling problem for one channel is known as the pinwheel prob-
lem (e.g., [15; 7]). The windows scheduling problem for many channels was first
defined in [4]. This paper shows how to construct schedules that use H(σ) +
O(ln(H(σ)) channels. This asymptotic result is complemented with a natural
greedy algorithm that performs well in practice, but does not have a provable
approximation bound.

Online UFBP and online WS was not studied earlier. Recently, the papers [27]
and [8] studied the general online case in which deletions are allowed. The former
addressed the online UFBP and the latter addressed the online WS.

There are several interesting applications of windows scheduling. The simplest
is harmonic windows scheduling where the requests represent segments of popular
movies. For 1 ≤ i ≤ n, the window of segment i is wi = i, where n is the number
of equal size segments the movie is partitioned into. If segment i appears in every
window of i time slots, then the maximum waiting time for any client who wishes to
view the movie with no interruptions is the time it takes to broadcast one segment,
or 1/n of the movie length. Harmonic windows scheduling is the basis of many
popular media delivery schemes (e.g., [18; 16]). This concept of receiving from
multiple channels and buffering data for future playback was first developed by
[26]. A variant of harmonic WS for popular movie delivery is where the movie is
partitioned into n segments and the window of segment i is wi = i + d − 1 for a
fixed constant d. As shown in [5], for any number of channels h, this variant can
be used to construct schedules whose maximum delay is asymptotically close to the
information theoretic lower bound of 1/(eh − 1) that follows from [12].

Windows scheduling can be thought of as a scheduling problem for push (proac-
tive) broadcast systems. One example is the Broadcast Disks environment (e.g., [1])
where satellites broadcast popular information pages to clients. Another example is
the TeleText environment (e.g., [2]) in which running banners appear in some tele-
vision networks. In such a system, there are clients and servers where the servers
choose what information to push and in what frequency in order to optimize the
quality of service for the clients (usually the waiting time). In a more generalized
model, the servers are not the information providers (e.g., [14; 6]). They sell their
ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



Windows Scheduling as a Restricted Case of Bin Packing · 5

service to various providers who supply content and request that the content be
broadcast regularly. The regularity can be defined by a window that translates to
the maximum delay until a client receives a particular content.

Windows scheduling belongs to the general class of periodic scheduling problems
that has applications in many disciplines (e.g., operations research, networking).
The traditional optimization goal in periodic scheduling is an “average” type goal
in which a request should be scheduled 1/wi fraction of the time. The quality of
an algorithm is determined by fairness issues. Among the most prominent exam-
ples are the hard real-time scheduling problem [21] and the chairman assignment
problem [23]. On the other hand, the windows scheduling problem has a “max”
type optimization goal in which the gap between two consecutive appearances of a
request must be smaller than wi. Both optimization goals may be practical to the
many applications of periodic scheduling. Note that unit fractions bin packing is a
relaxed version of both optimization goals.

1.3 Summary of Results

Lower Bound UFBP upper bound WS upper bound

Off-line H(σ) H(σ) + 1 [?] H(σ) + O(ln(H(σ))) [4]

On-line H(σ) + Ω(ln(H(σ))) [?] H(σ) + O(
√

H(σ)) [?] H(σ) + O(
√

H(σ)) [?]

Table I. Results for UFBP and WS in the off-line and the on-line settings ([?]: our
results).

We prove the NP-hardness of WS without migrations in a compact representation
of WS in which the number of different windows is polynomial but the number of
items could be exponential. A previous known hardness result suits only the case
of one channel when the gap between consecutive schedules of request i must be
exactly wi ([3]).

The off-line WS problem has a polynomial time algorithm [4] that uses H(σ) +
O(ln(H(σ)) channels. By contrast, we show that the any-fit decreasing strategy is
a polynomial time algorithm for off-line UFBP that uses H(σ)+1 bins. This result
demonstrates that UFBP is “easier” than WS in the off-line setting.

In the on-line setting for unit fractional bin packing, we first show that for any
value h0 there exists a sequence of requests σ with H(σ) ≥ h0 such that any on-line
UFBP algorithm requires H(σ) + Ω(ln(H(σ))) bins. This demonstrates that the
on-line UFBP problem is “harder” than the off-line UFBP problem. Next, we give
a tight analysis of the natural packing strategies: next-fit and first-fit. Finally, we
give a polynomial time algorithm that uses H(σ) + O(

√
H(σ)) bins.

In the on-line setting for windows scheduling, we first present a non-trivial algo-
rithm that uses the optimal number of channels H(σ) when the windows form a
divisible sequence (the equivalent problem for UFBP has a simpler greedy optimal
algorithm [10]). Then, for general instances, we give an on-line algorithm that uses
H(σ) + O(

√
H(σ)) channels. We emphasize that although this bound is the same

as for on-line UFBP, the WS algorithm is substantially more complicated.
ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



6 · Bar-Noy, Ladner, Tamir

Table I summarizes the results for UFBP and WS in the off-line and on-line
settings. Our results are marked with [?].

1.4 Paper Organization

Section 2 presents the NP-hardness result for WS. Section 3 describes the near
optimal off-line algorithm for UFBP. Sections 4 and Section 5 present the results for
on-line UFBP and on-line WS respectively. Section 6 discusses the open problems
regarding UFBP and WS.

2. NP-HARDNESS

We distinguish between two representations of the windows scheduling problem. In
the standard representation, the input is a sequence 〈w1, w2, . . . , wn〉, where each
wi is a positive integer represented by a binary sequence. In the compact represen-
tation, the input is a sequence of pairs 〈(w1, n1)(w2, n2) . . . , (wm, nm)〉, where wi

and ni are positive integers represented by binary sequences. The interpretation
of this sequence is that there are ni requests for window size wi. Note that it is
possible for the standard representation of a windows scheduling problem to be
exponentially larger than its compact representation.

In this section, we show that windows scheduling, in the compact representation,
without migration is NP-hard. That is, the problem is NP-hard when broadcasts of
any particular page must be from the same channel. We do not know if the problem
is still NP-hard when migration is permitted or when the problem is represented
in its standard form. A previous hardness proof for the standard representation of
the windows scheduling problem ([3]) is suitable only for a single channel for the
restricted case where all the gaps between two consecutive appearances of request
i must be exactly wi. Our proof holds for arbitrary number of channels. For the
standard representation it suits the exact gaps constraint, and for the compact
representation we show hardness of the most general case in which gaps between
schedules of request i may vary.

Theorem 2.1. The windows scheduling problem without migrations, in its com-
pact representation, is NP-hard.

Proof. The proof is in two stages. In the first stage, the maximum 3-dimensional
matching problem is reduced to a restricted version of the windows scheduling prob-
lem, called periodic scheduling. In the periodic scheduling version, given a sequence
of windows 〈w1, w2, . . . , wn〉, the objective is to find a schedule with a minimum
number of channels, where each request i is granted its exact window. In the second
stage, the exact-window requirement is dropped by adding dummy requests all of
the same size. Unfortunately, the number of dummy requests can be exponentially
large, and therefore the proof holds only for the compact representation.

The maximum 3-dimensional matching problem (3DM), which is known to be
NP-hard [19], is defined as follows on three disjoint sets X, Y , and Z each contains
h items:

Input:. A set of t ≥ h distinct triplets T ⊆ X × Y × Z.
Output:. A 3-dimensional matching in T of maximum cardinality, i.e., a subset

T ′ ⊆ T , such that any item in X,Y, Z appears at most once in T ′, and |T ′| is
ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



Windows Scheduling as a Restricted Case of Bin Packing · 7

maximum.

Given an instance of 3DM, construct the following instance of WS. Let T =
{T1, . . . , Tt} be the set of triplets in the 3DM instance. Assign a distinct prime
number pj > 2 to each triplet Tj for 1 ≤ j ≤ t. The WS instance consists of 3h
requests, one request for each item in I = X ∪Y ∪Z, where wi = Π(i∈Tj)pj for any
i ∈ I.
Running example: Assume that the three sets are X = {a, b}, Y = {c, d},
and Z = {e, f}, and that there are three triplets: T = {(a, c, e), (a, d, f), (b, c, e)}.
Then the prime number 3 is assigned to the triplet {a, c, e}, the prime number
5 is assigned to the triplet {a, d, f}, and the prime number 7 is assigned to the
triplet {b, c, e}. The WS instance is I = {a, b, c, d, e, f} for which wa = 15, wb = 7,
wc = 21, wd = 5, we = 21, and wf = 5.

Lemma 2.2. There is a matching of size h if and only if there is a periodic
schedule for 〈wi : i ∈ I〉 on h channels.

Proof. Given a matching, the following is a schedule of the windows 〈wi : i ∈ I〉
on h channels. Let (x, y, z) be a triplet in the matching. By the construction,
gcd(wx, wy, wz) = pj > 2 since all the triplets in T are distinct. A valid schedule
assigns x to slots 1+ kwx, assigns y to slots 2+ kwy, and assigns z to slots 3+ kwz

for k = 0, 1, 2, . . .. Since all the items of X, Y, Z are covered by the h triplets of the
matching, all the requests are scheduled on h machines.

Given a schedule, the following is a 3-dimensional matching in T . It is not hard to
see that in periodic scheduling, two requests i1 and i2 can be assigned to the same
channel if and only if gcd(wi1 , wi2) > 1. The prime assignment implies that if items
i1 and i2 appear in the same triplet then gcd(wi1 , wi2) > 1 and if no triplet contain
both items, then gcd(wi1 , wi2) = 1. As a result, in periodic scheduling, two requests
i1 and i2 can be assigned to the same channel if and only if in the corresponding
3DM-3 problem the corresponding items appear in at least one triplet. Therefore,
each channel contains at most three requests. Now, since 3h requests are scheduled,
each channel must broadcast exactly three distinct requests and the whole schedule
induces a 3-dimensional matching.

Running example: The matching {(a, d, f), (b, c, e)} implies that the requests a,
d, and f can be assigned to one channel and that the requests b, c, and e can be
assigned to another channel.

To remove the periodic constraint, add m dummy requests whose window is
w =

∏t
j=1 pj , such that the total width of all the requests is h. That is, construct

the compact representation 〈(w, m), (wi, 1) : i ∈ I〉 where m/w +
∑

i∈I 1/wi = h.
Since the width of all the requests in this instance is exactly h, then any schedule
for these requests that uses h channels must be periodic. In particular, such a
schedule contains a periodic schedule for the requests 〈wi : i ∈ I〉. Hence, by the
above claim, there is a matching of size h. On the other hand, if there is matching
of size h, then by the above claim there is a periodic schedule for the requests
〈wi : i ∈ I〉. It is not hard to see that the m dummy requests of size w can also be
periodically scheduled in remaining empty slots.
Running example: Add 136 dummy requests with w = 105 (105 = 3 · 5 · 7) since
136/105 +

∑
i∈I 1/wi = 2.

ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



8 · Bar-Noy, Ladner, Tamir

It remains to argue that this compact representation can be constructed in poly-
nomial time of the length of the instance of the 3DM problem.

Let n be the number of triplets in T . By the prime number theorem, the n-th
prime number is of order O(n log n) and therefore the first n prime numbers all
have an O(log n) length. Clearly, the first n prime numbers can be computed in
polynomial time in n. Each wi is the product of at most three of these prime
numbers and w is the product of all the n prime numbers, so they can be computed
in polynomial time. Finally, m = w · h − ∑

i∈I w/wi can also be computed in
polynomial time and its length is polynomial in n.

Hardness of UFBP: For the UFBP problem, migration makes the problem trivial
since it means that items can be split among several bins. In this case, the greedy
packing is clearly optimal. However, without splits, we only know that it is NP-
hard if the size of a bin is not necessarily 1, but some fraction 1/k where k is an
integer given as part of the input. Formally,

Theorem 2.3. For bins of arbitrary unit-fraction size, the UFBP problem is
NP-hard.

Proof. We describe a reduction from Partition: Given a set A of n items
of sizes {a1, a2, . . . , an} having total size 2B, and the question whether a sub-
set having total size B exists, construct the following instance for UFBP: Let L =
LCM{a1, a2, . . . , an, B}. The unit fractions to be packed have sizes {a1

L , a2
L , . . . , an

L },
and the bin size is B

L . Clearly, the definition of L guarantees that all involved values
are unit fraction. It is easy to verify that this instance can be packed in two bins
if and only if A has a partition.

3. OFF-LINE UNIT FRACTIONS BIN PACKING

In this section, we present a polynomial time algorithm for UFBP which is opti-
mal up to an additive constant of 1. Consider the following off-line bin packing
algorithm.
Any Fit Decreasing (AFD): The items are processed in a non-increasing order
of their widths. The current item is packed in any bin it fits in if such a bin exists.
Otherwise, the current item is packed in a new bin.

Note that for the AFD strategy, it is not important which bin is used to pack an
item because the analysis suits any bin selection (e.g, first-fit or best-fit).

Theorem 3.1. NAFD(σ) ≤ H(σ) + 1 for any sequence σ.

Proof. After being sorted in a non-increasing order, the input sequence has the
form

σ =
〈(

1
2

)n2

,

(
1
3

)n3

, . . . ,

(
1
z

)nz
〉

for some integers z ≥ 2 and ni ≥ 0 for 2 ≤ i ≤ z. Assume that AFD uses h full bins
(filled to capacity 1) and h′ non-full bins. Thus, NAFD(σ) = h′ + h.

Claim 3.2. After packing all the items of width at least 1/k, there are at most
k − 1 non-full bins.

ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



Windows Scheduling as a Restricted Case of Bin Packing · 9

Proof. The proof is by induction on k. The base case is k = 2. Clearly, the
items of width 1/2 are packed in dn2/2e bins, where only the last one might be
non-full. Assume that the claim holds before packing the items of width 1/k. That
is, after packing the items of width at least 1/(k − 1), there are at most k − 2
non-full bins. Since items of size 1/k are first added to currently non-full bins that
can accommodate them, it follows that only one bin that contains only items of
size 1/k might be non-full after all the 1/k-items are packed.

Suppose the last bin that AFD opened was opened for an item of width 1/z′

where z′ ≤ z. By Claim 3.2, at this stage, there are less than z′ non-full bins. Since
this is the last opened bin, it follows that h′ < z′. Furthermore, each of the first
h′−1 non-full bins must contain items whose total width is greater than 1− (1/z′),
because otherwise AFD would not open a new bin for 1/z′. By definition, the last
non-full bin contains at least one item of width 1/z′. It follows that

H(σ) ≥ h + (h′ − 1)
(

1− 1
z′

)
+

1
z′

= h + h′ − 1− h′ − 2
z′

> h + h′ − 2 .

Since H(σ) is an integer, it must be at least h′+h−1. Thus, NAFD(σ) = h′+h ≤
H(σ) + 1.

Since H(σ) ≤ NOPTB(σ), it follows that

Corollary 3.3. NAFD(σ) ≤ NOPTB(σ) + 1.

The above analysis is tight. Consider the sequence σ =
〈

1
2 , 1

3 , 1
3 , 1

4 , 1
4 , 1

4

〉
. An

optimal solution uses two bins, the first contains
{

1
2 , 1

4 , 1
4

}
and the second contains{

1
3 , 1

3 , 1
4

}
. On the other hand, AFD packs the first two items in one bin, the next

three items in another bin, and then it is forced to pack the last item of width
1/4 in a third bin since the available free space in each of the first two bins is 1/6.
Hence, NAFD(σ) ≥ NOPTB(σ) + 1.
Remark: The above theorem gives a clear distinction between BP and UFBP.
This is because in BP, NOPT(σ) can be arbitrarily close to 2H(σ). For example,
this is the case for the sequence σ that contains items of width 1/2 + ε for a very
small ε.

4. ON-LINE UNIT FRACTIONS BIN PACKING

In this section we address the on-line UFBP problem. We first show a non-trivial
lower bound. Next, we analyze “fit” greedy algorithms. Finally, we show a better
algorithm that sometimes opens a new bin for an item even if a bin with enough
free space to accommodate this item exists.

4.1 An H(σ) + Ω(ln H(σ)) Lower Bound for On-line UFBP

We prove that no on-line algorithm for UFBP can guarantee a solution with H(σ)+
o(ln(H(σ))) bins for any sequence σ. Since there exists an upper bound of H(σ)+1
for the off-line UFBP, this result shows a significant gap between what can be
achieved off-line and what can be achieved on-line for UFBP.

ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



10 · Bar-Noy, Ladner, Tamir

Theorem 4.1. For any on-line algorithm B for UFBP and for any integer h0 >
0, there exists a sequence σ such that H(σ) ≥ h0 and NB(σ) = H(σ)+Ω(ln(H(σ))).

Proof. Let w be the smallest integer such that
∑w

i=2 1/i ≥ h0. It follows that
h0 = Θ(ln w). We describe an adversary strategy that constructs a non-decreasing
sequence σ of the type

〈(
1
w

)xw

,

(
1

w − 1

)xw−1

, . . . ,

(
1
2

)x2
〉

for integers xi ≥ 0 for 2 ≤ i ≤ w. The adversary sets the values of xw, xw−1, . . . , x2

as follows. Let 2 ≤ i ≤ w and assume xw, . . . , xi+1 have been already set. The
adversary requests items of width 1/i until one of the following two conditions holds
for the bins used by Algorithm B:

(1) There is a bin containing exactly i− 1 items of width 1/i and no other items.
(2) There are at least ih0 bins which are filled only with items of width 1/i but no

more than i− 2 such items.

Note that if xi is large enough then one of the two conditions must hold (for
i = 2 the first condition must hold). If the first condition holds and i > 2, then the
adversary starts requesting items of width 1/(i− 1). If the second condition holds
the adversary stops (formally, it sets xi−1 = · · · = x3 = x2 = 0).

The Theorem is proved using the following claims.

Claim 4.2. H(σ) ≥ h0.

Proof. If the first condition holds for all i, then H(σ) ≥ ∑w
i=2((i− 1)/i) which

by definition is at least h0. If the second condition holds, then for some i there are
ih0 bins each filled with at least one item of width 1/i. Hence, H(σ) ≥ h0.

Claim 4.3. The total free space in all of the bins of B is at least Θ(ln(w)).

Proof. Assume first that the first condition holds for all 2 ≤ i ≤ w. This
implies that when the first item of width 1/(i − 1) is given to B, there is a bin
accommodating exactly i−1 items of size 1/i. This bin can never be filled more by
B since later items all have width larger than 1/i. Thus at the end, the total free
space is at least 1/2 + 1/3 + · · · + 1/w = Θ(ln(w)). Now assume that the second
condition holds for some i. Hence, there are at least ih0 bins which are filled only
with items of width 1/i each with a free capacity of at least 2/i. Thus, the total
free capacity in these bins alone is at least 2h0 = Θ(ln w).

Claim 4.4. NB(σ) = O(w2 ln(w)).

Proof. The worst case for Algorithm B happens when for each 2 ≤ i ≤ w, the
first condition holds after there are exactly ih0 − 1 bins each containing at most
i− 2 items of width 1/i. In this case, the total number of bins used by Algorithm
B is at most

∑w
i=2 ih0 = O(w2 ln(w)).

By Claim 4.3, H(σ) ≤ NB(σ) − Θ(ln(w)). Hence, NB(σ) ≥ H(σ) + Θ(ln(w)).
By Claim 4.4, ln(w) = Ω(ln(NB(σ))). Because NB(σ) ≥ H(σ), we have ln(w) =
Ω(ln(H(σ))). Hence, NB(σ) ≥ H(σ) + Θ(ln(H(σ))).

By Theorem 3.1, NOPTB(σ) ≤ H(σ) + 1. Combined with the above, we have
ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



Windows Scheduling as a Restricted Case of Bin Packing · 11

Corollary 4.5. For any on-line algorithm B for UFBP and for any constant
h0, there exists a sequence σ such that H(σ) ≥ h0 and NB(σ) = NOPTB(σ) +
Ω(ln(NOPTB(σ))).

4.2 First-fit and Next-Fit

In this section we consider two simple on-line strategies for UFBP. We analyze the
performance of the Next-fit and the First-fit strategies defined as follows:
Next Fit (NF): An item is packed in the last opened bin if this bin has enough
free space for it. Otherwise, a new bin is opened.
First Fit (FF): An item is packed in the first bin that has enough free space for
it. If no bin has enough space, a new bin is opened.

The following results present the exact competitive ratios of NF and FF. That
is, for A ∈ {NF, FF}, (i) for any sequence σ, NA(σ) ≤ ρ(A)NOPTB(σ), and, (ii) for
any n there exists a sequence σ of size Θ(n) for which NA(σ) = ρ(A)NOPTB(σ).

Theorem 4.6. ρ(NF) = 2.

Proof. The known upper bound for general BP applies also for UFBP thus,
ρ(NF) ≤ 2. To see that this bound is tight consider the following sequence of 4x
item width for x ≥ 1:

1
2
,

1
2x

,
1
2
,

1
2x

, . . . ,
1
2
,

1
2x

.

An optimal solution packs all the items with width 1/2 in x bins and the rest of
the items in one additional bin for a total of x + 1 bins. NF allocates 2x bins for
2x pairs of items one of width 1/2 and one of width 1/2x. Thus, the competitive
ratio of NF for this sequence is 2x

x+1 which tends to 2 when x tends to infinity.

Theorem 4.7. ρ(FF) = 6
5 .

Proof. To see that ρ(FF) ≥ 6
5 , consider the following sequence of 12x item

width for x ≥ 1:
1
2
,
1
3
,
1
2
,
1
3
, . . . ,

1
2
,
1
3

.

An optimal solution packs all the items with width 1/2 in 3x bins and all the items
with width 1/3 in 2x bins for a total of 5x bins. FF allocates a bin for any pair of
adjacent items one of width 1/2 and one of width 1/3 for a total of 6x bins. Thus,
the competitive ratio of FF is at least 6x

5x = 6
5 .

For the upper bound, let σ be an arbitrary sequence of items. We claim that all
the bins have load at least 5/6 except maybe 4 special bins.
(1) After packing the first bin whose final load is at most 5/6, all items that are

packed in later bins must have width larger than 1/6 (because first-fit will
place the first item of size at most 1/6 in the bin). Also note that no linear
combination of 1/2, 1/3, 1/4, and 1/5 (which are the possible values for items in
following bins) is between 48/60 and 50/60. That is, less than 5/6 and greater
than 4/5. Thus, if another bin with load less than 5/6 exists its load is at most
4/5.

(2) After packing the first bin whose final load is at most 4/5, all later bins contain
only items with widths 1/2, 1/3, or 1/4. The load of each such bin is at least
10/12 = 5/6 or at most 9/12 = 3/4.

ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



12 · Bar-Noy, Ladner, Tamir

(3) After packing the first bin whose final load is at most 3/4, all later bins contain
only items with widths 1/2 or 1/3. The load of each such bin is at least 5/6 or
at most 2/3.

(4) After packing the first bin whose final load is at most 2/3, all later bins contain
only items with widths 1/2, and only a single such bin (the last one) is not full.

Therefore, FF allocates at most (6/5)H(S) + 4 bins to the sequence σ. Thus, for
any ε > 0 and for any long enough sequences ρ(FF) ≤ 6

5 + ε .

Remark: For Next-fit, the competitive ratio for UFBP is the same as the one
known for BP. For First-fit, the 1.2-competitive ratio for UFBP is smaller than
the 1.7-competitive ratio for BP ([17]). In a way, this demonstrates that UFBP is
“easier” than BP.

4.3 An H(σ) + O(
√

H(σ)) Algorithm

The previous section demonstrated the limitation of “must fit” type algorithms. In
order to get a better result, we develop algorithms that sometimes open a new bin
for an item even if this item fits into one of the previously opened bins. The idea
is similar to the well known Harmonic algorithm for classical Bin packing problem
[20]. In the Harmonic algorithm, for some parameter k, and for each i, 1 ≤ i < k
there is an active bin for items of size in ( 1

i+1 , 1
i ], and one active bin for all items

of size at most 1/k. Note that when the input is limited to unit fractions, it means
that each active bin can hold items of a single size - 1

i . Formally,

Definition 4.1. A bin is i-dedicated if only items of size 1/i are packed in it.

Similar to the Harmonic algorithm, we define a set of on-line algorithms {B∗k} for
k = 1, 2, . . . such that for any sequence σ, NB∗k(σ) ≤ k+1

k H(σ) + k. Algorithm B∗1
is the first-fit algorithm. Algorithm B∗2 dedicates bins to items of width 1/2 and
packs all other items according to the first-fit rule. That is, an item of width 1/2 is
either packed in an open 2-dedicated bin or in a new 2-dedicated bin and any item
with a smaller width is packed in the first non-dedicated bin that can accommodate
it. In general, Algorithm B∗k dedicates bins to items of width 1/2, 1/3, . . . , 1/k and
packs all the items with smaller width according to first-fit rule. That is, an item
of width 1/j, for 2 ≤ j ≤ k, is either packed in an open j-dedicated bin or in
a new j-dedicated bin and any item with a smaller width is packed in the first
non-dedicated bin that can accommodate it.

We note that unlike the Harmonic algorithm, the small items are packed accord-
ing to first fit rule instead of next fit. This change does not affect the analysis of
Algorithm B∗k, but is going to be crucial in the analysis of our final algorithm in
which the value of k is changing dynamically during the execution of the algorithm.

Lemma 4.8. For any sequence σ and k > 0,

NB∗k(σ) ≤ k + 1
k

H(σ) + k .

Proof. Let σ = 〈w1, w2, . . . , wn〉. For all j = 2, . . . , k, all j-dedicated bins,
except maybe for the last one, are full (each containing j items of size 1/j). Thus,
there are at most k− 1 non-full dedicated bins. The other bins are filled according
ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



Windows Scheduling as a Restricted Case of Bin Packing · 13

to first-fit rule with items whose width is at most 1/(k + 1). Hence, a new non-
dedicated bin is opened only if all previously opened non-dedicated bins are at least
k/(k + 1)-full. Thus, all the non-dedicated bins except maybe for the last one are
at least k/(k + 1)-full. Adding the last non-dedicated bin to the k − 1 non-full
dedicated bins, we get that there are at most k bins whose load could be small, and
the total number of bins used is

NB∗k(σ) ≤ k + 1
k

(
n∑

i=1

1/wi

)
+ k ≤ k + 1

k
H(σ) + k .

Let h =
√

H(σ). For simplicity, assume that h is an integer. Otherwise, round h
to the nearest integer and the analysis is similar. Assume first that H(σ) is known
in advance. The expression k+1

k H(σ) + k is minimized for k = h. The following
lemma gives the bound for B∗h.

Lemma 4.9. For any sequence σ,

NB∗h(σ) ≤ H(σ) + 2
√

H(σ).

Proof. Setting k =
√

H(σ) in the statement of Lemma 4.8 implies that

NB∗k(σ) ≤ H(σ) +
H(σ)√
H(σ)

+
√

H(σ)

= H(σ) + 2
√

H(σ) .

When H(σ) is not known in advance, the algorithm dynamically increases the
parameter k for which dedicated bins exist for 1/2, 1/3, . . . , 1/k. Algorithm B∗dyn

is defined as follows: Let H ′ denote the total width of the already packed items.
As long as H ′ ≤ 1, use B∗1 (regular first-fit), when 1 < H ′ ≤ 4, shift to B∗2 , and in
general, when (k − 1)2 < H ′ ≤ k2, use Algorithm B∗k. Note that when B∗dyn shifts
to Algorithm B∗k, it continues to use the bins that were used for B∗k−1, it just adds
a new (initially empty) k-dedicated bin.

Theorem 4.10. For any sequence σ,

NB∗dyn
(σ) ≤ H(σ) + 4

√
H(σ).

Proof. Let σ = 〈w1, w2, . . . , wn〉 and B∗h be the last algorithm performed by
B∗dyn on this sequence. Define sk, for 1 ≤ k ≤ h, to be the index of the first item
packed while executing B∗k and sh+1 = n + 1. It follows that algorithm B∗k packs
the items of σ indexed sk to sk+1 − 1. The total width of items indexed s1 to
s2 − 1 is less than 1 + 1

2 , the total width of items indexed s2 to s3 − 1 is less than
22 + 1

2 − 12 = 3, and in general, the total width of items indexed sk to sk+1 − 1 is
less than k2 + 1

2 − (k − 1)2 < 2k. The additive term 1
2 exists since there might be

an overflow of 1
2 beyond (k − 1)2 before the algorithm shifts to B∗k.

As in the proof of Lemma 4.8, it follows that while B∗k is executed, the algorithm
opens a new bin only if all the current opened bins (including non-dedicated bins
that have been opened during the execution of B∗k−1) are at least k/(k + 1)-full.

ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



14 · Bar-Noy, Ladner, Tamir

This is true because the algorithm packs the small items according to the first-fit
rule (unlike the original Harmonic algorithm). In addition, during the execution of
B∗k, there might be at most k−1 non-full dedicated bins and only one non-dedicated
bin with small load (the last one).

Recall that h =
√

H(σ). Thus, B∗h is the last algorithm executed by B∗dyn. The
total number of bins used by B∗dyn is at most

h +
h∑

k=1

k + 1
k

sk+1−1∑

i=sk

1
wi

< h +
h∑

k=1

k + 1
k

2k

= h +
h∑

k=1

2k +
h∑

k=1

2 = h2 + 4h = H(σ) + 4
√

H(σ).

5. ON-LINE WINDOWS SCHEDULING

In this Section we consider on-line algorithms for the windows scheduling problem.
Since in these algorithms each request is scheduled only on one channel (no migra-
tion), each of these algorithms is also suitable for the unit fractions bin packing
problem. We first describe and analyze an optimal algorithm for the special case
in which the sequence σ contains only windows with divisible window sizes. In
such instances, in the sorted sequence w′1 < w′2 < · · · < w′m of window sizes, w′i−1

divides w′i for all 1 < i ≤ m. In particular, for any c, the algorithm is optimal
for instances in which all the wi’s are of the form c2vi for an odd constant integer
c ≥ 1 and integers vi ≥ 0 for 1 ≤ i ≤ n. By combining the optimal algorithms for
different c values we get our final algorithm, W∗

dyn that has the same performance
for the windows scheduling problem as Algorithm B∗dyn has for the unit fractions
bin packing problem.

5.1 An Optimal Algorithm for Instance with Divisible Window Sizes

Recall that a WS instance with divisible window sizes is one in which the sorted
sequence of window request sizes is a1 < a2 < · · · < am such that ai−1 divides ai

for all 1 < i ≤ m. In this section we present an optimal algorithm for online WS
of such instances. The algorithm is “strongly” online in the sense that there is no
need to know in advance the ratios {ri = (ai/ai−1)}, the number of requests, and
their total width. The only a-priori knowledge required is that the input instance
has divisible window sizes.

For simplicity, we first describe an optimal algorithm for instances in which all
window sizes are powers of 2. That is, wi = 2vi for an integer vi ≥ 1 for 1 ≤ i ≤ n.
Later, we generalize this optimal algorithm for any instance with divisible size
windows.

5.1.1 Instances with Power-2 Window Sizes. Each channel schedule is repre-
sented by a rooted tree. For power-2 windows, each channel schedule is represented
by a rooted binary tree, in which all the internal nodes have 2 children. In this
tree, each item that is scheduled on this channel is assigned to a leaf (and this leaf
is assigned to this item). To construct the schedule from a tree, alternate between
ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



Windows Scheduling as a Restricted Case of Bin Packing · 15

A

C D

B

Fig. 1. Tree representation of the cyclic schedule [A, B, A, C, A, B, A, D].

scheduling an item from the left and the right subtrees. The item selected from
each subtree is selected by alternating recursively between the left and right sub-
tree in each subtree. For example, the tree in Figure 1 represents a schedule that
alternates between ’A’ (the only item in the left subtree) and an item from the
right subtree. In selecting this right-subtree item, the schedule alternates between
’B’ and an item from the right subtree, and so on. It follows that a leaf, `, whose
depth in the tree is d(`) represents an item scheduled with window size 2d(`). The
whole schedule is represented by a forest of rooted binary trees, each representing
one channel.

Call a leaf that is not assigned yet to any request an open leaf and call a tree that
has at least one open leaf an active tree. By definition, an active tree represents a
channel schedule with idle slots. Let the label of a leaf ` of depth d(`) be 2d(`).

Definition 5.1. A lace binary tree of height h is a binary tree of height h in
which there is a single leaf in each of the depths 1, 2, . . . , h − 1, and two leaves in
depth h. For example, the tree in Figure 1 is a lace binary tree of height 3.

(i)

4 4

8

4

8

4

4

8

4
2

4

8

4
2

4

(v)

(ii) (iii)

(iv)

(i)

4 4

8

4

8

4

4

8

4
2

4

8

4
2

4

(v)

(ii) (iii)

(iv)

Fig. 2. Algorithm W1 evolution for σ = 〈4, 8, 4, 2, 4〉. White circles denote open leaves.

Algorithm W1: Let wi = 2vi be the next request in σ. Let u ≤ vi be maximal
such that an open leaf in one of the active trees whose label is 2u exists. If there
is no such u, open a new active tree with one open leaf whose label is 20 = 1 and
then define u = 0. Let ` be the leaf whose label is 2u and let T be the active tree

ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



16 · Bar-Noy, Ladner, Tamir

containing the leaf `. If u = vi, then assigned request i to leaf `. Otherwise, append
to T a lace binary sub-tree of depth vi − u whose root is ` and assign request i to
one of the two leaves with depth vi in T . Figure 2 illustrates the evolution of the
algorithm for σ = 〈4, 8, 4, 2, 4〉.

Lemma 5.1. During the execution of algorithm W1, the forest of trees contains
at most one open leaf in each depth.

Proof. The proof is by induction on the number of requests scheduled by the
algorithm. Initially, there are no trees and therefore no open leaves. Assume the
claim holds for the first k − 1 requests and let the window size of the kth request
be 2v. When scheduling this request, algorithm W1 either closes an open leaf or
replaces an open leaf with a lace binary tree. In the former case, there are no
new open leaves and the claim remains true due to the induction hypothesis. In
the latter case, since the replacement is performed on an open leaf with depth u,
where u ≤ v and u is maximal, there are no open leaves of depths d for u < d ≤ v.
By the definition of a lace binary tree, after the replacement and the assignment
of the request to the leaf of depth v, there is one new open leaf at depths d for
u < d ≤ v, exactly where no open leaves existed before. Note that at depth v two
open leaves are added, but only one is open, because the other is assigned to the
new request.

Lemma 5.2. NW1(σ) = H(σ) for any sequence σ in which wi = 2vi for all
1 ≤ i ≤ n.

Proof. Let σ = 〈w1 = 2v1 , w2 = 2v2 , . . . , wn = 2vn〉. We show that when the
forest contains h trees and a new tree is opened by W1, then the total bandwidth
of requests in σ (including the new one)

∑n
i=1 1/wi is greater than h. Assume that

the request that caused W1 to open a new tree has a window 2vi . According to the
algorithm, there is no open leaf whose label is less than 2vi . Also, by Lemma 5.1,
there is at most one open leaf whose label is 2vi+j for all j > 0. It follows that
the total bandwidth of the open leaves in all the first h opened trees is at most∑∞

j=1 1/2vi+j which is less than 1/2vi . Therefore, the total bandwidth required by
the new 1/2vi request and the requests already scheduled is more than h. As a
result, at the end, if the algorithm opened h trees then H(σ) = h.

5.1.2 Generalization for any Divisible Size Instance. Let a1 < a2 < · · · < am be
the divisible sequence of window request sizes, such that ai−1 divides ai for all 1 <
i ≤ m. To simplify the notation we add a dummy window size a0 = 1. For i > 0, de-
note by ri the ratio ai/ai−1. For example, the input 〈6, 30, 2, 60, 30, 6, 420〉 is an in-
stance with divisible windows in which the sorted window sizes are 1, 2, 6, 30, 60, 420.
The window request sizes can be described by the sequence of ratios. In the ex-
ample, r1 = 2, r2 = 3, r3 = 5, r4 = 2, r5 = 7. A power of 2 instance is the special
case in which for all i, ri = 2. We assume that all the ratios ri are prime numbers.
This assumption is w.l.o.g since otherwise we can add the intermediate values of
window sizes without changing the instance (as the sequence {ai} describes just
the potential values of requests). For example r1 = 2, r2 = 3, r3 = 5, r4 = 2, r5 = 7
describes the window sizes in the input 〈6, 420〉 and in the input 〈30, 6, 2, 60, 420〉.

Given a divisible windows instance with ratio values r1, . . . , rz, a lace tree over
the ratios 〈ri〉 is a tree whose root has r1 children. For 1 ≤ i < z, at depth i there
ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



Windows Scheduling as a Restricted Case of Bin Packing · 17

Fig. 3. A lace tree for window sizes {3, 6, 30}.

are ri nodes, out of which ri − 1 are leaves and a single node has ri+1 children. At
depth z there are rz leaves. Figure 3 illustrates a lace tree over the ratios 〈3, 2, 5〉.

The following is an optimal on-line algorithm for any divisible instance. It is
based on the tree representation described for power-2 instances in Section 5.1.1.
Algorithm Wd: Let the window request sizes be a0 = 1 < a1 < a2 < · · · < am.
Each channel schedule is represented by a lace tree over the ratios {ri = ai/ai−1}.
In this tree, each item that is scheduled on this channel is assigned to a leaf (and
this leaf is assigned to this item). The construction of the schedule from a tree
is done in the same manner as schedules are constructed in lace binary trees. It
follows that a leaf, `, whose depth in the tree is d(`) represents an item scheduled
with window size ad(`). The whole schedule is represented by a forest of lace trees,
each representing one channel.

Call a leaf that is not assigned yet to any request an open leaf and call a tree that
has at least one open leaf an active tree. By definition, an active tree represents a
channel schedule with idle slots. Let the label of a leaf ` of depth d(`) be ad(`).

Let wi = ak be the next request in σ. Let aj ≤ ak be maximal such that an
open leaf in one of the active trees whose label is aj exists. If there is no such aj ,
open a new active tree with one open leaf whose label is a0 = 1. Let ` be the leaf
whose label is aj and let T be the active tree containing the leaf `. If aj = ak, then
assigned request i to leaf `. Otherwise, build a lace tree of depth k − j over the
ratios rj+1, rj+2, . . . , rk, and append it to T with ` as the root. Assign request i to
one of the rk leaves with label ak in T .

Figure 4 illustrates the evolution of the algorithm for σ = 〈3, 6, 18, 3, 6〉.
The following is a generalization of Lemma 5.1 (proof omitted).

Lemma 5.3. During the execution of algorithm Wd, the forest of trees contains
at most rk − 1 open leaves in depth k.

Theorem 5.4. NWd
(σ) = H(σ) for any sequence σ with divisible sizes.

Proof. Let σ = 〈w1, w2, . . . , wn〉. We show that when the forest contains h
trees and a new tree is opened by Wd, then the total bandwidth of requests in σ
(including the new one)

∑n
i=1 1/wi is greater than h. Assume that the request that

caused Wd to open a new tree has a window ak. According to the algorithm, there
is no open leaf whose label is at most ak. Also, by Lemma 5.3, there are at most
rj − 1 open leaves whose label is aj for all j > 0. In particular for all j ≥ k. Let d
denote the maximum depth of any active tree. Then the total bandwidth of open
leaves in all the first h opened trees is at most

∑d
j=k+1(rj−1)/aj which is less than

ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



18 · Bar-Noy, Ladner, Tamir

(i)

3

(ii)

3

6

18

3

6

3

6

18

3 3

6

18

3

6

(iii)

(iv) (v)

(i)

3

(ii)

3

6

18

3

6

3

6

18

3 3

6

18

3

6

(iii)

(iv) (v)

Fig. 4. Algorithm Wd evolution for σ = 〈3, 6, 18, 3, 6〉. White circles denote open leaves.

1/ak. To justify this bound consider a lace tree over the ratios ak, rk+1, . . . , rd. The
total bandwidth of leaves in the sub-tree rooted at a node at depth 1 is 1/ak and
the sum

∑d
j=k+1(rj − 1)/aj is the total bandwidth of open leaves in this sub-tree

excluding one node in the deepest level. Therefore, the total bandwidth required
by the new 1/ak request and the requests already scheduled is more than h. As a
result, at the end, if the algorithm opened h trees then H(σ) = h.

Note that there is no need to know in advance the ratios {ri}, nor the number
of requests, or their total width. The only a-priori knowledge required is that the
input instance has divisible item sizes. Indeed, building a lace tree over the ratios
r1, r2 is different from building a lace tree over the ratios r2, r1 (the former can
accommodate future requests of window size r1 while the latter cannot and similarly
the latter will be able to accept requests of window size r2 while the former cannot).
However, the decisions about the number of children of the internal nodes of the
lace tree can be delayed until the sequence actually gets a window of value r1 or r2.

5.2 An H(σ) + O(
√

H(σ)) Algorithm for Arbitrary Windows

For instances with arbitrary window size, we define a parameterized family of on-
line algorithms W∗

k for k = 1, 2, . . . such that NW∗
k
(σ) ≤ k+1

k H(σ) + k for any
request sequence σ. The building blocks of our algorithm are optimal algorithms
for divisible window sizes instances. In particular, for an odd constant integer c ≥ 1
let Wc be an optimal online algorithm for an instance in which all window sizes are
of the form c2vi for integers vi ≥ 0.
Algorithm W∗

1 : Let wi be the window of the next request to be scheduled. Round
down wi to the nearest power of 2 and apply algorithm W1 on the new and smaller
window size.
Algorithm W∗

k : Maintain k sets of channels: C1, . . . , Ck. On the channel-set Cj ,
schedule requests whose window sizes are rounded down to (2j − 1)2vi . Let wi

be the window size of the next request to be scheduled. Round down wi to the
ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



Windows Scheduling as a Restricted Case of Bin Packing · 19

nearest number of the form c2vi where c ∈ {1, 3, . . . , 2k − 1} and use algorithm Wc

to schedule the rounded request on C c+1
2

.
The following is used to show that the new rounded down window sizes are not

too small: For i ≥ 1, define Ii = {(2i− 1)2v : v ≥ 0} and let Sk = ∪k
i=1Ii. For

example,

I1 = {1, 2, 4, . . . , 2v, . . .}
I2 = {3, 6, 12, . . . , 3 · 2v, . . .}
I3 = {5, 10, 20, . . . , 5 · 2v, . . .}
S3 = {1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 48, . . .} .

Claim 5.5. The set Sk contains the set Pk = {1, 2, . . . , 2k} and the sets Pk,v =
{(k)2v, (k + 1)2v, . . . , (2k)2v} for any k ≥ 1 and for all v ≥ 1.

Proof. The proof is by induction on k. By definition, S1 = I1 is the set of
powers of 2, and the lemma holds since P1 = {1, 2} and P1,v =

{
2v, 2v+1

}
. Assume

that the claim holds for k ≥ 1 and consider Sk+1. By definition, Sk+1 = Sk ∪ Ik+1.
We first prove that Pk+1 ⊆ Sk+1: (i) Pk = {1, 2, . . . , 2k} is a subset of Sk+1

because Sk ⊆ Sk+1, (ii) 2k + 1 ∈ Sk+1 because 2k + 1 is the smallest member
of Ik+1, and (iii) 2k + 2 = (k + 1)2 ∈ Sk+1 because by the induction hypothesis,
(k + 1)2 ∈ Pk,1 ⊆ Sk. As a result, Pk+1 = Pk ∪ {2k + 1, 2k + 2} ⊆ Sk+1.

Next we prove that Pk+1,v ⊆ Sk+1 for any v ≥ 1: (i) {(k + 1)2v, . . . , (2k)2v} ⊆
Pk,v is a subset of Sk+1 because Pk,v ⊆ Sk ⊆ Sk+1, (ii) (2k + 1)2v ∈ Sk+1 be-
cause (2k + 1)2v ∈ Ik+1, and (iii) (2k + 2)2v = (k + 1)2v+1 ∈ Sk+1 because by
the induction hypothesis, (k + 1)2v+1 ∈ Pk,v+1 ⊆ Sk. As a result, Pk+1,v =
{(k + 1)2v, (k + 2)2v, . . . , (2k + 2)2v} ⊆ Sk+1.

Lemma 5.6. For any positive integer w and any k ≥ 1, there exists an integer
w′ ≤ w such that (i) w

w′ < k+1
k , and (ii) there exist c ∈ {1, 3, . . . , 2k − 1} and v

such that w′ = c2v.

Proof. Let w be any positive integer and let w′ be the largest member of Sk

that is less than or equal to w. The ratio w/w′ is bounded above by the largest ratio
between consecutive members of Sk. By Claim 5.5, the ratios between consecutive
members are less than or equal to the maximum of (i + 1)/i for k ≤ i < 2k, which
is maximized at (k + 1)/k. Hence, w/w′ < (k + 1)/k.

Lemma 5.7. For any sequence σ and k > 0,

NW∗
k
(σ) ≤ k + 1

k
H(σ) + k .

Proof. Let σ = 〈w1, w2, . . . , wn〉 and let σ′ = 〈w′1, w′2, . . . , w′n〉 be the sequence
of corresponding rounded windows. Let Nc denote the subset of indices of the
requests whose windows are rounded to c2v for some integer v ≥ 0. Let σ′c be
the subsequence of σ′ whose indices are restricted to Nc. By Theorem 5.4, each
algorithm Wc uses H(σ′c) =

⌈∑
i∈Nc

1/w′i
⌉ ≤ 1 +

∑
i∈Nc

1/w′i channels to schedule
σ′c. Summing over all the k channel-sets, we get that all the requests are scheduled
on at most

∑n
i=1 1/w′i + k channels. By Lemma 5.6,

∑n
i=1 1/w′i ≤ k+1

k

∑n
i=1 1/wi.

ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



20 · Bar-Noy, Ladner, Tamir

Thus,

NW∗
k
(σ) ≤ k

k + 1
H(σ) + k.

Let h =
√

H(σ). For simplicity, assume that h is an integer. Otherwise, round h
to the nearest integer and the analysis is similar. Assume first that H(σ) is known
in advance. The expression k+1

k H(σ) + k is minimized for k = h. The following
lemma gives the bound for W∗

h. The proof is identical to the proof of Lemma 4.9.

Lemma 5.8. For any sequence σ, NW∗
h
(σ) ≤ H(σ) + 2

√
H(σ).

When H(σ) is not known in advance, the algorithm dynamically increases the
number of channel-sets (the parameter k). Algorithm W∗

dyn is defined as follows:
Let H ′ denote the total bandwidth requirement of the already scheduled requests.
As long as H ′ ≤ 1, use W∗

1 . That is, all the windows are rounded down to the
closest power of 2. When 1 < H ′ ≤ 4, shift to W∗

2 . That is, the windows are
rounded down to the closest number of the form either 2vi or 3 · 2vj . In general,
when (k − 1)2 < H ′ ≤ k2, use algorithm W∗

k . That is, a window wi is rounded
down to the closest number of the form c2vi where c ∈ {1, 3, . . . , 2k − 1}. Note that
when the algorithm shifts to Algorithm W∗

k , it continues to use the channel-sets
that were used for W∗

k−1, it just adds a new (initially empty) channel-set Ck.

Theorem 5.9. For any sequence σ,

NW∗
dyn

(σ) ≤ H(σ) + 4
√

H(σ) .

Proof. Let σ = 〈w1, w2, . . . , wn〉 and h =
√

H(σ). That is, W∗
h is the last

algorithm performed by W∗
dyn on this sequence. Recall that h =

√
H(σ). Let

σ′ = 〈w′1, w′2, . . . , w′n〉 be the sequence of corresponding rounded windows. As in
the proof of Lemma 5.7, it follows that W∗

dyn uses at most h+
∑n

i=1 1/w′i channels.
We now bound the bandwidth lost due to rounding. The idea is that, indeed,
a prefix of σ has a smaller range of rounding possibilities, however, this loss is
proportional to the total bandwidth request of the prefix. In other words, an
additional rounding option is added, only after it is guaranteed that adding the
corresponding potentially low-loaded channel still fits the competitive ratio.

Define sk, for 1 ≤ k ≤ h, to be the index of the first item scheduled while
executing W∗

k and sh+1 = n + 1. It follows that algorithm W∗
k schedules the items

of σ indexed sk to sk+1 − 1. As in the proof of Theorem 4.10, the total bandwidth
of the requests indexed from sk to sk+1 − 1 is at most 2k. By Lemma 5.6, when
executing W∗

k , the requests are rounded such that w′i ≥ k
k+1wi. Thus,

sk+1−1∑

i=sk

1
w′i

≤
sk+1−1∑

i=sk

k + 1
kwi

=
k + 1

k

sk+1−1∑

i=sk

1
wi

≤ k + 1
k

(2k) = 2(k + 1).

ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



Windows Scheduling as a Restricted Case of Bin Packing · 21

Therefore, the total number of channels used by W∗
dyn is at most

h +
n∑

i=1

1
w′i

= h +
h∑

k=1

sk+1−1∑

i=sk

1
w′i

≤ h +
h∑

k=1

2(k + 1) = h2 + 4h

= H(σ) + 4
√

H(σ)

6. OPEN PROBLEMS

In this paper we addressed the Unit Fractions Bin Packing (UFBP) problem and
the Windows Scheduling (WS) problem in the off-line and the on-line settings.
A summary of the results can be found in Table I in Section 1.3. The results
demonstrate that UFBP is an “easier” problem than the traditional bin packing
(BP) problem whereas WS as a restricted version of UFBP is “harder” than UFBP.
We do not have matching bounds and it will be interesting to resolve the following
open problems.

(1) We know that off-line WS is NP-hard using a compact representation. Is the
problem NP-hard in the standard representation?

(2) For off-line UFBP, we know a solution which is optimal up to an additive term
of 1. Is this problem NP-hard?

(3) Is there an off-line algorithm for WS that outperforms the solution of [4]? Also,
does there exist a non-trivial lower bound, larger than H(σ)+1, for the off-line
WS problem that separates it from the off-line UFBP problem?

(4) The upper bounds for on-line UFBP and WS are the same. Is there a better
upper bound for on-line UFBP as is the case in the off-line setting?

(5) The only lower bound we have for on-line WS is the one for UFBP. Is there a
larger lower bound for on-line WS, one that takes advantage of the additional
restriction imposed by the WS problem?

(6) None of our algorithms for WS migrate requests from channel to another chan-
nel. Can migration help in the off-line or the on-line setting? Furthermore, if
migration is permitted, is WS an NP-hard problem?

REFERENCES

[1] S. Acharya, M. J. Franklin, and S. Zdonik. Dissemination-based data delivery using broad-
cast disks. IEEE Personal Communications, 2(6):50–60, 1995.

[2] M. H. Ammar and J. W. Wong. The design of teletext broadcast cycles. Performance
Evaluation, 5(4):235–242, 1985.

[3] A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber. Minimizing service and operation costs of
periodic scheduling. Mathematics of Operations Research (MOR), 27(3):518–544, 2002.

[4] A. Bar-Noy and R. E. Ladner. Windows scheduling problems for broadcast systems. SIAM
Journal on Computing (SICOMP), 32(4):1091-1113, 2003.

ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.



22 · Bar-Noy, Ladner, Tamir

[5] A. Bar-Noy, R. E. Ladner, and T. Tamir. Scheduling techniques for media-on-demand.
In Proceedings of the 14-th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
791–800, 2002.

[6] A. Bar-Noy, J. Naor, and B. Schieber. Pushing dependent data in clients-providers-servers
systems. Wireless Networks Journal (WINET), 9(5):175–186, 2003.

[7] M. Y. Chan and F. Chin. General schedulers for the pinwheel problem based on double-
integer reduction IEEE Transactions on Computers, 41(6):755–768, 1992.

[8] W. T. Chan and P. W. H. Wong. On-line Windows Scheduling of Temporary Items, Proc. of
the 15th International Symposium on Algorithms and Computation (ISAAC), 259-270, 2004.

[9] E. G. Coffman, C. A. Courcoubetis, M. R. Garey, D. S. Johnson, P. W. Shor, R. R. Weber,
and M. Yannakakis. Bin packing with discrete item sizes, part I: perfect packing theorems
and the average case behavior of optimal packings. SIAM Journal on Discrete Mathematics,
13(3):384–402, 2000.

[10] E. G. Coffman, M. R. Garey, and D. S. Johnson. Bin packing with divisible item sizes.
Journal of Complexity, 3(4):406–428, 1987.

[11] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing:
a survey. Approximation Algorithms for NP-Hard Problems, D. Hochbaum (editor), PWS
Publishing, Boston (1996), 46–93.

[12] L. Engebretsen and M. Sudan. Harmonic broadcasting is optimal. In Proceedings of the
13-th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 431–432, 2002.

[13] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of
NP-completeness. W. H. Freeman, 1979.

[14] V. Gondhalekar, R. Jain, and J. Werth. Scheduling on airdisks: efficient access to personal-
ized information services via periodic wireless data broadcast. IEEE International Conference
on Communications (ICC), 3:1276–1280, 1997.

[15] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel. The pinwheel: A a real-time
scheduling problem. In Proceedings of the 22-nd Hawaii International Conference of System
Science, 693–702, 1989.

[16] K. A. Hua and S. Sheu. An efficient periodic broadcast technique for digital video libraries.
Multimedia Tools and Applications, 10(2/3):157–177, 2000.

[17] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case per-
formance bounds for simple one-dimensional packing algorithm. SIAM Journal on Computing
(SICOMP), 3(4):299–325, 1974.

[18] L. Juhn and L. Tseng. Harmonic broadcasting for video-on-demand service. IEEE Trans-
actions on Broadcasting, 43(3):268–271, 1997.

[19] V. Kann. Maximum bounded 3-dimensional matching is max SNP-complete. Information
Processing Letters (IPL), 37(1):27–35, 1991.

[20] C. C. Lee and D. T. Lee. A simple on-line bin packing algorithm. Journal of the ACM
(JACM), 32:562-572, 1985.

[21] C. L. Liu and W. Laylend. Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of the ACM (JACM), 20(1):46–61, 1973.

[22] S. Seiden. On the online bin-packing problem. Journal of the ACM, 49(5):640-671, 2002.

[23] R. Tijdeman. The chairman assignment problem. Discrete Mathematics, 32(3):323–330,
1980.

[24] A. van Vliet. On the asymptotic worst case behavior of harmonic fit. Journal of Algorithms,
20(1):113–136, 1996.

[25] W. F. Vega and G. S. Leuker. Bin packing can be solved within 1 + ε in linear time.
Combinatorica, 1(4):349–355, 1981.

[26] S. Viswanathan and T. Imielinski. Metropolitan area video-on-demand service using pyra-
mid broadcasting. ACM Multimedia Systems Journal, 4(3):197–208, 1996.

[27] P. W. H. Wong, W. T. Chan, and T. W. Lam. Dynamic Bin Packing of Unit Fractions Items.
Proceedings of the 32nd International Colloquium on Automata, Languages and Programming
(ICALP), 2005.

ACM Transactions on Algorithms, Vol. 3, No. 3, 2007.


