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Abstract

Job scheduling on parallel machines is a well-studied singleton congestion game. We
consider a variant of this game in which the jobs are partitioned into competition sets, and
the goal of every player is to minimize the completion time of his job relative to his com-
petitors. Specifically, the primary goal of a player is to minimize the rank of its completion
time among his competitors, while minimizing the completion time itself is a secondary ob-
jective. This fits environments with strong competition among the participants, in which
the relative performance of the players determine their welfare.

We define and study the corresponding race scheduling game (RSG). We show that RSGs
are significantly different from classical job-scheduling games, and that competition may
lead to a poor outcome. In particular, an RSG need not have a pure Nash equilibrium, and
best-response dynamics may not converge to a NE even if one exists. We identify several
natural classes of games, on identical and on related machines, for which a NE exists and
can be computed efficiently, and we present tight bounds on the equilibrium inefficiencies.
For some classes we prove convergence of BRD, while for others, even with very limited
competition, BRD may loop. Among classes for which a NE is not guaranteed to exist,
we distinguish between classes for which, it is tractable or NP-hard to decide if a given
instance has a NE.

Striving for stability, we also study the Nashification cost of RSGs, either by adding
dummy jobs, or by compensating jobs for having high rank. Our analysis provides insights
and initial results for several other congestion and cost-sharing games that have a natural
‘race’ variant.

1 Introduction

Two men are walking through a forest. Suddenly they see a bear in the distance, running towards them.
They start running away. But then one of them stops, takes some running shoes from his bag, and
starts putting them on. “What are you doing?” says the other man. “Do you think you will run faster
than the bear with those?” “I don’t have to run faster than the bear,” he says. “I just have to run faster
than you.”

In job-scheduling applications, jobs are assigned on machines to be processed. Many inter-
esting combinatorial optimization problems arise in this setting, which is a major discipline in
operations research. A centralized scheduler should assign the jobs in a way that achieves load
balancing, an effective use of the system’s resources, or a target quality of service [25].

Many modern systems provide service to multiple strategic users, whose individual payoff is
affected by the decisions made by others. As a result, non-cooperative game theory has become
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an essential tool in the analysis of job-scheduling applications (see e.g., [23, 2, 13, 16, 4], and
a survey in [28]. Job-scheduling is a weighted congestion game [26] with singleton strategies,
that is, every player selects a single resource (machine).

In traditional analysis of congestion games, the goal of a player is to minimize his cost. We
propose a new model denoted race games that fits environments with strong competition among
the participants. Formally, the players form competition sets, and a player’s main goal is to do
well relative to his competitors. The welfare of a player is not measured by a predefined cost
or utility function, but relative to the performance of his competitors. This natural objective
arises in many real-life scenarios. For example, in cryptocurrency mining, one needs to be the
first miner to build a block. It does not matter how fast a miner builds a block, as long as
she is the first to do so. Similarly, when buying event tickets from online vendors, the time
spent in the queue is far less important than what tickets are available when it is your turn to
buy. Participants’ ranking is crucial in numerous additional fields, including auctions with a
limited number of winners, where, again, the participants’ rank is more important than their
actual offer, transplant queues, sport leagues, and even submission of papers to competitive
conferences.

In this paper we study the corresponding race scheduling game (RSG, for short). We assume
that the jobs are partitioned into competition sets. The primary goal of a job is to minimize
the rank of its completion time among its competitors, while minimizing the completion time
itself is a secondary objective. As an example, consider a running competition. In order to
be qualified for the final, a runner should be faster than other participants in her heat. The
runners’ ranking is more important than their finish time.

Unfortunately, as we show, even very simple RSGs may not have a NE. We therefore focus
on potentially more stable instances. In many real-life scenarios, competition is present among
agents with similar properties. For example, there is a competition among companies that
offer similar services; in sport competitions, the participants are categorized by their sex and
age group, or by their weight. Some of our results consider games in which competing players
are homogeneous. Specifically, we assume that all the jobs in a competition set have the same
length.

Our results highlight the differences between RSGs and classical job-scheduling games. We
identify classes of instances for which a stable solution exists and can be computed efficiently,
we analyze the equilibrium inefficiency, and the convergence of best-response dynamics. We
distinguish between different competition structure, and between environments of identical and
related machines. In light of our negative results regarding stability existence, we also study
the problem of Nashification. The goal of Nashification is, given an instance of RSGs, to turn
it into an instance that has a stable solution. This is done either by adding dummy jobs, or by
compensating jobs for having high rank. We believe that this ‘race’ model fits many natural
scenarios, and should be analyzed for additional congestion and cost-sharing games.

2 Model and Preliminaries

A race scheduling game (RSG) is given by G = 〈J ,M, {p(j)} ∀j ∈ J , {di} ∀i ∈M, S〉, where
J is a set of n jobs, M is a set of m machines, p(j) is the length of job j, di is the delay of
machine i, and S is a partition of the jobs into competition sets. Specifically, S = {S1, . . . , Sc}
such that c ≤ n, ∪c`=1S` = J , and for all `1 6= `2, we have S`1 ∩ S`2 = ∅. For every job j ∈ S`,
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the other jobs in S` are denoted the competitors of j. Let n` denote the number of jobs in S`.
Job j is controlled by Player j whose strategy space is the set of machinesM. A profile of

a RSG is a schedule s = 〈s1, . . . , sn〉 ∈ Mn describing the machines selected by the players1.
For a machine i ∈M, the load on i in s, denoted Li(s), is the total length of the jobs assigned
on machine i in s, that is, Li(s) =

∑
{j|sj=i} p(j). When s is clear from the context, we omit

it. It takes p(j) · di time-units to process job j on machine i. As common in the study of
job-scheduling games, we assume that all the jobs assigned on the same machine are processed
in parallel and have the same completion time. Formally, the completion time of job j in the
profile s is Cj = Lsj (s) · dsj . Machines are called identical if their delays are equal.

Unlike classical job-scheduling games, in which the goal of a player is to minimize its
completion time, in race games, the goal of a player is to do well relative to its competitors.
That is, every profile induces a ranking of the players according to their completion time, and
the goal of each player is to have a lowest possible rank in its competition set. Formally, for a
profile s, let CsS`

= 〈Cs`1 , . . . , C
s
`n`
〉 be a sorted vector of the completion times of the players in

S`. That is, Cs`1 ≤ . . . ≤ C
s
`n`

, where Cs`1 is the minimal completion time of a player from S` in

s, etc.. The rank of Player j ∈ S` in profile s, denoted rank j(s) is the rank of its completion
time in CsS`

. If several players in a competition set have the same completion time, then they
all have the same rank, which is the corresponding median value. For example, if n` = 4 and
CsS`

= (7, 8, 8, 13) then the players’ ranks are 〈1, 2.5, 2.5, 4〉, and if all players in S` have the
same completion time then they all have rank (n`+1)/2. Note that, independent of the profile,∑

j∈S`
rank j(s) = n`(n` + 1)/2. For a profile s and a job j ∈ S`, let Nlow(j, s) be the number

of jobs from S` whose completion time is lower than Cj(s), and let Neq(j, s) be the number of
jobs from S`, whose completion time is Cj(s). Note that for j ∈ Neq(j, S). We have,

Observation 2.1 rank j(s) = Nlow(j, s) +
1+Neq(j,s)

2 .

The primary objective of every player is to minimize its rank. The secondary objective is to
minimize its completion time. Formally, Player j prefers profile s′ over profile s if rank j(s

′) <
rank j(s) or rank j(s

′) = rank j(s) and Cj(s
′) < Cj(s). Note that classic job-scheduling games

are a special case of RSGs in which the competition sets are singletons; thus, for every job
j, in every profile, s, we have rank j(s) = 1, and the secondary objective, of minimizing the
completion time is the only objective.

A machine i is a best response (BR) for Player j if, given the strategies of all other players,
j’s rank is minimized if it is assigned on machine i. Best-Response Dynamics (BRD) is a
local-search method where in each step some player is chosen and plays its best improving
deviation (if one exists), given the strategies of the other players.

The focus in game theory is on the stable outcomes of a given setting. The most prominent
stability concept is that of a Nash equilibrium (NE): a profile such that no player can improve
its objective by unilaterally deviating from its current strategy, assuming that the strategies
of the other players do not change. Formally, a profile s is a NE if, for every j ∈ J , sj is a BR
for Player j.

Some of our results consider RSGs with homogeneous competition sets. We denote by Gh
the corresponding class of games. Formally, G ∈ Gh if, for every 1 ≤ ` ≤ c, all the jobs in

1In this paper, we only consider pure strategies.
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S` have the same length, p`. The following example summarizes the model and demonstrates
several of the challenges in analyzing RSGs.
Example: Consider a game G ∈ Gh on m = 3 identical machines, played by n = 9 jobs in
two homogeneous competition sets. S1 consists of four jobs having length 4, and S2 consists
of five jobs having length 3 (to be denoted 4-jobs and 3-jobs, respectively). All the machines
have the same unit-delay. Fig. 1 presents four profiles of this game. The completion times are
given above the machines and the jobs are labeled by their ranks. Consider the jobs of S2 in

Profile (a). Their completion times are C
(a)
S2

= (7, 12, 12, 12, 12). Thus, the 3-job on M2 has

rank 1, and the four jobs on M3 all have rank 2+3+4+5
4 = 3.5. We show that Profile (a) is a

NE. Consider first deviations of a 4-job from Profile (a): a migration of a 4-job from M1 to
M2 is not beneficial, as it leads to profile (b) in which the rank of the 4-jobs on M2 is 3.5. This
is higher than 3 – the rank of the migrating job in Profile (a). Other deviations of a 4-job are
clearly not beneficial. Consider next deviations of a 3-job. A migration from M3 to M2 is not
beneficial, as it leads to profile (c) in which the rank of the 3-jobs on M2 is 4.5. This is higher
than 3.5 – the rank of the deviating job in Profile (a). Other deviations of a 3-job are clearly
non beneficial. Thus, Profile (a) is a NE. This example demonstrates that race games are
significantly different from classical job-scheduling games. In particular, a beneficial migration
may increase the completion time of a job. For example, the migration of a 3-job that leads
from Profile (c) to Profile (a) increases the completion time of the deviating job from 10 to 12,
but reduces its rank from 4.5 to 3.5. Moreover, simple algorithms that are known to produce
a NE schedule for job-scheduling games without competition need not produce a NE in race
games. In our example, Profile (d) is produced by the Longest Processing Time (LPT) rule. It
is not a NE since the 3-job on M1 can reduce its rank from 5 to 4 by migration to either M2

or M3.
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Figure 1: Jobs are labeled by their ranks. (a) A NE profile. (b) and (c) Deviations from the
NE are harmful. (d) An LPT schedule.

The social cost of a profile s, denoted cost(s) is the makespan of the corresponding schedule.
That is, the maximal completion time of a job, given by maxiLi(s) · di. A social optimum of
a game G is a profile that attains the lowest possible social cost. We denote by OPT (G) the
cost of a social optimum profile; i.e., OPT (G) = minsmaxiLi(s) · di.

It is well known that decentralized decision-making may lead to sub-optimal solutions from
the point of view of the society as a whole. We quantify the inefficiency incurred due to self-
interested behavior according to the price of anarchy (PoA) [23, 24] and price of stability (PoS)
[3, 27] measures. The PoA is the worst-case inefficiency of a pure Nash equilibrium, while the
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PoS measures the best-case inefficiency of a pure Nash equilibrium. Formally,

Definition 2.1 Let G be a family of games, and let G be a game in G. Let Υ(G) be the set of
pure Nash equilibria of the game G. Assume that Υ(G) 6= ∅.

• The price of anarchy of G is the ratio between the maximal cost of a PNE and the social
optimum of G. That is, PoA(G) = maxs∈Υ(G) cost(s)/OPT (G). The price of anarchy of
the family of games G is PoA(G) = supG∈GPoA(G).

• The price of stability of G is the ratio between the minimal cost of a PNE and the social
optimum of G. That is, PoS(G) = mins∈Υ(G) cost(s)/OPT (G). The price of stability of
the family of games G is PoS(G) = supG∈GPoS(G).

2.1 Related Work

There is wide literature on job scheduling on parallel machines. The minimum makespan
problem corresponds to the centralized version of our game in which all jobs obey the decisions
of one utility. This is a well-studied NP-complete problem. For identical machines, the simple
greedy List-scheduling (LS) algorithm [19] provides a (2− 1

m)-approximation to the minimum
makespan problem. A slightly better approximation-ratio of (4

3 −
1

3m) is guaranteed by the
Longest Processing Time (LPT) algorithm [20] and A PTAS is given in [21]. For related
machines, with various speeds, LS algorithm provides a θ(m)-approximation [12], and a PTAS
is given in [22].

Congestion games [26] consist of a set of resources and a set of players who need to use these
resources. Players’ strategies are subsets of resources. Each resource has a latency function
which, given the load generated by the players on the resource, returns the cost of the resource.
In singleton congestion games players’ strategies are single resources. In weighted congestion
games, each player j has a weight p(j), and its contribution to the load of the resources he uses
as well as its cost are multiplied by p(j) [9].

The special case of symmetric weighted singleton congestion games corresponds to the
setting of job-scheduling: the resources are machines and the players are jobs that need to be
processed by the machines. A survey of results of job-scheduling games appears in [28]. For
identical machines, it is known that LPT-schedules are NE schedules [18], and that the price
of anarchy, which corresponds to the makespan approximation, is 2− 2

m+1 [17]. For uniformly

related machines, the price of anarchy is bounded by logm
log log logm [13]. For two machines, a

bound of 1+
√

5
2 is given in [23]. Additional related work on job-scheduling games deal with

cost functions that depend on the internal order of jobs, e.g., [11, 7], or a cost function based
on both the load on the machine and its activation cost [15].

Other related work studies additional models in which players’ objective involves social
preferences. In standard game theoretic models, players’ objective is to maximize their own
utility, while in games with social preferences, players have preferences over vectors of all
players’ utilities. For example, [29] studies a model in which the mental state of a player is a
score based on all players’ utilities, and in a mental equilibrium, players can not deviate and
improve this score. The main difference from our setting is that in their model, optimizing
one’s utilization has the highest priority, thus, every NE is also a mental equilibrium, which is
not the case in race games. Other models that capture preferences based on emotions such as
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empathy, envy, or inequality aversion are presented and studied in [6, 10, 14]. A lot of attention
has been given to such models in behavioral game theory. We are not aware of previous work
that analyzes competition in the framework of congestion games. Other social effect, such as
altruism and spite were studied, e.g., in [1, 5, 8].

2.2 Our Results

We show that competition dramatically impacts job-scheduling environments that are con-
trolled by selfish users. RSGs are significantly different from classical job-scheduling games;
their analysis is misleading, and known tools and techniques fail even on simple instances. We
start by analyzing RSGs on identical machines. We show that a RSG need not have a NE,
and deciding whether a game instance has a NE is an NP-complete problem. This is valid
even for instances with only two pairs of competing jobs and two machines, and for instances
with homogeneous competition sets. Moreover, even in cases where a NE exists, BRD may
not converge. On the other hand, we identify several non-trivial classes of instances for which
a NE exists and can be calculated efficiently. Each of these positive results is tight in a sense
that a slight relaxation of the class characterization results in a game that may not have a
NE. Specifically, we present an algorithm for calculating a NE for games with unit-length jobs,
for games in Gh with a limited number of competition sets and machines, or with limited
competition-set size, and games in Gh in which the job lengths form a divisible sequence (e.g.,
powers of 2).

We then provide tight bounds on the equilibrium inefficiency with respect to the minimum
makespan objective. For classical job-scheduling, it is known that PoS = 1 and PoA = 2− 2

m+1

[17]. We show that for RSGs on identical machines, PoS = PoA = 3 − 6
m+2 . This result

demonstrates the ‘price of competition’. The fact that PoS > 1 implies that even if the
system has full control on the initial job assignment, the best stable outcome may not be
optimal. Moreover, since PoA = PoS, in the presence of competition, having control on the
initial job assignment may not be an advantage at all.

For related machines, we start with a negative result showing that even the seemingly
trivial case of unit-length jobs is tricky, and a NE may not exist, even if all jobs are in a single
competition set. For this class of games, however, it is possible to decide whether a game has a
NE, and to calculate one if it exists. Without competition, for unit-jobs and related machines,
a simple greedy algorithm produces an optimal schedule. Moreover, PoA = PoS = 1. We
show that for RSGs with unit jobs and related machines, PoS = PoA = 2. We then move to
study games on related machines and arbitrary-length jobs. Striving for positive results, we
focus on two machines and homogeneous instances. We present an algorithm for calculating a
NE, and prove that any application of BRD converges to a NE. We then bound the equilibrium
inefficiency for arbitrary competition structure. Specifically, for RSGs on two related machines,
PoS = PoA = 2. The PoS lower bound is achieved already with homogeneous competition
sets. Note that for classical job-scheduling game on two related machines, it holds that PoS = 1

and PoA = 1+
√

5
2 [23], thus, again, we witness the harmful effects of a competition.

In light of the negative results regarding equilibrium existence, we discuss possible strategies
of the system to modify a RSG instance or the players’ utilization, such that the resulting game
has a NE. We consider two approaches for Nashification. The first is addition of dummy jobs,
and the second is compensation of low-rank players. Our hardness results imply that min-cost
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Nashification is also hard. For both approaches, we present tight bounds on the Nashification
cost, in general and for unit-jobs on related machine.

We conclude with a discussion of additional congestion games whose ‘race’ variant is natural
and interesting. We show that some of our results and techniques can be adopted to other
games, and suggest some directions for future work.

3 Identical Machines - Equilibrium Existence

In this section we assume that all the machines have the same unit-delay, that is, for all
i ∈M, di = 1. The following example demonstrates that even very simple RSGs may not have
a NE. Consider an instance with two machines and two competing jobs of lengths p1 < p2. If
the jobs are on different machines, then the long job has a higher completion time and can
reduce its rank by joining the short one, so they both have the same completion time and
therefore the same rank. If the jobs are on the same machine, then the short job can reduce
its rank by escaping to the empty machine. Thus, no profile is a NE.

We now show that it is NP-hard to decide whether a given RSG has a NE, even if there are
only two pairs of competing jobs, and all other jobs are singletons aiming only at minimizing
their completion times.

Theorem 3.1 Given an instance of RSG, it is NP-complete to decide whether the game has
a NE profile.

Proof: Given a profile, s, verifying that it is a NE can be done in polynomial time by
considering the jobs one after the other, and checking, for each job, whether its current machine
is its best-response to the other jobs’ assignment.

The hardness proof is by a reduction from the partition problem. An instance of Partition
consists of a set A of k integers a1, . . . , ak that sums up to 2B for some integer B. The goal
is to decide whether A has a partition into two disjoint sets A′ and A′′ such that

∑
j∈A′ aj =∑

j∈A′′ aj = B. Given an instance of Partition, we construct the following instance of RSG.
There are m = 2 identical machines and n = 2k + 2 jobs. Two jobs have length B + 1, k jobs
have length ε < 1

k , and k jobs are originated from the Partition elements, each having length
aj . All the jobs form a single competition set, that is S1 = J .

We show that G has a NE if and only if a partition of A exists. Assume first that a
partition exists. Consider the schedule depicted in Fig. 2(a). Each machine is assigned one
job of length B + 1, half of the ε-jobs, and a set of jobs corresponding to A′ or A′′. Since∑

j∈A′ aj =
∑

j∈A′′ = B, the load on the machines is balanced, and all the jobs have the same
rank. Any migration of a job will increase its completion time and as a result also its rank,
thus, Profile (a) is a NE.

Assume that a partition of A does not exist. We show that no NE exists. First, consider a
schedule in which the two long jobs are assigned on the same machine, say M2. The load on
M2 is at least 2B+ 2. The load on M1 is less than 2B+ 1. If there are additional jobs on M2,
they will clearly benefit from migrating to M1. Consider therefore the schedule depicted in
Fig. 2(b), in which the two long jobs are the only jobs on M2. Their rank is n− 1

2 . A migration
to M1 will increase the completion time of the deviating job, however, it will share the high
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Figure 2: Possible profiles of G. (a) A NE schedule if a Partition exists. No NE if a partition
does not exists and the long jobs are (b) together or (c) separated.

completion time with n− 1 jobs. Thus, such a migration will reduce its rank to n
2 + 1. Thus,

no profile in which the two long jobs are on the same machine is a NE.
Consider next a schedule in which there is one long job on each of M1 and M2. Since A has

no partition, the A-jobs split are between the two machines such that one machine, say M1,
processes a subset A′ of total length at least B + 1, while M2 processes a subset A′′ of total
length at most B− 1. Since the total length of the ε-jobs is less than 1, these jobs will join M2

(see Fig. 2(c)). Note that in Profile (c) there are at most k + 1 jobs on M1 and at least k + 1
jobs on M2. Thus, deviating from M1 to M2 is rank-reducing.

We conclude that G has a NE if and only if a partition exists.
The above hardness result refers to a case in which S1 = J , that is, all the jobs compete

with each other. The jobs of length B + 1 are required to show that the hardness holds even
if there are hardly any competitions. Specifically, assume that S1 and S2 each consist of a
single long job and a single ε-job, and except for these two pairs, all other competition sets are
singletons. Thus, the only goal of n−4 jobs is to minimize their completion time. The analysis
is valid for this game as well: If a partition exists, then Profile (a) is a NE. If a partition does
not exist, then profile (b), as well as every profile in which the long jobs are together, is not
a NE since long jobs will benefit from joining their competitors. Also, profile (c) as well as
every profile in which the long jobs are separated, is not a NE, since the long job on the loaded
machine will benefit from joining its competitor.

Corollary 3.2 Given an instance of RSG, with only two pairs of competing jobs, it is NP-hard
to decide whether the game has a NE profile.

Hoping for positive results, we turn to consider the class Gh of RSGs with homogeneous
competition sets. Recall that G ∈ Gh if, for every 1 ≤ ` ≤ c, all the jobs in S` have the same
length, p`. Unfortunately, as demonstrated in Fig. 3, games in this class, even with only three
sets and three machines, may not admit a NE. Moreover, as demonstrated in Fig. 4, even if a
NE exists, it may be the case that BRD does not converge.

The next natural question is whether there is an efficient way to decide, given a game
G ∈ Gh, whether G has a NE. We answer this question negatively:

Theorem 3.3 Given an instance of RSG with homogeneous competition sets, it is NP-complete
to decide whether the game has a NE profile.
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Figure 3: An example of a RSG with homogeneous competition sets, that has no NE. Jobs
are labeled by their ranks. Profiles (a)-(b) show that big jobs must be on different machines.
Profiles (c1)− (c2)− (c3)− (c1) loop when big jobs are on different machines.
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Figure 4: An example of a RSG with homogeneous competition sets in which c = 2, p1|p2, and
BRD may loop (profiles (a)-(b)-(c)-(a)). A NE exists (profile (d)). Jobs are labeled by their
ranks.

Proof: Given a profile s, verifying that it is a NE can be done in polynomial time by
considering the jobs one after the other, and checking for each job whether its current machine
is its best-response to the other jobs’ assignment.

The hardness proof is by a reduction from the partition problem. An instance of Partition
consists of a set A of k integers a1, . . . , ak that sums up to 2B for some integer B. The goal
is to decide whether A has a partition into two disjoint sets A′ and A′′ such that

∑
j∈A′ aj =∑

j∈A′′ aj = B. Given an instance of Partition, we construct the following instance of RSG
with homogeneous competition sets. There are m = 4 identical machines and n = k + 13 jobs
divided into k + 2 competition sets. S1 consists of 4 jobs of length 9, S2 consists of 9 jobs of
length 2, and for every 1 ≤ j ≤ k, the j-th element in A defines the set Sj+2 that has a single
job of length

aj
4B . Note that the total length of jobs originated from A is 1/2. We show that G

has a NE if and only if a partition exists.
Assume first that a partition exists. Consider the profile (a) depicted in Fig 5(a): M1

processes two jobs of length 9, M4 processes 7 jobs of length 2, and each of M2 and M3

processes one job of length 9, one job of length 2, and all jobs corresponding to A′ or A′′. We
show that profile (a) is a NE. Jobs corresponding to A′ or A′′ are in singleton competition sets
and do not have a load-reducing migration, and therefore do not have a beneficial migration.
A migration of a job from S1 will make the target machine most loaded, and does not increase
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M1 M2 M3        M4

(a)

S1 S2         {Sj+2}1jk

4

9

p1=9, p2=2, pj+2= 
𝑎𝑗

4𝐵

1

18

14

M1 M2 M3        M4

(b)

M1 M2 M3        M4

(c)

M1 M2 M3         M4

(d)

< 9

> 11
1

4
11

1

4
11

1

4 < 11
1

4

Figure 5: (a) A NE profile if a partition exists. (b)− (d) Non-stable profiles if a partition does
not exist.

the number of jobs sharing the maximal rank with the deviating job, therefore, it is never
beneficial. For jobs from S2, M2 and M3 have the lowest completion time, and leaving them
is not beneficial. A migration from M4 will make the deviating job be in the sole most loaded
machine processing jobs from s2, with fewer jobs from S2 sharing the max-rank. Specifically,
it will complete at time 20 or 131

4 , while the other jobs from S2 have completion times at most
12. Therefore, jobs from S2 do not have a rank-reducing migration as well, and profile (a) is
a NE.

Assume that a partition of A does not exist. We show that the game has no NE. Consider
first profiles in which 3 or 4 of the 9-jobs are assigned on the same machine, say M1. It must
be that at least one of the other machines has load less than 9, implying that escaping from
M1 is beneficial. Consider next profiles in which the four long jobs of S1 are assigned on
different machines (Fig. 5(b)). If there is only one most-loaded machine, then the 9-job on it
can benefit from joining any of the other machines. If there are two most-loaded machines,
then there must be a machine with only one 2-job, and some 2-job has a beneficial migration.

If the long jobs are assigned in two pairs, say on M1 and M2 (Fig. 5(c)), then there is at
least one machine with load less than 9, implying, that each of the 9-jobs on M1 and M2 can
benefit from migrating to that machine, reducing its rank from 2.5 to 2.

We are left with profiles in which two 9-jobs are assigned together, say on M1, and there
is a single 9-job on two other machines, say M2 and M3 (Fig. 5(d)). In order to avoid a cost-
reducing beneficial migration of the 2-jobs, there must be seven 2-jobs on M4 and one 2-job on
each of M2 and M3. Since the jobs corresponding to A are in singleton competition sets and
only aim at minimizing their completion time, they are all on M2 and M3. Given that there is
no partition, M2 and M3 are not balanced. Assume w.l.o.g., that L2 > L3. Thus, L3 < 111

4 ,
implying that L3 + 2 < L4. Thus, there is a beneficial migration of a job of length 2 from M2

to M3. After such a migration regardless of the migration of jobs corresponding to A there is
a beneficial migration of a job from M4 to M2, that will be followed by a beneficial migration
from M3 to M4. This sequence of three migrations brings us back to a profile from which some
2-job has a beneficial migration.

We conclude that G has a NE if and only if a partition exists.
In light of the above negative results, we would like to characterize instances in which a

NE is guaranteed to exist. One such class includes instances of unit-length jobs and arbitrary
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competition sets.

Theorem 3.4 If all jobs have the same length, then a NE exists and can be computed efficiently

Proof: We assume w.l.o.g., that all jobs have unit length. The following algorithm produces
a NE.

Algorithm 1 Calculating a NE Schedule of a game of unit-jobs

1: let L =
⌊
n
m

⌋
and h = n%m.

2: assign the jobs set after set, fill the machines one after the other. The first h machines are
filled to capacity L+ 1, the last m− h machines are filled to capacity L.

3: for i = h to m− 1 do
4: let S` be the last set assigned on Mi.
5: if n`(i) ≤ n`(i+ 1) then
6: move one job j ∈ S` from Mi to Mi+1.
7: else
8: break
9: end if

10: end for

By definition of h and L we have that (L+ 1)h+L(m−h) = n, thus, all jobs are assigned.
Consider a set S`. If all the jobs of S` are assigned on high machines (with load L + 1), or
all the jobs of S` are assigned on low machines (of load L), then the jobs of S` are stable.
The schedule produced in line 2 is not stable only if jobs from the last set assigned on a
high machine can increase the number of jobs sharing the higher completion time with them.
Specifically, if n`(h) ≤ n`(h+ 1). If this is the case, one job is migrated to Mh+1, and the same
test is applied on the suffix of machines from Mh+1 to Mm. Based on the above, it is easy to
show by induction on i, for h ≤ i ≤ m− 1, that all the jobs on M1, . . . ,Mi are stable. Finally,
if the final load on Mm is L, then jobs on Mm are clearly stable, and if the final load on Mm is
L+ 1 then sets on Mm are either solely on Mm or have more members on Mm - as otherwise,
the load of Mm would not increase to L+ 1. Thus, the algorithm produces a NE.

Another class for which we have a positive result considers instances of only two competition
sets and three machines. It is tight in light of the no-NE example given in Fig. 3, in which
there are three sets on three machines.

Theorem 3.5 If G ∈ Gh has c = 2 and m = 3, then a NE exists and can be computed
efficiently.

Proof: For ` = 1, 2, let P` = n` ·p`, and let P = P1 +P2. We distinguish between two cases:
Case 1: For both `, P` > P/3. Assign a minimal number of jobs of total length at least

P
3 from S1 on M1. Assign a minimal number of jobs of total length at least P

3 from S2 on
M3. Assign the remaining jobs on M2. For i ∈ {1, 2, 3}, let L0

i denote the load on Mi after
this initial assignment. Note that if a job from S1 is moved from M1 to M2 and a job from
S2 is moved from M3 to M2 then the resulting load on M2 will be L2 >

P
3 , since by their

construction L0
1 − p1 <

P
3 and L0

3 − p2 <
P
3 . Assume w.l.o.g., that p2 < p1. Now, as long as it

is beneficial, let jobs from M3 migrate to M2. Let L∗i denote the load on Mi at the end of the
process. First note that L∗2 ≤ L∗3, since L0

2 ≤ P
3 < L0

3 and there are more jobs from S2 on M3,

11



therefore, a migration from M3 to M2 is beneficial only if it does not result in M2 being more
loaded. If some job from M3 migrates to M2 then we have a NE: any job from M1 migrating
to Mi for i ∈ {2, 3} will cause L∗1 <

P
3 < L∗i . Given that there are more jobs from S1 on M1,

such a migration is not beneficial. Also, no job can benefit from leaving M2, which is the least
loaded machine.

If no jobs migrates from M3 to M2, let jobs migrate from M1 to M2 in the same way. After
the last such migration, by the same arguments, is not beneficial for jobs from S3 to migrate
to M2 - and also since L∗1 ≥ L∗2 there can be no beneficial migration from M3 to M1. Since M2

is the least loaded it is also not beneficial for any job to leave it. Therefore, we have a NE.
Case 2: For some i, Pi ≤ P/3. Assume w.l.o.g., that P2 ≤ P/3. Assign all the jobs of S2

on M3, then greedily assign jobs from S1 on a lightly loaded machine, breaking ties in favor
of smaller indexed machines. Let L0

i denote the load on Mi after this initial assignment. Note
that for any two machines |L0

i1
− L0

i2
| ≤ p1. Proceed as follows, distinguishing between three

cases:

1. M3 is a least loaded machine. Since M1 and M2 process only jobs of S1, and since any
migration into M3 will make M3 the most loaded machine, we have a NE.

2. M3 is the most loaded machine. Since the most loaded machine has load at least P
3 , and

P2 ≤ P
3 , there must be at least one job from S1 on M3. Also, L1 = L2 since otherwise

if w.l.o.g L1 > L2 then L3 > L1 = L2 + p1. This contradicts the assignment of the last
job from S1 on M3, as placing it on M2 is better. Once we move a job from S1 from
M3 to M1 we have a NE since all jobs of S2 are on M3 which is now the least loaded
machine. The jobs on M1 have the highest cost, but they cannot benefit from migrating,
since they share the high rank with more competitors.

3. L0
2 < L0

3 ≤ L0
1. We migrate jobs from M3 into M2 as long as L3 − L2 ≥ 2p2. Since

L0
1 − L0

2 = p1, we end up with L∗1 − L∗2 ≤ p1 and L∗1 − L∗3 ≤ p1. Moreover, the order
between the machines’ loads has not changed. Thus, we have a NE.

Classical job-scheduling games are race games with singleton competition sets. A NE may
not exist even if there is just one pair of competing jobs. Also, it is NP-hard to decide if a
NE exists even if there are only singletons and two competing pairs (see Theorem 3.1). For
games with homogeneous competition sets, in which there are only singleton and pairs, we
have positive news.

Theorem 3.6 If G ∈ Gh, and for all `, |S`| ≤ 2 then a NE exists and can be computed
efficiently.

Proof: We present an algorithm for calculating a NE profile. For k = 1, 2, let Ak denote
the set of competition sets with k jobs.
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Algorithm 2 Calculating a NE Schedule of a game G ∈ Gh with singleton and doubleton sets

1: for every set `, let P` denote the total length of jobs in S`.
2: sort the sets such that P1 ≥ P2 ≥ . . . ≥ Pc.
3: for ` = 1 to c do
4: schedule S` on a least loaded machine
5: end for
6: while there exists S` ∈ A2 assigned to Ma such that La − 2p` = Lb for a least loaded

machine Mb, move one job from S` to Mb.

We show that the resulting assignment is a NE. It is well known that when LPT completes,
the gap between the loads on any two machines is at most the length of the shortest job on the
more loaded machine. Consider a job j ∈ S` assigned on machine Ma. If j has no competitors,
then by the above property, the load on every other machine is at least La − p(j), and thus,
no beneficial migration exists for j. Assume that j ∈ S` has a competitor, and both jobs are
on Ma. By the above LPT property, every less loaded machine has load at least La − 2p`.
A migration into a machine with load higher than La − 2p` will make the target machine
more loaded, and is therefore not beneficial. Migrating into a machine whose load is exactly
La − 2p` is the only possible beneficial migration of j. Both jobs in S` keep their 1.5 rank,
with a reduced completion time. The loads on Ma and Mb become perfectly balanced. Note
that every machine can be a target of at most one such migration, thus, after at most m/2
migration a NE is reached.

3.1 Homogeneous Competition sets with Divisible Lengths

Let Gdiv be the class of RSGs with homogeneous competition sets in which the job lengths
form a divisible sequence. Formally, let p1 > p2 > . . . > pc denote the different job lengths in
J , then S` = {j|p(j) = p`}, and for every `1 > `2, it holds that p`1 |p`2 . For example, if all job
lengths are powers-of-2 and S` = {j|p(j) = 2c−`+1} then G ∈ Gdiv.

As demonstrated in Fig. 4, BRD may not converge to a NE even if G ∈ Gdiv and c = 2.
Nevertheless, we prove that a NE can be computed directly for any game G ∈ Gdiv.

Theorem 3.7 If G ∈ Gdiv, then a NE exists and can be computed efficiently.

Proof: We provide an algorithm for calculating a NE assignment. The algorithm assigns
the jobs from largest to smallest. It proceeds in iterations, where jobs of S` are assigned in
iteration `. The following simple observation is based on the fact p`2 |p`1 for any `2 ≥ `1, and
is valid for any assignment of the jobs in non-increasing order.

Claim 3.8 Let s be any assignment of the jobs in S1, . . . , S`−1. For any two machines Ma,Mb,
it holds that p`|(La(s)− Lb(s)).

Proof: The jobs assigned in s are all larger than the jobs than S`. Since p`1 |p` for any
`1 > i, there exist xa, xb ∈ N such that La(s) = xa · p` and Lb(s) = xb · p`. Therefore,
La(s)− Lb(s) = (xa − xb) · p` where xa − xb ∈ N.

Now let Ja be the set of jobs assigned already, and let Ju = J \Ja be the set of unassigned
jobs. Initially, Ja = ∅ and Ju = J . For a set S`, let u` be the number of unassigned jobs
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from S`. For simplicity, we do not include the updates of u` and the sets Ja and Ju in the
description below, and assume that their value correspond to the current profile. Similarly, La
is the current load on machine a. Recall that for a set of jobs A, we denote by P (A) the total
length of jobs in A. In particular, P (Ju) is the total length of unassigned jobs.

Algorithm 3 Calculating a NE Schedule of a game in Gdiv
1: for ` = 1 to c do
2: select a machine with minimal load, denote it M`1.
3: assign min(n`, n

1
` ) jobs from S` on M`1, where n1

` is the smallest integer satisfying∑
k 6=`1 max(L`1 + n1

` · p` − Lk, 0) ≥ P (Ju)− n1
` · p`.

4: while u` > 0 and some machine has load less than L`1 − p` do
5: let Ma be a machine with minimal load.
6: assign min(u`, (L`1 − La)/p` − 1) jobs from S` on Ma.
7: end while
8: while u` > 0 do
9: assign a job from S` on a lightly loaded machine with the most jobs from S`.

10: end while
11: end for

For every `, the jobs of S` are assigned in iteration `. Every iteration consists of at most
three phases. In the first phase (lines 2-3), the algorithm assigns jobs of S` on a machine,
M`1, that will accommodate a maximal number of jobs from S`, and will be the most loaded
machine accommodating jobs from S`. In the second phase(lines 4-7), the algorithm assigns
jobs of S` greedily, on a least loaded machine, until its load is L`1 − p`. In the optional third
phase (lines 8-10), performed after all the machines have load at least L`1 − p`, the algorithm
assigns jobs greedily, iteratively adding a single job from S` on a lightly loaded machine with
a maximal number of jobs from S`.

In line 3, the number of jobs assigned on M`1 is set to be the minimum between n` - the
number of jobs in S`, and n1

` , where n1
` is determined in the following way: For an integer x > 0,

assume x jobs from S` are placed on M`1. The resulting load on M`1 is L`1 + xp`. For every
machine k 6= `1, it is now possible to add on Mk jobs of total load max(0, L`1+xp`−Lk) without
making Mk more loaded than M`1. n1

` is selected to be the minimal x such that the available
capacity on the other machines, if none of them is allowed to become more loaded than M`1,
is sufficient to accommodate the remaining jobs – whose total length is given by P (Ju)− xp`.

Let s` be the profile after all jobs from S` are assigned. Let s = sc be the profile produced
by the algorithm. The assignment of jobs from S` in the second phase, implies the following.

Observation 3.9 If there are additional machines accommodating jobs from S` whose load in
s` equals L`1(s`), then for every machine Ma, La(s`) ≥ L`1(s`)− p`.

In order to show that s is stable we will prove the following property of s:

Claim 3.10 For every 1 ≤ ` ≤ c, the machine M`1 is the most loaded machine in s among
the machines accommodating jobs from S`.

Proof: M`1 is the first machine assigned jobs from S`. It is assigned min(n`, n
1
` ) jobs from

S` where
∑

k 6=`1 max(L`1 +n1
` ·p`−Lk, 0) ≥ P (Ju)−n1

` ·p`. Note first that if min(n`, n
1
` ) = n`,
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then M`1 is the only machine accommodating jobs from S` and the claim clearly holds. If
min(n`, n

1
` ) = n1

` , then the choice of n1
` guarantees that the unassigned jobs can fit into the

other machines without exceeding capacity L`1 + n1
` · p` is sufficient to accommodate all the

unassigned jobs. Claim 3.8 together with the fact that jobs are assigned in non-increasing
length order, guarantees that when the remaining jobs are assigned, no machine will become
more loaded than M`1.

We show that s is a NE. Assuming for contradiction it is not, and let S` be the competition
set with minimal p` such that a job j ∈ S` has a beneficial migration.

By Claim 3.10, M`1 it is the most loaded machine with a job j ∈ S`. By the algorithm
it also has the most jobs from S`. Additionally, from Observation 3.9 any migration of a job
j ∈ S` from M`1 to a machine Ma will make Ma the most loaded machine with a job from S`.
This means no job j ∈ S` in M`1 has a load-reducing migration to any machine Ma. We show
that there is no load-increasing rank reducing migration as well: by the choice of n1

` if there is
any other machine Mb with Lb = La + p` and Lb < L`1 then there is a job j2 ∈ S`2 6= S` with
pj2 < pj assigned to Mb, and then j2 has a beneficial migration to Ma, which contradicts the
choice of p`.

Given that M`1 is not involved, and that a migration to a more loaded machine is never
beneficial, any beneficial migration is between machines Ma and Mb with Lb < La < L`1. The
greedy choice of machines in the algorithm along with line 6 in the algorithm ensure that if
La > L`1 − p` then Lb ≥ L`1 − p`. This means, by Observation 2.1, that a migration from Ma

to Mb is not beneficial, as L`1 ≤ Lb + p` and M`1 has the most jobs from S`. If La = L`1 − p`
then, by the choice of M`1, the load Lb > La − p`. This implies that a migration of a job j
from Ma to Mb is load increasing - and by the greedy choice of initial machine, the number of
jobs in a machine with lower load at least stays the same.

Therefore, no beneficial migration exists and s is a stable profile.
Remark: Algorithm 3 assumes that jobs from different competition sets have different lengths.
A more relaxed definition of Gdiv allows several competition sets with the same job-length.
Formally p1 ≥ p2 ≥ . . . ≥ pc is the divisible sequence of job-lengths (possibly with repetitions).
The algorithm can be modified to fit such instances by calculating, for each competition set S`,
how many machines will end up having load L`1 at the end of the algorithm, and assigning an
extra job to at most that number of machines during the second step of the algorithm, instead
of the third step. This resolves the case in which two machines may have load- gap exactly p`
and migrating between them may be beneficial.

4 Identical Machines - Equilibrium Inefficiency

In this section we analyze the equilibrium inefficiency of RSGs with respect to the objective
of minimizing the maximal cost of a player (equivalent to the makespan of the schedule). For
the classical job-scheduling game, the Price of Anarchy is known to be 2− 2

m+1 for m identical
machines, and the Price of Stability is known to be 1. We show that competition causes higher
inefficiency. Specifically, both the PoA and the PoS are 3 − 6

m+2 . We prove below the upper
bound for the PoA and the lower bound for the PoS. Additionally we describe, given m ≥ 3
and ε > 0, a game G, with homogeneous competition sets, for which PoA(G) = 3− 6

m+2 − ε.
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Given that we prove a matching PoS bound, this proof is less interesting. However, it can
serve as a warm-up for the lower bound PoS proof, which is more involved.

Theorem 4.1 For every m ≥ 3 and ε > 0, there exists a game G on m identical machines
for which PoA(G) = 3− 6

m+2 − ε.

Proof: Given m ≥ 3 and ε > 0, we present a game G ∈ Gh for which PoA(G) = 3− 6
m+2−ε.

Let n = (m − 1)m + 3. The jobs are partitioned into two competition sets. S1 consists of
(m−1)m jobs of length 1, and S2 consists of 3 jobs of length m−δ, where δ is a small constant
that depends on ε and m.

Consider a schedule s, in which one machine processes the three jobs of S2 and each of the
other m − 1 machines processes m unit jobs. Fig. 6(a) presents the schedule for m = 5. We
show that s is a NE: Since the three jobs of S2 are assigned on one machine, they all have
the same rank. Migrating to a less loaded machine will result in load 2m− δ, leaving the two
competitors with load 2m − 2δ, thus the rank of a migrating job would be hurt. The jobs of
S1 are balanced and do not have a beneficial migration as well. The cost of s determined by
the completion time of the machine processing the jobs of S2 and is 3(m− δ).

m- 3

m- 2

m- 1

m- 1 m- 2 m- 3

Sl

(a) (b)

3/4 - l
1/4 + l

M1 M2 M3           M4 M5 M1 M2 M3           M4 M5

m- 

m- 

m- 

m-  m-  m- 

(a) (b)

M1 M2 M3          M4 M5 M1 M2 M3           M4 M5

Figure 6: A tight example for m = 5. (a) a NE profile. (b) an optimal profile.

If m > 3, then an optimal profile assigns the 3 long jobs on 3 different machines, and
balances the load on the machines with the unit-jobs (see in Fig. 6(b)). Specifically, there are
two unit-jobs on each of the three machines with jobs from S2, and m+ 2 unit-jobs on each of
the other m − 3 machines. Note that 3 · 2 + (m − 3)(m − 2) = m(m − 1) = |S1|. The cost of
an optimal assignment is m+ 2. The PoA is therefore 3m−3δ

m+2 = 3− 6
m+2 − ε.

If m = 3, then the cost of an optimal assignment is m + 2 − δ. If m = 2 then an optimal
profile assigns two jobs of length 2−δ on one machine, and a single job of length 2−δ together
with two unit-jobs on the second machine. The cost of an optimal assignment is m + 2 − 2δ,
thus, the choice of δ for a given ε is a bit different.

Note that the optimal profile is also a NE: The three long jobs have the same cost m+2−δ,
and thus the same rank. Any deviation will increase their cost and rank. The unit-jobs on the
first 3 machines have lower rank than the other unit-jobs, but a deviation of a unit-job whose
cost is m + 2, will increase its cost and only reduce the number of jobs sharing the maximal
completion time with the deviating job.

Theorem 4.2 If G is a RSG on m identical machines that has a NE, then PoA(G) ≤ 3− 6
m+2 .
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Proof: Let s be any NE of G. Let Mi be a machine with the highest load, that is
cost(s) = Li(s), and let j be a shortest job on Mi. Assume j ∈ S`. If there are at most two
jobs on Mi then let j′ be a longest job on Mi. Clearly, OPT (G) ≥ p(j′) and cost(s) ≤ 2p(j′),
implying PoA(G) ≤ 2. Otherwise, p(j) ≤ cost(s)/3.

Claim 4.3 For every machine i′ 6= i, it holds that Li′(s) ≥ 1
3cost(s).

Proof: We first show that Li′ ≥ Li−2p(j). Assume by contradiction that for some machine
i′, Li′ < Li−2p(j). Assume that job j migrates to machine i′. Before the migration, j’s rank is
maximal among S`. After the migration, its completion time reduces to Li′ + p(j) < Li− p(j).
If there are jobs from S` on Mi, their completion time after j’s departure is Li − p(j), so the
migration reduces j’s rank, contradicting the stability of s. If j has no competitors on machine i,
then the migration is clearly beneficial, since j reduces its completion time and can only improve
its rank. Given that p(j) ≤ cost(s)/3, we conclude, Li′ ≥ Li−2p(j) ≥ Li− 2

3cost(s) = 1
3cost(s).

Using the above claim, we can bound the social optimum:

OPT (G) ≥
∑

j p(j)

m
=

∑
i Li(s)

m
≥ cost(s) + (m− 1)cost(s)/3

m
=

(m+ 2)cost(s)

3m
.

Thus, PoA(G) = cost(s)
OPT ≤

3m
m+2 = 3− 6

m+2 .

Theorem 4.4 For every m ≥ 3 and ε > 0, there exists a RSG G on m identical machines
such that G has a NE, and PoS(G) ≥ 3− 6

m+2 − ε.
Proof: Given m ≥ 3 and ε > 0, we describe a RSG G such that PoS(G) = 3− 6

m+2 − ε. Let
E = {δ1, δ2, δ3} ∪ {εi|1 ≤ i ≤ m(m− 1)} be a set of 3 +m(m− 1) small positive numbers such
that δ1 < δ2 < δ3 ≤ εm

3 , δ1 + δ2 > δ3,
∑

i>0 εi <
1
4 , and any subset of E with any coefficient in

{−1,+1} for each element, has a unique sum. That is, ∀A1, A2 ⊆ {δ1, δ2, δ3, ε1, . . . , εm(m−1)}
such that A1 6= A2, and any γk ∈ {−1,+1} we have

∑
k∈A1

γk · k 6=
∑

k∈A2
γk · k.

The set of jobs consists of 1 +m(m− 1) competition sets, S0, . . . , Sm(m−1):

1. S0 consists of three jobs, where ji0 for i = 1, 2, 3 has length m− δi.

2. For ` = 1, . . . ,m(m − 1), the set S` consists of two jobs: j1
` of length 1

4 − ε`, and j2
` of

length 3
4 + ε`. Note that p(j1

` ) + p(j2
` ) = 1.

The PoS analysis is based on the fact that in every NE, the three long jobs of S0 are assigned
on the same machine, while an optimal assignment is almost balanced. We first restrict the
possible assignments of the jobs in S` for all ` ≥ 0.

Observation 4.5 In every NE of G, ∀` ≥ 1, the two jobs of S` are assigned on the same
machine.

Proof: Let s be an assignment in which j1
` and j2

` are on different machines. Given that
every subset of E has a different sum, one of j1

` and j2
` is assigned on a machine with a higher

load. The rank of this job in s is 2. By joining its competitor, its rank will reduce to 1.5.
Consider now the three jobs of S0.

Claim 4.6 In every NE, the jobs of S0 are assigned on the same machine.
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Proof: Let s be an assignment in which j1
0 , j

2
0 and j3

0 are assigned on three different
machines.

Given that every subset of E has a different sum, the completion time of some job from S0

is higher than the completion time of its competitors. This job has rank 3 and it can reduce
its rank to 2.5 by joining either of its competitors. Thus, s is not a NE.

Consider next an assignment s in which two jobs from S0 are on one machine, and the third
job is on a different machine. W.l.o.g., assume that j1

0 and j2
0 are assigned on M1, and j3

0 is
assigned on M2. Clearly, there is no NE in which there is another job on M1, since any small
job can benefit from moving from M1 to a less loaded machine. By Observation 4.5, the jobs
of S`, ∀` ≥ 1 are assigned together. Thus, a total load of m(m− 1) +m− δ3 = m2− δ3 is split
among the m − 1 machines M2, . . . ,Mm. Since m − 1 - m2, there are two machines Ma,Mb

such that La(s) > Lb(s)− 1
2 , and Ma accommodates some set S`. Therefore, j1

` , whose size is
a bit less than 1

4 , can reduce its rank from 1.5 to 1 by migrating to Mb. We conclude that s is
not a NE.
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Figure 7: A tight example for m = 5. (a) The only NE profile. (b) an optimal profile.

By Claim 4.6, in every NE, s, the jobs of S0 are assigned on the same machine, say M1.
Thus, the cost of every NE is at least L1(s) = 3m −

∑3
i=1 δi. We show that a NE exists. An

example for m = 5 is given in Fig. 7(a). Assign the jobs of S0 on M1. Distribute all remaining
jobs such that for all ` ≥ 1 the jobs of S` are on the same machine, and there are m such sets
assigned on each machine other than M1. For all a ≥ 2 we have La = m. This assignment is
a NE since any migration of a job j from S` with ` ≥ 1 will increase its rank from 1.5 to 2,
and any migration of a job jx0 from S0, will end up with load at least 2m − δx which is more
than 2m − δy − δz, the remaining load on M1. Thus, such a migration increases the rank of
the deviating job from 2 to 3 and is not beneficial.

We turn to describe an optimal assignment. The total load of the jobs is m(m− 1) + 3m−∑3
i=1 δi = m(m + 2) −

∑3
i=1 δi. The maximal length of a job is less than m, and there are

3 ≤ m long jobs. The remaining jobs can be arranged in unit-length pairs. Thus, an optimal
assignment is almost perfectly balanced (up to a gap of δ3), where the most loaded machine

has load m(m+2)
m = m+ 2. The resulting PoS is

3m−
∑3

i=1 δi
m+2 < 3− 6

m+2 − ε.

5 Related Machines

In this section we consider RSGs played on related machines. Recall that di is the processing
delay of machine Mi. Thus, it takes p(j) · di time units to process a job of length p(j) on
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Mi. For a profile s, Ci(s) = Li(s) · di is the completion time of Mi, and the cost of every job
assigned on it.

5.1 Unit-length Jobs

For classical job-scheduling games with unit-jobs and related machines the picture is simple
and well understood. For a profile s, let C+

i (s) = (Li(s) + 1) · di denote the completion time
of Mi if one more job would be assigned on it. A simple greedy algorithm that assigns the
jobs sequentially, each on a machine minimizing C+

i , is known to produce a Nash equilibrium
profile that also minimizes the makespan. Moreover, every best-response sequence converges
to an optimal schedule, thus, without competition, PoA = PoS = 1.

Surprisingly, as we show, even this simple setting of RSGs with unit-length jobs may not
have a NE. Consider a game with n = 5 unit jobs, that form a single competition set. Assume
there are three machines with delays 1, 1 + ε and 1 + 2ε. First note that a NE profile must
fulfil L1 ≥ L2 ≥ L3, as otherwise, it is clearly beneficial to deviate from a slow machine to a
less loaded faster machine. Also note that if L1 = 4, then one of the slower machines is empty
and a deviation from M1 to the empty machine is beneficial. The remaining load vectors are
{〈3, 2, 0〉, 〈3, 1, 1〉, 〈2, 2, 1〉}. As demonstrated in Fig. 8, none of the corresponding profiles is a
NE. Profile (c) is the output of a greedy algorithm. However, a job on M2 can reduce its rank
from 4.5 to 4 by a migration to M1 (Profile (a)). Once it migrates, it is beneficial for the job
on M3 to join M2 (Profile (b)), and a migration from M1 to M3 brings us back to Profile (c).

M1 M2 M3M1 M2 M3
M1 M2  M3

(a) (c)(b)

1+ϵ 1+2ϵ1 1+ϵ 1+2ϵ1 1+ϵ 1+2ϵ1
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M1 M2 M3  M4 …     Mm

0.4 10.31 0.5+mϵ0.5+4ϵ 0.4 10.31 0.5+mϵ0.5+4ϵ 0.4 10.31

(0) (k) (m-2)

M1 M2 M3        M4 … Mk+2 Mk+3 … Mm M1 M2 M3        M4 …     Mm

… …

0.5+mϵ0.5+4ϵ

Figure 8: No NE of a RSG with five competing unit-jobs on three related machines. The
profiles loop (a)-(b)-(c)-(a). Jobs are labeled by their ranks.

While a NE may not exist, this class of instances is somewhat simpler. We show that it is
possible to decide efficiently whether a given game instance has a NE and to compute one if it
exists. Recall that the same task is NP-hard for games in Gh even on identical machines.

Theorem 5.1 Let G be a game with unit-jobs on related machines in which all jobs are in the
same competition set (S1 = J ). It is possible to decide efficiently whether G has a NE and to
compute one if it exists.

Proof: We present an algorithm that returns a NE if one exists. The set Λ includes the
machine to which a job already migrated.
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Algorithm 4 Attempt to find a NE of a game with a single competition set of unit jobs.

1: greedily assign each job on a most loaded machine among those minimizing C+
i .

2: Λ = ∅
3: while Λ 6=M do
4: let Ma be a highest load machine among the highest cost machines not in Λ.
5: if there is a beneficial migration out of Ma then
6: let Mb be a lowest cost machine among the most loaded machines, such that a migra-

tion from Ma to Mb is beneficial.
7: migrate a job from Ma to Mb.
8: add Mb to Λ.
9: else

10: break
11: end if
12: end while
13: A NE exists if and only if the current profile is a NE.

We show that if a NE exists then it is reached by the algorithm. The algorithm only halts
once there is no beneficial migration from the highest cost machine that was not previously
migrated to. Therefore, if the final profile is not a NE then the only possible beneficial migration
is from a lower cost machine, or from a machine Ma ∈ Λ – meaning a machine that had a job
added on it.

Since the initial assignment is greedy, and the migrating job chosen in the algorithm is
always from a highest cost machine not in Λ, any migration once the algorithm completes will
make the target machine have higher cost than any machine not in Λ. Therefore for any two
machines such that Ma ∈ Λ and Mb /∈ Λ, we have Ca ≥ Cb. This means if there is a beneficial
migration from any machine Mz not in Λ then there is a beneficial migration from a highest
cost machine not in Λ, which is a contradiction to the algorithm stopping.

Therefore, if the instance reached by the algorithm is not a NE we can assume the only
beneficial migrations are from machines in Λ. Note that the first machine added to Λ is the
sole highest cost machine after the migration, and therefore |Λ| ≥ 2. Additionally, as machines
in Λ have a bigger load, a job will only migrate to a machine Mb during the algorithm if
C+
b < Cz,∀Mz ∈ Λ. This means the only beneficial migrations are of jobs from machines

Mz ∈ Λ with Cz > mini:Mi∈ΛCi.
Since the machines in Λ were chosen as most loaded, and since migrations from a machine

in Λ to a machine Mb /∈ Λ is cost-decreasing, such migrations will remain possible regardless
of migrations among machines in Λ or among machines not in Λ.

Once no such migrations are beneficial, by the choice of machines added to Λ, beneficial
migrations from some machine Ma ∈ Λ to Mz exist, as a job from the machine added imme-
diately after Mz to Λ benefits from a migration to Mz. Once the migration is performed the
game returns to an earlier stage in the algorithm, where a job from the highest cost machine
Mb /∈ Λ has a beneficial migration to Mz. We know this migration is beneficial as it happened
during the algorithm. Therefore, beneficial migrations always exist, implying that a NE does
not exist.

The above positive result may lead one to expect that it would be possible to modify an
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instance slightly in order to get a game in which a NE exists. In Section 6 we discuss the
Nashification of RSGs with unit-jobs by adding dummy jobs, and show that, unfortunately,
given n jobs and m related machines, there is no constant k such that a game of n+ k jobs on
this set of machines is guaranteed to have a NE.

For the equilibrium inefficiency of games with unit-jobs or related machines, we show the
following tight bounds.

Theorem 5.2 If G is a game on related machines and unit-jobs, for which a NE exists, then
PoA(G) < 2. Also, for every ε > 0 there exists a game for which PoS(G) = 2− ε.

Proof: Let s be a NE profile of G. Let M1 be a machine with maximal completion time,
and let M2 be a machine for which (Li+1) ·di is minimal. If (L2 +1) ·d2 ≥ L1 ·d1 then we show
that s is optimal: Assume that a better profile, s′, exists. It must be that L1(s′) < L1(s), thus,
for some machine Ma, it holds that La(s

′) > La(s). Therefore, La(s
′) · da ≥ (La(s) + 1) · da ≥

(L2(s) + 1) · d2 ≥ L1(s) · d1, contradicting the assumption that s′ is better than s.
Assume that (L2 + 1)·d2 < L1·d1. Let j ∈ S1 be a job onM1. If j has no competitors onM1,

then migrating to M2 is beneficial. Thus, in order for s to be a NE, there are at least two jobs
from S1 on M1, therefore, L1 ≥ 2. Assume that j migrates to M2. Its competitors on M1 will
reduce their completion time to (L1 − 1)·d1 and j will reduce its completion time to (L2 + 1)·d2.
If (L2 + 1) · d2 < (L1 − 1) · d1, then j′s rank is reduced. If (L2 + 1) · d2 = (L1 − 1) · d1, then
j′s rank may reduce or remain the same and its completion time is reduced. In both cases the
migration is beneficial. Given that s is a NE, it must be that (L2 + 1) ·d2 > (L1 − 1) ·d1. Also,
by the choice of M2, and given that (L2 + 1)·d2 < L1·d1, it must be that OPT (G) ≥ (L2+1)·d2,
since in any profile s′ 6= s, at least one machine processes more jobs than in s. We conclude
that

PoA(G) ≤ cost(s)

OPT (G)
≤ L1 · d1

(L2 + 1) · d2
≤ L1 · d1

(L1 − 1) · d1
<

L1

L1 − 1
≤ 2.

The last inequality follows from the fact that L1 ≥ 2.
The lower bound on the PoS, is achieved already on two machines, and is detailed in the

proof of Theorem 5.5.

5.2 Variable-length Jobs

Our negative results for unit-jobs are clearly valid for variable-length jobs, even with homoge-
neous competition sets. We are still able to come up with some good news for two machines. We
present a linear-time algorithm for calculating a NE, show that any BRD sequence converges
to a NE, and provide tight bounds on the equilibrium inefficiency.

Theorem 5.3 If m = 2 and G ∈ Gh then G has a NE, and a NE can be calculated efficiently.

Proof: We present an algorithm for finding a NE on two machines. For every 1 ≤ ` ≤ c,
let P` = n` · p`. For any profile s, let Γ(s) be the set of competition sets fully assigned on M1,
such that S` ∈ Γ(s) iff (L1(s)− dn`/2e p`) · d1 > (L2(s) + dn`/2e p`) · d2. Note that S` ∈ Γ(s)
iff a majority of the jobs in S` benefit from migrating to M2.
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Algorithm 5 Calculating a NE Schedule of a game G ∈ Gh on two related machines

1: initialize s to be the profile in which all the jobs are on M1.
2: while C1(s) > C2(s) and Γ(s) 6= ∅ do
3: let S` ∈ Γ(s) be a competition set with maximal P` in Γ(s).
4: while some job j ∈ S` has a beneficial migration from M1 to M2 do
5: move j from M1 to M2

6: end while
7: update Γ(s) according to the current profile s.
8: end while
9: if C1(s) 6= C2(s) then

10: while profile is not a NE do
11: move the smallest job that has a beneficial migration.
12: end while
13: end if

We show the algorithm halts. It is easy to see that it is never beneficial for a job to migrate
out of the machine with a lower completion time. Consider the first part of the algorithm
(lines 2-6), for every set S` activated in this iteration, except for the last one, all the jobs of
S` move from M1 to M2. Let Sz be the last set activated in the first part, then, by definition
of Γ(s), a majority of the jobs from Sz have already moved to M2.

If, after the first part of the algorithm, C1(s) > C2(s), then for any set S` with jobs in M1,
either ` = z, and no job from Sz have a beneficial migration, or all of the jobs of S` are on M1,
and less than half of them have a beneficial migration to M2. Therefore, M1 will remain the
machine with the highest completion time, and the best-response sequence will halt.

If, after the first part of the algorithm, C2(s) > C1(s), it is clearly not beneficial for a job
from Sz to move back to M1. We show that less than half of the jobs from any other set,
S`, on M2 may migrate back to M1. Recall that in the first part of the algorithm, sets are
chosen in decreasing P`. Thus, P` ≥ Pz. Before the migration of jobs from Sz, M1 has a higher
completion time, and more than half of the jobs in Sz moved to M2 before it became the more
loaded machine. Thus, C2(s)−C1(s) is less than d2 ·Pz/2. Thus, at most

⌊
n`−1

2

⌋
jobs from S`

have a beneficial migration back to M1. This implies that M2 remains the machine with the
highest completion time, and the best-response sequence halts.

Theorem 5.4 If m = 2 and G ∈ Gh then BRD converges to a NE.

Proof: Assume that BRD is performed starting from an arbitrary profile. It is easy to see
that a migration from Ma to Mb is never beneficial if La · da ≤ Lb · db before the migration.
Therefore, the only migrations in the BRD are from the machine with the higher completion
time. We denote by a switching migration, a beneficial migration of a job j ∈ S` from Ma

to Mb such that La · da > Lb · db but (La − pi) · da < (Lb + pi) · db, that is, the target of the
migration becomes the machine with the higher completion time. Note that a job j ∈ S` that
performs a switching migration has the maximal rank in S` before the migration, and also the
maximal rank in S` after the migration. The migration is beneficial since the number of jobs
from S` on Mb after the migration is higher than their number on Ma before the migration.

Assume by contradiction that BRD does not halt. Since the number of profiles is finite,
this implies that BRD loops. Let Cmax = Lb · db denote the maximal cost of a machine during
the BRD loop, where Mb can be either the fast or the slow machine. Let t be the first time
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in which Cmax is achieved during the BRD loop. Since a migration out of the machine with
lower completion time is never beneficial, Cmax is a result of a switching migration into Mb,
say of j ∈ S`.

Since BRD loops, a job from S` migrates back to Ma after time t. We claim that such a
migration cannot be beneficial. Before the switching migration, Cj = (La(t) + pj) · da. The
switching migration implies that jobs from S` have lower rank when their completion time is
Cmax = Lb(t) ·db compared to their rank (with fewer competitors) on Ma with load La(t) +pj .
Therefore, a migration of j′ ∈ S` to Ma after time t is beneficial only if the load on Ma is less
than La(t). However, this implies that the load on Mb is more than Lb(t), contradicting the
choice of Cmax as the maximal cost during the BRD loop.

Theorem 5.5 If G is a game on two related machines, for which a NE exists, then PoA(G) <
2. Also, for every ε > 0 there exists a game G ∈ Gh for which PoS(G) = 2− ε.

Proof: Let s be a NE profile of G. If C1 = C2 then s is optimal. Assume w.l.o.g., that
C1 > C2, that is, L1 · d1 > L2 · d2. Let p be the minimal length of a job on M1. The stability
of s implies that (L1− p) · d1 < (L2 + p) · d2. Also, for any profile, if the load on M1 is at most
L1 − p then the load on M2 is at least L2 + p, implying that the cost of any profile, and in
particular the optimal one is higher than (L1−p) ·d1. If there is more than one job in M1 then
p ≤ L1/2, so the POA is less than L1·d1

(L1/2)·d1 = 2. Otherwise there is only one job, of length p, on
M1. Given that s is a NE, this job can not benefit from joining M2, thus, P · d2 > p · d1 where
P is the total length of all jobs in the instance. Since the job of length p must be processed
on a single machine, if there exists a better assignment, it must be that d2 < d1. The cost of

a perfectly balanced assignment is P ·d1d2
d1+d2

>
p·d21
d1+d2

>
p·d21
2d1

> p·d1
2 . Thus, OPT (G) > cost(s)/2.

For the lower bound on the PoS, we show that if d1 6= d2, then the bound is achieved
already with unit-length jobs: given ε > 0, consider a game G with two machines having
delays d1 = 1 − ε

2 and d2 = 1, and two competing jobs. In the optimal profile, the jobs are
assigned on different machines and Cmax = 1. However, this profile is not stable as the job
on the slow machine will join its competitor. The best NE assigns the two jobs on the fast
machine. Its completion time is 2(1− ε

2), implying PoS(G) = 2− ε.
If d1 = d2, consider a game G ∈ Gh with p1 = 1, n1 = 2 and p2 = δ, n2 = 1, where

2
1+δ = 2 − ε. Assume w.l.o.g., d1 = d2 = 1. For this game, OPT (G) = 1 + δ. The only
stable profiles are those in which every competition set is assigned on a different machine, thus
PoS(G) = 2

1+δ .

6 Nashification of Race Scheduling Games

In this section we discuss possible strategies of a centralized authority to change the instance
or compensate players such that the resulting game has a NE. The first approach we analyze
is addition of dummy jobs. The cost of such an operation is proportional to the total length
of the dummy jobs, as this corresponds to the added load on the system. By Theorem 3.1, it
is NP-hard to identify whether Nashification with budget 0 is possible. Thus, the min-budget
problem is clearly NP-hard. We present several tight bounds on the required budget.

Theorem 6.1 Let G be a RSG on m identical machines. Let pmax = maxjp(j) be the maximal
length of a job in J . It is possible to Nashificate G by adding dummy jobs of total length at
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most (m− 1)pmax. Also, for every m and ε > 0 there exists a game G for which jobs of total
length (m− 1)pmax − ε are required to guarantee a NE.

Proof: We first prove that jobs of total length (m−1)pmax are sufficient. We assign the jobs
on the machines in an arbitrary NE assignment with respect to their completion time, ignoring
the competition sets, e.g., by LPT rule. Any such assignment fulfills, for any two machines
Ma and Mb, that |La − Lb| ≤ pmax, as otherwise jobs on Ma have a beneficial migration.

Let Lmax be the maximal load of a machine. For every machine i with load less than
Lmax, we can add a dummy job of length Lmax − Li to J and assign it on Mi. The resulting
assignment is perfectly balanced, and therefore, also a NE. The total length of the dummy
jobs is at most (m− 1)pmax.

To prove the analysis is tight, given m, ε, consider an instance of m machines and a single
competition set with two jobs of lengths p and ε′ = ε/(m−1). As mentioned in the introduction,
this instance has no NE. The only way to guarantee a NE in an extended instance, is by
assigning the two jobs on the same machine on or different machines having the same load.
In order to avoid a beneficial migration of the ε′-job, all the machines must have load at least
p− ε′. Therefore, an addition of dummy jobs of total length (m− 1)(p− ε′) = (m− 1)pmax− ε
is inevitable.
For related machines and unit-jobs we showed in Section 5.1 that a game may not have a
NE with a single competition set. It is tempting to believe that for such simple instances,
Nashification may be achieved by an addition of a constant number of dummy jobs. Our next
result shows that m− 2 dummies may be required, and always suffice.

Theorem 6.2 For any RSG on m related machines and a single competition set of unit-jobs,
it is possible to achieve a NE by adding at most m − 2 dummy jobs to the instance. Also,
for every m there exists a RSG with a single competition set of unit jobs on m machines that
requires m− 2 dummy jobs to be added in order for a NE to exist.

Proof: We describe an algorithm that produces a NE by adding at most m−2 dummy jobs
to the single competition set. The algorithm first assigns the jobs greedily on the machines,
and performs a single migration from a machine achieving maximal cost into a most loaded
machine among the fastest ones. Then, while the profile is not stable, the algorithm identifies
a potential best-response migration of a job j. If this migration increases the cost of job j,
then it is performed. However, if the migration is cost-reducing, then job j does not migrate,
and a new dummy job is added on the target machine.
Recall that C+

i = (Li + 1) · di.
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Algorithm 6 Nashification of a game G with a single competition set of unit jobs

1: assign the jobs greedily, every job is added to a machine minimizing C+
i .

2: let Mhigh be a machine such that Chigh = maxiCi
3: let Mfast be a most loaded machine among the machines having minimal delay. That is,
dfast = mini di and Lfast = maxi|di=dfast Li.

4: if Chigh > Cfast then
5: migrate a job from Mhigh to Mfast

6: end if
7: while profile is not a NE do
8: let Ma and Mb be machines such that a migration from Ma to Mb is beneficial.
9: if Ca ≤ C+

b then
10: migrate a job from Ma to Mb. // perform a cost-increasing migration.
11: else
12: add a job to Mb. // do not perform a cost-reducing/preserving migration.
13: end if
14: end while

By the condition in line 7, the algorithm halts with a NE, therefore, we need to show that
it halts and that at most m− 2 jobs are added. A beneficial migration of a job from Ma to Mb

may be cost-reducing, that is, Ca > C+
b , or not. In the latter case, the migrating job reduces

its rank since its high completion time is now shared with more competitors. A job is added
whenever a migration is not cost-increasing. Since the number of consequent cost-increasing
migrations is bounded, a new job must be added if the sequence of beneficial migrations is
long enough.

After lines 4-5 are performed, Mfast is a highest cost machine. This implies that the only
beneficial migrations from Mfast are cost-reducing, However, such migrations never happen
in the algorithm, since a new job is added to the target machine instead. Therefore, Mfast

remains the highest cost machine throughout the algorithm. Additionally, a migration to a
higher cost machine is never beneficial, so it is never beneficial to migrate into Mfast. Let
C0
fast denote the completion time of Mfast before the while loop. The greedy assignment

implies that when the while loop begins, adding two jobs on any machine will make it the
most costly machine. Therefore, if one dummy job is added on every machine Ma such that
C+
a < C0

fast, a NE is reached – as any migration will make the target machine the highest cost
machine, without increasing the number of jobs sharing the max-rank (as the current highest
cost machine is also a fastest one). Therefore, at most m− 1 dummy jobs will be added.

We prove that an addition of m− 2 dummy jobs is sufficient. If, when beginning the loop,
there are less than m − 1 machines Ma such that C+

a < C0
fast then, by the above, at most

m− 2 dummies will be added. Otherwise, let Mz be a next fastest machine after Mfast, that
is, dz ≤ di for any Mi 6= Mfast. We show that no dummy job is added on Mz, and that at
most m− 2 jobs in total are assigned onM−{Mfast,Mz}. We distinguish between two cases:

1. Cz is maximal among the machines in M \ {Mfast}. In this case a migration into a
machine Mb is beneficial only if C+

b < Cz. Therefore, if a dummy job is added on each
machine Mi such that C+

i < Cz, a NE is reached. Since there are at most m − 2 such
machines, at most m− 2 dummy jobs are required.
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2. Cz is not maximal among the machines in M \ {Mfast}. If the instance is not a NE
before the while loop, then there is a cost-increasing beneficial migration into Mz from
some machine Ma with Ca > Cz. After this migration, no dummy job will be added
on Mz, and at most one dummy job will be added on Ma, since once one dummy job
is added on Ma, its load returns to its level after the greedy assignment, and it is not
attractive as a target for a cost-reducing/preserving migration.

For the lower bound, given m, consider a game with m+4 unit-jobs and m machines having
the following delays: d1 = 0.31, d2 = 0.4, d3 = 1, and for all 4 ≤ i ≤ m, di = 0.5 + iε.
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Figure 9: A game for which an addition of m− 2 jobs is inevitable for Nashification. A BRD
loop exists on the starred machines. Profile (0) is a dummy-free profile fulfilling simple stability
constrains. Profile (k) fulfills the simple stability constraints after k dummy jobs are added.
Profile (m− 2) is a NE with m− 2 dummy jobs.

In any NE, M1 must have load at least 4, as otherwise, the highest cost is achieved by
Ma 6= M1, and a migration from Ma into M1 increases the number of jobs with highest rank
and is beneficial. On the other hand, if L1 > 4, then jobs on M1 have a beneficial migration into
some slower machine. Therefore, in every NE, M1 has load exactly 4. By similar arguments,
M2 has load at least 2: there are m jobs on the m−1 machinesM\{M1}. If L2 < 2, then some
machine i > 2 has load at least 2 and thus, a higher completion time. A deviation from Mi into
M2 is beneficial. Fig. 9(0) presents a profile that fulfils these constraints: L1(0) = 4, L2(0) = 2,
and Li(0) = 1 for i > 2. Profile (0) is not a NE: the job assigned on M3 has a beneficial
migration into M2, to be followed by a migration from M1 to M3, and a migration from M2 to
M1. If the constraints are fulfilled with M2 having load higher than 2, then one of the other
machines is empty, and a job from M1 has a beneficial migration into it. Now, a job from M2

has a beneficial migration into M1 and our BRD loop comes to life.
After k dummy jobs are added, the stability constraints are extended to show they must

be on M2 and the k − 1 fastest machines among M4, . . . ,Mm. On the other hand, a BRD
cycle on M1,M2 and Mk+3 exists (Fig. 9(k)). In order to avoid all these cycles, and get a NE
(Fig. 9(m − 2)), a dummy job must be added on M2 and every Mi, 4 ≤ i ≤ m. Therefore,
m− 2 jobs are required to reach a NE.

A different approach to achieve a NE, is Nashification by payments. The cost of a job is
Cj − γj where γj is a compensation given to the job by the system. A deviating job, will lose
the compensation currently suggested to it. The goal is to achieve a NE, while minimizing∑

j γj . For example, with two competing jobs of length 1 and 1 + ε on two identical machines,
by setting γ2 = ε, the optimal schedule is a NE.

Theorem 6.3 For any RSG G on identical machines, it is possible to achieve a NE with total
compensation less than P , where P =

∑
j∈J p(j). Also, for every m and ε > 0 there is a game

G for which total compensation P − ε is required to achieve a NE.
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Proof: Given a game G, let s be any NE profile of G assuming no competition. Let Cmin(s)
be the minimal completion time of a machine in s. For every job j set γj = Cj(s)− Cmin(s).
The stability of s implies that γj ≤ pj , as otherwise, job j has a beneficial migration to a
machine with load Cmin(s). With the compensation, for all jobs, Cj(s)− γj = Cmin(s), thus,
in every competition set, all the jobs have the same rank. Any deviation will lead to cost at
least Cmin(s) +p(j) and no compensation, and can only reduce the number of jobs sharing the
max-rank. Thus, s is a NE.

For the lower bound, given ε > 0, and an integer x, consider the following game on m = x+1
machines. Let δ = εx

x+1 . There are x competition sets, each with a single job of lengths 1 and

a single job of length δ
x2

. Note that P = x + δ
x . In every assignment, some machine, say

M0, has load at most δ/x. For every set, if the small job is on a machine with load at least
1, then it should be compensated for not escaping to M0. If the small job is on M0, then
the long job should be compensated for not joining it. Thus, a total compensation of at least
x(1− δ/x) = P − ε is required.

7 Conclusions and Directions for Future Work

Our paper suggests a new model for analyzing environments with strong competition. Race
games are congestion games in which players’ welfare depends on their relative performance.
The main objective of a player is to perform well relative to his competitors, while minimizing
his cost is a minor objective. A profile is a NE if no player can improve her rank, or reduce
her cost while keeping her rank.

We analyzed job-scheduling race games on parallel machines. Having an additional con-
straint for stability, race games are less stable than classical load-balancing games, thus our
results for general games are mostly negative. In particular, for all the classes of instances we
considered, we showed that PoS = PoA, while the same competition-free game has a lower
PoA and PoS = 1. Practically, it means that competition may lead to a poor outcome even
if the system can control the initial players’ strategies. Striving for stability, we also stud-
ied the cost of Nashification, by either adding dummy jobs to the instance, or compensating
jobs for having high rank. While in the general case, Nashification may involve balancing
all the machines or jobs’ cost, in some natural classes it can be achieved in cheaper ways.
Min-cost Nashification of a given instance is NP-complete. We leave open the corresponding
approximation problem.

Race games can be studied in various additional settings. In fact, every congestion game
in which players are associated with a utility has its ‘race’ variant. We list below several ex-
amples. Additional questions may refer to the structure of the competition-sets, for example,
competition sets may overlap, or may be defined according to the players’ strategy space (sym-
metric competition sets). The study of coordinated deviations is another intriguing direction.
In the presence of competition, coalitions may be limited to include only members of different
competition sets. On the other hand, temporal collaboration, may be fruitful even for com-
peting players. Thus, there are many different interesting variants of coordinated deviations
in race games.
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7.1 Additional Race Congestion Games

We describe below several natural games whose ‘race’ version is interesting and different from
their classical min-cost game. For each of these games, it is desired to analyze the impact of
various competition structures. We provide examples and simple initial results that are either
based on or extend some of the results in this paper.
Semi-symmetric Matroid Race Game: Consider a race congestion game with m resources
(the set M). The strategy space of player j is any subset of p(j) ≤ m resources. A profile
of the game is given by specifying, for every player j, the set E(j) of resources allocated to j
such that |E(j)| = p(j). Note that this is a special class of matroid games, in which all the
resources are feasible to all players, but each player has a different demand. The cost of a
player is the total load on the resources he uses. We present an algorithm for computing a
NE for any partition of the players to competition sets (not necessarily homogeneous). On the
other hand, if different resources may have different cost functions, then a NE may not exist
even in the simple case of p(j) = 1, since the resulting game is equivalent to a RSG on related
machines and unit-jobs, discussed in Section 5.1. It would be interesting to study additional
variants, possibly with restricted sets of resources, and limited structure of competition sets.

Algorithm 7 Calculating a NE profile of a semi-symmetric matroid race game

1: for j = 1 to n do
2: let E(j) be a set of p(j) lightly loaded resources
3: end for
4: while there are two resources a and b, such that La = L+ 1, Lb = L, and there exist a set
S` such that 1 ≤ n`(a) ≤ n`(b), and there exists a player j ∈ S` such that a ∈ E(j) and
b 6∈ E(j) do

5: E(j) = E(j) ∪ {b} \ {a}.
6: end while

We show that the algorithm terminates with a NE. Let T =
∑

j p(j), L =
⌊
T
m

⌋
and

h = T%m. Since the jobs are assigned greedily on lightly loaded resources. lines 1-3 produce
a feasible assignment in which h resources have load L + 1 and m− h resources have load L.
We show that the loop in lines 4-6 halts, and then show that it halts with a NE. For a profile
s, let φ(s) =

∑
i∈M

∑c
`=1 n`(i)

2. We show that φ is a potential function that increases with
every swap performed in line 5. Clearly, the contribution of resources in M\ {a, b} does not
change. For a and b, the change in φ is ∆(φ) = (n`(a)− 1)2 + (n`(b) + 1)2 − n`(a)2 − n`(b)2 =
2(n`(b)−n`(a)+1) > 0. The last inequality follows from the migration condition n`(a) ≤ n`(b).

Consider the profile after the algorithm terminates. We show that no player has a beneficial
deviation. Let j ∈ S`. First note that it is never beneficial to replace a resource a whose load
is X by a resource b whose load is at least X. Such a deviation will increase the load on b to
be at least X + 1, and therefore j’s cost would increase by at least 1. It also increases the cost
of its competitors on the target resource by 1, but can never reduce j’s rank. Combine the
above with the fact that all loads are exactly C or C + 1, we conclude that the only beneficial
deviations replace a resource, a, whose load is C + 1 by a resource, b, whose load is at most
C. Such a deviation does not change j’s cost; it reduces by one the cost of a’s users, and
increases by one the cost of b’s users. Thus, such a deviation reduces j’s rank if and only if

28



n`(a) ≤ n`(b). Note that j itself contributes to n`(a), so the number of competitors that are
hurt is strictly larger than the number of competitors that benefit from j’s migration. Since
this is exactly the condition detected in line 4, no beneficial deviation exists when the algorithm
terminates. Finally, note that the maximal value of φ(s) is O(n2), therefore the convergence
is within polynomial time.
Routing Games: In this classical congestion game, every player needs to select a path from his
source vertex to his target vertex. Edges are associated with non-decreasing latency functions.
The special case of parallel link network corresponds to job-scheduling, thus, with weighted
players, there is a very simple game with no-NE for two players. Moreover, no NE exists even
in a symmetric game with a single competition set, unweighted players and, uniform latency
edges. Consider for example 5 players and a network consisting of three disjoint parallel s− t
paths, of 4,5, and 6 edges. It can be seen that this game has no NE. The analysis is similar
to the analysis of the RSG on 3 related machines (Fig. 8). It would be interesting to identify
classes of routing game for which a NE exists and can be computed. In this setting, it is also
interesting to study the cost of Nashification by performing changes in the network.
Cost-Sharing Games: In cost-sharing games, players want to use resources that are used by
other players, as it reduces the player’s share in the resource cost. However, players may avoid
sharing a resource since their competitors may also benefit from this sharing. The study of
race cost-sharing games, and in particular network formation games, can quantify the impact
of competition in games with positive congestion effect.
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[5] V. Bilò, A. Celi, M. Flammini, and V. Gallotti. Social Context Congestion Games. In Proc. 18th
SIROCCO, pages 282-–293, 2011.

[6] R. J. Aumann. Rule-Rationality versus Act-Rationality. Discussion Paper Series DP497, The Fe-
dermann Center for the Study of Rationality, the Hebrew University, Jerusalem, 2008.

[7] Y. Azar, K. Jain, and V. Mirrokni. (almost) optimal coordination mechanisms for unrelated
machine scheduling. In Proc. of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’08, pages 323–332, Philadelphia, PA, USA, 2008.

[8] P.A. Chen, B. de Keijzer, D. Kempe, and G. Schäfer. The robust price of anarchy of altruistic
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