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1 Introduction

Let Π be an NP-hard optimization problem, and let A be an approximation algorithm for Π. For an instance

I of Π, let A(I) denote the objective value when running A on I, and let OPT (I) denote the optimal

objective value. The approximation ratio of A for the instance I is RA(I) = A(I)/OPT (I), thus, when Π is

minimization (maximization) problem RA(I) ≥ 1 (RA(I) ≤ 1).

A polynomial time approximation scheme is an algorithm which takes as input an additional parameter, ε,

which determines the desired approximation ratio. This ratio can be arbitrarily close to 1, when ε approaches

0. The time complexity of the scheme is polynomial in the input size but may be exponential in 1/ε. This

gives a clear trade-off between running time and quality of approximation. Formally,

Definition 1.1 An approximation scheme for an optimization problem Π is an algorithm A which takes as

input both the instance I and an error bound ε, runs in time polynomial in |I| and has approximation ratio

RA(I, ε) ≤ (1 + ε). In fact, such an algorithm A is a family of algorithms Aε such that for any instance I,

RAε(I) ≤ (1 + ε).

The approximation algorithm A may be deterministic or randomized. In the latter case the result is a

randomized approximation scheme.
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Definition 1.2 A randomized approximation scheme for an optimization problem Π is an algorithm A which

takes as input both the instance I and an error bound ε, runs in time polynomial in |I| and has an expected

approximation ratio RA(I, ε) ≤ (1 + ε). In fact, such an algorithm A is a family of algorithms Aε such that

for any instance I, EXP [RAε
(I)] ≤ (1 + ε).

In some approximation schemes, an additive constant k, whose value is independent of I and ε, is added

to the approximation ratio. Asymptotically, this constant is negligible, thus, such a scheme is called an

asymptotic PTAS.

Definition 1.3 An asymptotic approximation scheme for an optimization problem Π is a family of algo-

rithms Aε that run in polynomial time such that, for some constant k, and for any instance I, Aε(I) ≤

(1 + ε)OPT (I) + k.

We refer the reader to Chapter R-12 in this book for a detailed study of such schemes.

Some approximation algorithms provide a solution for a relaxed instance of the problem. For example, in

packing problems, an algorithm may pack the items in bins whose sizes are slightly larger than the original.

The objective value is achieved relative to the relaxed resource. This type of approximation algorithm

is called a dual approximation algorithm [23] or approximation with resource augmentation [8]. A dual

approximation scheme is a family of algorithms Aε that run in polynomial time, such that for any instance

I, A(I) ≤ (1 + ε)OPT (I), and A(I) is achieved for resources augmented by factor of (1 + ε).

Depending on the function f(|I|, 1/ε) which gives the running time of the scheme, some schemes are classi-

fied as quasi-polynomial and others as fully polynomial. In particular, when the running time is O(npolylog(n))

we get a quasi PTAS (see, e.g. [4], [13]); when the running time is polynomial in both |I| and 1/ε we get a

fully polynomial time approximation scheme (FPTAS). Such schemes are studied in detail in Chapter R-11.

There is a wide literature presenting PTASs for NP-hard problems. Many of these works present PTASs

for certain problems/subclasses of problems. While some of the proposed schemes may have running times

which render them inefficient in practice, these works essentially help identify the class of problems that

admit PTAS. There have been also some studies towards characterizing this class of problems (see, e.g. [33],

[48] and Chapter R-14 in this book). We focus here on the techniques that have been repeatedly used in

developing PTASs.



2 PARTIAL ENUMERATION 3

We refer the reader also to the comprehensive survey on Approximation Algorithms by Motwani [37], a

tutorial by Schuurman and Woeginger [42], and the survey on scheduling by Karger, Stein and Wein [29],

from which we borrowed some of the examples in this chapter.

2 Partial Enumeration

2.1 Extending Partial Small-Size Solutions

There are two main techniques that are based on extending partial small-size solutions. The first technique

exploits our ability to solve the problem optimally on a constant-size subset of the instance. Thus, initially,

such a constant-size subset is selected. This subset contains the most ‘important’ elements in the instance.

We identify elements as important depending on the problem at hand. The problem is solved optimally for

this subset. This can be done by exhaustive search, since there is only a constant number of elements to

consider. Next, this optimal partial solution is extended into a complete solution, using some heuristic with

a bounded approximation ratio.

In the second technique, none of the elements is identified as ‘important’ initially; instead, all partial

solutions of constant-size are considered, and each is extended to a complete solution using some heuristic.

The best extension is selected as the PTAS’s output.

The time complexity analysis of such PTASs is based on the fact that the number of possible subsets or

solutions that are considered is exponential in the (constant) size of these subsets. The step in which the

constant-size partial solution is extended is usually based on some greedy rule that may require sorting, and

is polynomial. The parameter ε specifying the required approximation ratio of (1 + ε) determines the size k

of the partial solution for which an exponential exhaustive search is applied. This implies that the running

time of such schemes is exponential in 1/ε.

2.1.1 Extend an Optimal Solution for a Single Subset

We demonstrate the first technique for the problem of finding the minimum makespan (completion time) of

a schedule of n jobs on m identical machines. The idea in this PTAS of Graham [21] is to schedule first
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optimally the k longest jobs and then schedule, using some heuristic, the remaining jobs. Formally, the input

for the minimum makespan problem consists of n jobs and m identical machines. The goal is to schedule

the jobs non-preemptively on the machines in a way that minimizes the maximum completion time of any

job in the schedule.

Denote by p1, . . . , pn the processing times of the jobs. Assume that n > m, and that the processing times

are sorted in non-increasing order, that is, for all i < j, pi ≥ pj . A well-known heuristic for the makespan

problem is the LPT rule, which selects the longest unscheduled job in the sorted list and assigns it to a

processor currently having the minimum load. The PTAS combines an optimal schedule of the longest k

jobs with the LPT rule applied to the remaining jobs.

Formally, for any k ∈ [0, n], the algorithm Ak is defined as follows:

1. Schedule optimally, and with no intended idles, the first k jobs.

2. Add the remaining jobs greedily using the LPT rule.

Theorem 1.1 Let Ak(I) denote the makespan achieved by Ak on an instance I, and let OPT (I) denote the

minimum makespan of I, then

Ak(I) ≤ OPT (I)(1 +
1− 1

m

1 + bk/mc ).

Proof

Let T denote the makespan of an optimal schedule of the first k jobs. Clearly, T is a lower bound for

OPT (I), thus, if the makespan is not increased in the second step, that is, Ak(I) = T , then Ak is optimal

for I. Otherwise, the makespan of the schedule is larger than T . Let j be the job to determine the makespan

(the one who completes last). By definition of LPT, this implies that all the machines were busy when job

j started its execution (otherwise job j could start earlier). Since the optimal schedule from step 1 has no

intended idles, it holds that all the machines are busy during the time interval [0; Ak(I)− pj ]

Let P =
∑n

j=1 pj be the total processing time of the n jobs. By the above, P ≥ m(Ak(I)−pj)+pj . Also,

since the jobs are sorted in nonincreasing order of processing times, we have that pj ≤ pk+1 and therefore

P ≥ mAk(I)− (m− 1)pk+1. A lower bound for the optimal solution is a schedule in which the load on the

m machines is balanced; thus OPT (I) ≥ P/m, which implies that Ak(I) ≤ OPT (I) + (1− 1
m )pk+1.
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In order to bound Ak(I) in terms of OPT (I), we need to bound pk+1 in terms of OPT (I). To obtain

such a bound, consider the k + 1 longest jobs. In an optimal schedule, some machine is assigned at least

d(k + 1)/me ≥ 1 + bk/mc of these jobs. Since each of these jobs has processing time at least pk+1, we

conclude that OPT (I) ≥ (1 + bk/mc)pk+1, which implies that pk+1 ≤ OPT (I)/(1 + bk/mc). It follows that

Ak(I) ≤ OPT (I)(1 +
(1− 1

m )
(1 + bk/mc) ).

2

To observe that the above class of algorithms is a PTAS, we relate the value of k to (1 + ε), the required

approximation ratio: Given ε > 0, let k = d 1−ε
ε me. It is easy to verify that the corresponding Ak achieves

approximation ratio at most (1 + ε). Thus, we conclude that for a fixed m, there is a polynomial time

approximation scheme for the m processor scheduling problem.

Note that for any fixed k, an optimal schedule of the first k jobs can be found in O(mk) steps. Applying

the LPT rule takes additional O(nlogn). For Aε, we get that the running time of the scheme is O(mm/ε),

that is, exponential in m (that is assumed to be constant) and 1/ε. This demonstrates the basic property of

approximation schemes: a clear trade-off between running time and quality of approximation.

2.1.2 Extend All Possible Solutions for Small Subsets

The second technique, of considering all possible subsets, is illustrated in an early PTAS of Sahni for the

knapsack problem [40]. An instance of the knapsack problem consists of n items, each having a specified size

and a profit, and a single knapsack, having size B. Denote by si ≥ 0, pi ≥ 0 the size and profit associated

with item i. The goal is to find a subset of the items such that the total size of the subset does not exceed

the knapsack capacity, and the total profit associated with the items is maximized.

The PTAS in [40] is based on considering all O(knk) possible subsets of size at most k, where k is some

fixed constant. Each of these subsets is extended to a larger feasible subset by adding more items to the

knapsack, using some greedy rule. The best extension among these O(knk) candidates is selected to be the

output of the scheme. Formally, for any k ∈ [0, n], the algorithm Ak is defined as follows:

1. (Preprocessing) Sort the items in non increasing order of their profit densities, pi/si.
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2. For each feasible subset of at most k items,

(a) pack the subset in the knapsack.

(b) Add to the knapsack items in the sorted list one by one, while there is enough available space.

3. Select the best packing achieved in step 2.

Theorem 1.2 Let P (Ak) denote the profit achieved by Ak, and let P (OPT ) denote the optimal profit, then

OPT (Ak) ≤ P (A)(1 +
1
k

).

Proof

Let OPT be any optimal solution. If |OPT | ≤ k we are done, since the subset OPT will be considered at

some iteration. Otherwise, let H = {a1, a2, . . . , ak} be the set of k most profitable items in OPT . There

exists an iteration of Ak in which H is considered. We show that the profit gained by Ak in this iteration

yields the statement of the theorem. Consider the list L1 = OPT \ H = {ak+1, . . . , ax} of the remaining

items of OPT , in the order they are considered by Ak. Recall that, at some point, Ak will try H as the

initial set of k packed items. The algorithm will then add greedily items, as long as the capacity constraint

allows. If all the items are packed, Ak is clearly optimal; otherwise, at some point there is not enough space

for the next item. Let m be the index of the first item in L1 which is not packed in the knapsack by Ak,

i.e. items ak+1, . . . , am−1 are packed. The item am is not packed because Be, the remaining empty space

at this point, is smaller than sm. The greedy algorithm packed into the knapsack only items with profit

density at least pm/sm. At this time, when am is rejected, the knapsack contains the items from H, the

items ak1+1, . . . , am−1 and some items which are not in OPT .

Let G denote the items packed in the knapsack so far by the greedy stage of Ak. All these items have profit

density at least pm/sm. In particular, the items in G \ OPT that have total size ∆ = B − (Be +
∑m−1

i=1 si)

all have profit density at least pm/sm. Thus, the total profit of the items in G is P (G) ≥ ∑m−1
i=k1+1 pi +∆pm

sm
.

We conclude that the total profit of the items in OPT is

P (OPT ) =
k∑

i=1

pi +
m−1∑

i=k+1

pi +
|OPT |∑

i=m

pi

≤ P (H) + (P (G)−∆
pm

sm
) + (B −

m−1∑

i=1

si)
pm

sm
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= P (H) + P (G) + Be
pm

sm
< P (H ∪G) + pm

Since Ak packs at least H∪G, we get that P (Ak) ≥ P (H)+P (G), which implies that P (OPT )−P (Ak) <

pm. Given that there are at least k items with a profit at least as large as am (those selected to H), we

conclude that sm ≤ S(OPT )/(k + 1). This gives the approximation ratio. 2

Assuming a single preprocessing in which the items are sorted by their profit densities, each subset is

extended to a maximal packing in time O(n). Since there are O(knk) possible subsets to consider, the total

running time of the scheme is O(knk+1).

To obtain a PTAS for the knapsack problem, let Aε be the algorithm Ak with k = d1/εe. By the above,

the approximation ratio is at most 1 + ε, and the running time of Aε is O(1
εn1+ 1

ε ).

As shown in Section 3.2, this technique, of choosing the best among a small number of partial packings,

was applied also to variants of multidimensional packing.

2.2 Applying Enumeration to a Compacted Instance

In this section we present the technique of applying exhaustive enumeration to a modified instance, in which

we have a more compact representation of the input. Approximation schemes that are based on this approach

consist of three steps:

1. The instance I is modified to a simpler instance, I ′. The parameter ε determines how rough I ′ is in

comparison with I. The smaller ε the more refined I ′ is.

2. The problem is solved optimally on I ′.

3. An approximate solution for I is induced from the optimal solution for I ′.

The challenge is to modify I in the first step into an instance I ′ that is simple enough to be solved in

polynomial time, yet not too different from the original I, so that we can use an exact solution for I ′ to

derive an approximate solution for I.

The use of this technique usually involves partitioning the input into significant and and non-significant

elements. The partition depends on the problem at hand. For example, it is natural to distinguish between

long and short jobs in scheduling problems, and between big and small, or high-profit and low-profit elements,
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in packing problems. For a given instance, the distinction between the two types of elements usually depends

on the input parameters (including ε), and on the value of an optimal solution.

In some cases, the transformation from I to I ′ involves only grouping the non-significant elements. Each

group of such elements thus forms a single significant element in I ′. As a result, the instance I ′ consists of a

small number of significant elements. More details and an example for this type of transformation is given

in Section 2.2.1.

In other cases, all the elements, or only the significant ones, are transformed into a set of elements with

a small number of distinct values. This approach is described and demonstrated in Section 2.2.2.

2.2.1 Grouping Subsets of Elements

We demonstrate this technique with Sahni’s PTAS [41] for the minimum makespan problem on two identical

machines. The input consists of n jobs with processing times p1, . . . , pn. The goal is to schedule the jobs on

two identical parallel machines in a way that minimizes the latest completion time, that is, in a way that

balances the load on the two machines.

Let P =
∑n

j=1 pj denote the total processing time of all jobs, and let pmax denote the longest processing

time of a job. Let C = max(P/2, pmax), Note that C is a lower bound on the minimum makespan (that is

OPT ≥ C), since P/2 is the schedule length if the load is perfectly balanced between the two machines, and

since some machine must process the longest job.

The first step of the scheme is to modify the instance I into a simplified instance I ′. This modification

depends on the value of C and on the parameter ε, and is done as follows. Given I, ε, partition the jobs into

small jobs – of length at most εC, and big jobs – of length larger than εC. Let PS denote the total length of

small jobs. The modified instance I ′ consists of all big jobs in I together with bPS/(εC)c jobs of length εC.

Next, we need to solve optimally the minimum makespan problem for the instance I ′. Note that all

jobs in I ′ have length at least εC and their total size is at most P , the total processing time of the jobs in

the original instance, since the small jobs in I are replaced in I ′ by jobs of length εC with total length at

most PS . Therefore, the number of jobs in I ′ is at most the constant P/εC ≤ 2/ε. An optimal schedule

of a constant number of jobs can be found by exhaustive search over all O(22/ε) possible schedules. This
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constant number is independent of n, but grows exponentially with ε – as we expect from our PTAS. Denote

by OPT (I ′) the length of the optimal schedule.

Finally, given an optimal schedule of I ′, we need to transform it into a schedule of I. Note that, for the

makespan objective, we are only concerned about the partition of the jobs between the machines, while the

order in which the jobs are scheduled on each machine does not matter. To obtain a schedule in I, the big

jobs of I are scheduled on the same machine as in the optimal schedule for I ′. The small jobs are scheduled

greedily in an arbitrary order on the first machine until for the first time, the total load on the first machine

is at least OPT (I ′). The remaining small jobs are scheduled on the second machine. Clearly, the overflow

on the first machine is at most εC (maximal length of a small job). Also, since the total number of (εC)-jobs

was determined to be bPS/(εC)c, the overflow on the second machine is also bounded by εC. Therefore, the

resulting makespan of I’s schedule is at most OPT (I ′) + εC.

To complete the analysis we need to relate OPT (I ′) to OPT (I).

Claim 1.3 OPT (I ′) ≤ (1 + ε)OPT (I)

Proof

Given a schedule of I, in particular an optimal one, a schedule for I ′ can be derived by replacing, on each

machine separately, the small jobs with jobs of size εC, with at least the same total size. Recall that the

number of (εC)-jobs in I ′ was determined to be bPS/(εC)c. Independent of the partition of the small jobs

of I between the two machines, the result of this replacement is a feasible schedule of I ′ whose makespan is

at most OPT (I) + εC. Since OPT (I) ≥ C, the statement of the claim holds. 2

Back to our scheme, we showed that the optimal schedule of I ′ is converted into a feasible scheme of I

with makespan at most OPT (I ′) + εC. By the above claim, this value is at most (1 + ε)OPT (I) + εC ≤

(1 + 2ε)OPT (I).

By selecting ε′ = ε/2, and running the scheme for ε′, we get the desired ratio of (1 + ε).

This scheme can be extended to any constant number of machines. For an arbitrary number of machines,

a more complex PTAS, that requires reducing the number of distinct values in the input [23], exists and is

given in the next section.
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2.2.2 Reducing the Number of Distinct Values in the Input

Any optimization problem can be solved optimally in polynomial or even constant time if the input size is

some constant. For many optimization problems, an efficient algorithm exists if the input size is arbitrary

but the number of distinct values in the input is a constant. Alternatively, the problem can be solved by

a pseudo-polynomial-time algorithm (e.g., via dynamic programming), whose running time depends on the

instance parameters, and is therefore polynomial only if the parameter values are polynomial in the problem

size.

The idea behind the technique described below is to transform the elements (or sometimes, only the

significant elements) in the instance I into an instance I ′ in which the number of distinct values is fixed,

or to scale the values according to the input size. The problem is then solved on I ′, and the solution for

I ′ is transformed to a solution for the original instance. The non-significant elements, which are sometimes

omitted from I ′, are added later to the solution, using some heuristic. The parameter ε determines the

(constant) number of distinct values contained in I ′: the smaller ε, the larger number of distinct values.

There are two main approaches for determining the values in I ′.

1. Rounding – The values of I ′ form an arithmetic series in which the difference between elements is

a function of ε. For example, multiples of ε2T , for some value T . In this approach, the gap between

any two values bounds the difference between an original value of an element in I and the value of the

corresponding element in I ′. Note that the amounts of elements rounded to the different values in I ′

is arbitrarily distributed.

2. Shifting – The values of I ′ are a subset of the values of I, selected such that the number of elements

in I that are represented by one value is uniform. On the other hand, unlike the rounding approach,

there is no bound on the difference between the value of an element in I and its corresponding element

in I ′. For example, partition the element into d1/ε2e groups, each having at most bn/ε2c elements,

and fix the values in each group to be (say) the minimal value of an element in the group.

In both approaches, the approximation ratio is guaranteed to be (1+ε) if I ′ is close enough to I. Formally,

an optimal solution for I ′ induces a solution for I whose value is bigger/smaller by a factor of at most (1+ε).
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Another factor of (1 + ε) to the approximation ratio may be added due to the non-significant items – in the

case they are handled separately.

We demonstrate this technique with the classic PTAS of Hochbaum and Shmoys [23] for the minimum

makespan problem on parallel machines. Recall that the input is a set of n jobs having processing times

p1, . . . , pn, and m identical machines; the goal is to schedule the jobs on the machines in a way that minimizes

the latest completion time. The number of machines, m, can be arbitrarily large (otherwise, a simpler PTAS

exists; see Section 2.2.1).

First, note that the minimum makespan (MM) problem is closely related to the bin packing (BP) problem.

The input for BP is a collection of items with sizes between 0 and 1. The goal is to pack the items using a

minimal number of bins. Formally, let I = {p1 . . . pn} be the sizes in a set of n items where 0 ≤ pj ≤ 1. The

goal is to find a collection of subsets U = {B1, B2, . . . , Bk} which forms a disjoint partition of I, such that

for all i, 1 ≤ i ≤ k,
∑

j∈Bi
pj ≤ 1, and the number of bins, k, is minimized.

The exact solutions of MM and BP relate in the following way. It is possible to schedule all jobs in an

MM instance on m machines with makespan Cmax if and only if it is possible to pack all the items in a BP

instance, where the size of item j is pj/Cmax, in m bins. The connection between the optimal solutions does

not remain valid for approximations. In particular, BP has an asymptotic FPTAS (see chapter R-12) while

MM does not. However, this connection can be used to develop a PTAS for MM.

Let OPTBP (I) be the number of bins in the optimal solution of BP, and let OPTMM (I) = Cmax be an

optimal solution for MM. Denote by I
d the BP input in which all the values are divided by d. We already

argued that:

OPTBP (
I

d
) ≤ m ⇔ OPTMM (I, m) ≤ d

We define a dual approximation scheme for BP. For input I, we seek a solution with at most OPTBP bins,

where each bin is filled to capacity at most 1 + ε. In other words, we relax the bin capacity constraint by a

factor of 1+ε. Let dualε(I) be such an algorithm and DUALε(I) be the number of bins in the corresponding

packing.

Theorem 1.4 If there exists a dual approximation algorithm for BP, then there is a PTAS for the minimum

makespan problem.
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Proof

The PTAS performs a binary search to find OPTMM . In order to bound the range in which the optimal

makespan is searched, two lower bounds and one upper bound for this value are used. The lower bounds

are the length of the longest job, and the load on each machine when the total load is perfectly balanced.

That is, let SIZE(I,m) = max{ 1
m

∑
pi, pmax}, then OPTMM ≥ SIZE(I, m). The upper bound uses the

fact that the simple List Scheduling algorithm obtains a 2-approximation ratio [21], therefore OPTMM ≤

2SIZE(I, m).

Now it is possible to perform a binary search to find OPTMM . Instead of checking directly whether

OPTMM < d, the algorithm checks whether DUALε( I
d ) < m.

upper = 2SIZE(I, m)

lower = SIZE(I, m)

repeat until lower = upper

d = (lower + upper)/2

call dualε( I
d )

if DUALε( I
d ) > m

lower ← d

else

upper ← d

d? ← upper

return dualε( I
d? )

Initially, OPTMM (I,m) ≤ upper ⇒ OPTBP ( I
upper ) ≤ m. Since dualε is a relaxation of BP , DUALε( I

upper ) ≤

OPTBP ( I
upper ). This implies that DUALε( I

upper ) ≤ m. By the update rule, the above remains true during

the execution of the loop. However,

DUALε(
I

upper
) ≤ m ⇒ OPTMM (I, m) ≤ (1 + ε)upper,

and thus (1 + ε)upper remains an upper bound on OPTMM (I,m) during the search. Similarly, before

the loop, OPTMM (I,m) ≥ lower, which remains true since DUALε( I
lower ) ≥ m is an invariant of the loop,
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and

OPTBP (
I

lower
) ≥ DUALε(

I

lower
) ≥ m ⇒ OPTMM (I, m) ≥ lower.

Thus, the solution value is bounded above by

(1 + ε) · d? = (1 + ε) · upper = (1 + ε) · lower ≤ (1 + ε)OPTMM (I, m)

In practice, assume we stop the binary search after k iterations. At this time, it is guaranteed that

upper − lower ≤ 2−kSIZE(I, m) ≤ 2−kOPTMM (I, m), and the value of the solution is bounded above by

(1 + ε) · d? = (1 + ε) · upper ≤ (1 + ε) · (lower + 2−kOPTMM (I,m)) ≤ (1 + ε)(1 + 2−k)OPTMM (I, m).

By choosing k = O(log 1
ε ), we obtain a (1 + 2

ε ) approximation. 2

We will now describe the dualε approximation scheme for bin packing. This scheme uses the rounding

and grouping technique.

Theorem 1.5 There exists an O
(
nd

1
ε2 e

)
-time dual approximation scheme for bin packing.

Proof

Recall that for a give ε, the dual approximation algorithm needs to find a packing using at most OPTBP

bins and each bin is packed with items whose total size is at most 1 + ε. The basic idea is to remove first all

“small” items and then round the sizes of the “big” items in order to get an instance with a fixed number of

distinct item sizes. This problem is solved exactly via a dynamic programming algorithm, and its solution

induces a solution for the original instance where each bin is filled up to capacity 1 + ε.

The first observation is that small items, whose sizes are less that ε, can be initially omitted. The problem

will be solved for big items only and the small items will be added later on greedily, in the following way: if

there is a bin filled with items of total size less than 1, small items are added to it; otherwise, a new bin is

opened. If no new bin is opened, then surely no more than the optimum number of bins is used (as the dual

PTAS uses the minimal number of bins for the big items). If bins were added, then all original bins are filled

to capacity at least 1, and all the new bins (except maybe the last one) are also filled to capacity at least 1.

This is optimal since OPT ≥ d∑ pie ≥ DUALε. We conclude that, without loss of generality, all items are

of size ε ≤ pi ≤ 1. Divide this range into intervals of size ε2. This yields S = d 1
ε2 e intervals. Denote by li

the end points of the intervals and define bi to be the number of elements with sizes in the interval (li, li+1].
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We now examine a packed bin. Because the minimal item size is ε, there can be at most b 1
ε c items in

it. Denote by Xi the number of items in the bin whose sizes are in the interval (li, li+1]. Xi is in the range

[0, b 1
ε c). Define a vector (X1, . . . , XS) as the configuration of the bin. The number of feasible configurations

is bounded above by b 1
ε cS . A configuration is feasible if and only if

∑S
i=1 Xili ≤ 1.

For any bin B whose packing forms a feasible configuration, it holds that the total size of the items in

the bin is bounded by

∑

j∈B

pj ≤
∑

j∈B

Xj lj+1 ≤
∑

j∈B

Xj(lj + ε2) ≤ 1 + ε2
∑

j∈B

Xj ≤ 1 + ε2 · 1
ε
≤ 1 + ε.

Therefore, it is sufficient to solve the instance with all item sizes rounded down to sizes in {l1, . . . , lS}.

Finally, we describe a dynamic programming algorithm which solves the bin packing problem exactly

when the number of distinct item sizes is fixed. Define BINS(b1, b2, . . . , bS) as the minimal number of bins

required to pack b1 items of size l1, b2 items of size l2 , . . ., and bS items of size lS . Let C denote the set of

all feasible configurations. Observe that, by a standard dynamic programming argument,

BINS(b1, b2, . . . , bS) = 1 + minCBINS(b1 −X1, b2 −X2, . . . , bS −XS).

We minimize over all possible vectors (X1, X2, . . . , Xs) that represent a feasible packing of the “first”

bin (counted by the constant 1), and the best way to pack the remaining items (this is the the recursive

call). Thus, the dynamic programming build a table of size nS , where the calculation of each entry requires

O(b 1
ε cS).

This yields a running time of

O
(
nS · b1

ε
cS

)
= O

(
(
n

ε
)d

1
ε2 e

)
= O

(
nd

1
ε2 e

)

2

The technique of applying enumeration to a compacted instance through grouping/rounding has been

extensively used in PTASs for scheduling problems (see, e.g., [43], [28], [1]). A common approach for

compacting the instance is to reduce the input parameters to poly-bounded, i.e., parameters whose values can

be bounded as function of the input size. This approach is used, e.g. in the PTAS of Chekuri and Khanna

for preemptive weighted flow time [13] (see also the survey paper [29]).
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2.3 More on Grouping and Shifting

In the following we outline two extensions of the techniques described in this section.

Randomized Grouping: In some cases, we need to define a partition of the input elements to groups

(I1, . . . , Ik), using for each element x a parameter of the problem, q(x), such that the elements in two groups Ij

and Ij+1 differ in their q(x) value by roughly a factor of α, for some α > 1. When such partition is infeasible,

we can use randomization to achieve an expected separation between groups. For a parameter α > 1, the

following randomized geometric grouping technique yields an expected separation that is logarithmic in α.

This technique extends the deterministic geometric rounding technique described in Section 2.2.2. Initially,

pick a number r ∈ [1, α] at random, by a probability distribution having the density function f(y) = 1/y ln α.

An element x with the value q(x) belongs to the group Ij if q(x) ∈ [rαj , rαj+1). Thus, the index of the group

to which x belongs, denoted g(x), is a random variable which can take two possible values: blogα q(x)c or

blogα q(x)c+ 1. It can be shown that for a fixed α, the number of distinct partitions induced by the random

choices of r is at most the number of elements in the input. This enables to easily derandomize algorithms

that use randomized geometric grouping. The technique was applied, e.g., by Chekuri and Khanna [13] in a

PTAS for preemptive weighted flow time.

Oblivious Shifting: While applying the standard shifting technique (as described in Section 2.2.2) requires

knowing the initial input parameters, it is possible to apply shifting also when not all values are known a-

priori. In oblivious shifting, the input size is initially known, and the scheme starts by defining the number

of values in the resulting instance, but the actual shifted values are revealed at a later stage, by optimizing

on these values, considering the constraints of the problem. The technique can be used for defining a ‘good’

compacted instance from a partial solution for the problem, which can then enable to obtain a complete

solution for the problem efficiently.

For example, the problem of bin packing with item fragmentation is solved in [46] in two steps. Given

the input, we need to determine the set of items that will be fragmented, as well as the fragment sizes in

a feasible approximate solution. Since the possible number of fragment sizes is large, a compact vector of

fragments is generated, which contains a bounded number of unknown shifted fragment sizes. The actual
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sizes of the shifted fragments are determined by solving a linear program which attempts to find a feasible

packing of these fragments. A detailed description is given in [46].

3 Rounding Linear Programs

In this section we discuss approximations obtained using linear programming relaxation of the integer pro-

gram formulation of a given optimization problem. We refer the reader to Chapter R-5 and R-94 in this book

for further background on linear programming and rounding linear programs. Most generally, the technique

is based on solving a linear programming relaxation of the problem, for which an exact or approximate

solution can be obtained efficiently. This solution is then rounded, thus yielding an approximate integral

solution. The (fractional) solution obtained for the LP needs to have some nice properties that would allow

rounding to be not too harmful, in terms of ε, the accuracy parameter of the scheme. One such property

of a linear program which is commonly used is the existence of a small basic solution. We illustrate below

the usage of this property, with examples from vector scheduling and covering integer programs. A linear

program has a small basic solution, if there exists an optimal solution in which the number of non-zero

variables is small as function of the input size and the accuracy parameter, ε. For such a solution, the error

incurred by rounding can be bounded, such that the resulting integral solution is within factor of 1 + ε from

the optimal. A natural example is the class of linear programs in which either the number of variables or the

number of constraints is some fixed constant. For such programs, there exists a basic solution in which the

number of non-zero variables is fixed. however, depending on the problem, and in particular, on the value

of an optimal solution for the LP, a basic solution can be ‘small’, even if the number of non-zero variables is

relatively large, for example, Ω(εn), where n is the number of variables.

LP rounding can be combined with the techniques described in Section 2. In Section 3.1 we show the

usage of LP rounding for a given subset of input elements satisfying certain properties. In Section 3.2 we

show how LP rounding can be combined with the selection of all possible (small) subsets.
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3.1 Solving LP for a Subset of Elements

As mentioned in Section 2.1, in many problems, an approximation scheme can be obtained by partitioning

a set of input elements to subsets, and solving the problem for each subset separately. For some subsets, a

good solution can be obtained by rounding an LP relaxation of the problem.

In certain assignment problems, we can find an almost integral basic solution for an LP, for part of the

input, since the relation between the number of variables and non-trivial constraints in the linear program-

ming relaxation, combined with the assignment requirement of the problem, imply that only few variables

can get fractional values. This essential property is used, e.g. in the PTAS of Chekuri and Khanna for

the vector scheduling (VS) problem [11]. The VS problem is to schedule d-dimensional jobs on m identical

machines, such that the maximum load over all dimensions and over all machines is minimized. Formally,

an instance I of VS consists of n jobs, J1, . . . , Jn, where Jj is associated with a rational d-dimensional vector

(p1
j , . . . , p

d
j ), and m machines. We need to assign the jobs to the machines, i.e., schedule a subset of the jobs

Ai on machine i, 1 ≤ i ≤ m, such that max1≤i≤m max1≤h≤d

∑
Jj∈Ai

ph
j is minimized.

Note that in the special case where d = 1 we get the multiprocessor scheduling problem. The PTAS

of Chekuri and Khanna [11] for VS where d is fixed applies a non-trivial generalization of the PTAS of

Hochbaum and Shmoys for the case d = 1 [23]. The scheme is based on a primal-dual approach, in which

the primal problem is VS and the dual problem is vector packing. Thus, the machines are viewed as d-

dimensional bins, and the schedule length — as bin capacity (or height). W.l.o.g., we may assume that the

optimal schedule has the value 1. Given an ε > 0 and a correct guess of the optimal value, we describe below

an algorithm Aε that returns a schedule of height at most 1 + ε. Arriving at correct guess involves a binary

search for the optimal value (which can be done in polynomial time; see below).

Let δ = ε/d be a parameter. The scheme starts with a preprocessing step, which enables to bound

the ratio of the largest coordinate to the smallest non-zero coordinate in any input vector. Specifically,

let ‖ Jj ‖∞= max1≤h≤d ph
j be the `∞ norm of Jj , 1 ≤ j ≤ n, then, for any Jj , and any 1 ≤ h ≤ d, if

ph
j ≤ δ ‖ Jj ‖∞, we set ph

j = 0. As shown in [11], any valid schedule for the modified instance, I ′, yields a

valid solution for the original instance, I, whose height is at most (1 + ε) times that of I ′.

We consider from now on only the transformed instances. The scheme proceeds by partitioning the jobs
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to the sets L (large) and S (small). The set L consists of all vectors whose `∞ norm is greater than δ, and S

contains the remaining vectors. The algorithm Aε packs first the large jobs and then the small jobs. Note,

that while in the case of d = 1 these packings are done independently, for d ≥ 2, we need to consider the

interaction between these two sets. Similar to the scheme of Hochbaum and Shmoys [23], a valid schedule

is found for the jobs by guessing a configuration. In particular, let the d-tuple (a1, . . . , ad) 0 ≤ ah ≤ d1/εe,

1 ≤ h ≤ d, denote a capacity configuration, that is, the way some bin is filled. Since d ≥ 2 is a constant,

the possible number of capacity configurations, given by W = (1 + d1/εe)d, is also a constant. Then, by

numbering the capacity configurations, we describe by a W − tuple M = (m1, . . . ,mW ) the number of bins

having capacity configuration w, where 1 ≤ w ≤ W . The possible number of bin configurations is then

O(mW ). This allows to guess a bin configuration which yields the desired (1 + ε)-approximate solution in

polynomial time.

We say that a packing of vectors in a bin respects a capacity configuration (a1, . . . , ad) if the height of

the packing is smaller than εah for any 1 ≤ h ≤ d. Given a capacity configuration (a1, . . . , ad), we define the

empty capacity configuration to be the d-tuple (ā1, . . . , ād), where āh = d1/εe+ 1− ah, for 1 ≤ h ≤ d. For a

given bin configuration M , we denote by M̄ the bin configuration obtained by taking for each of the bins in

M the corresponding empty capacity configuration.

The scheme performs the following two steps for each possible bin configuration, M : (i) decides whether

vectors in L can be packed respecting M , and (ii) decides whether vectors in S can be packed respecting M̄ .

Given that we have guessed the correct bin configuration M , both steps will succeed, and we get a packing

of height at most 1 + ε.

We now describe how the scheme packs the large and the small vectors. The vectors in L are packed

using rounding and dynamic programming. In particular, since by definition, any entry in a vector in L has

the value δ2 or larger, we use geometric rounding, that is, for each vector Jj , and any entry ph
j , 1 ≤ h ≤ d,

we round down ph
j to the nearest value of the form δ2(1 + ε)t, for 0 ≤ t ≤ d 2

ε log 1/δe. Denote the resulting

set of vectors L′, and the modified instance I ′. The vectors in L′ can be partitioned into

q = (1 + d2
ε

log 1/δe)d (1.1)

classes. The proofs of the next lemmas are given in [11].
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Lemma 1.1 Given a solution for I ′, replacing each vector in L′ by the corresponding vector in L results in

a valid solution for I whose height is at most 1 + ε times that of I ′.

Lemma 1.2 Given a correct guess of a bin configuration M , there exists an algorithm which finds a packing

of the vectors in L′ that respects M , and whose running time is O((d/δ)qmnq), where q is given in (1.1).

The small vectors are packed using a linear programming relaxation and careful rounding. Renumber

the vectors in S by 1, . . . , |S|. Let xji ∈ {0, 1} be an indicator variable for the assignment of the vector Jj

to machine i, 1 ≤ j ≤ n, 1 ≤ i ≤ m. In the LP relaxation xji ≥ 0. We solve the following linear program.

(LP )
∑

Jj∈S

ph
j xji ≤ bh

i 1 ≤ i ≤ m, 1 ≤ h ≤ d (1.2)

∑m
i=1 xji = 1 1 ≤ j ≤ |S| (1.3)

xji ≥ 0 1 ≤ j ≤ n, 1 ≤ i ≤ m (1.4)

The constraints (1.2) guarantee that the packing does not exceed a given height bound in any dimension (i.e.,

the available height after packing the large vectors). The constraints (1.3) reflect the requirement that each

vector is assigned to one machine. A key property of the LP, which enables to obtain an integral solution

that is close to the fractional, is given in the next result.

Lemma 1.3 In any basic feasible solution for LP, at most d ·m vectors are assigned (fractionally) to more

than one machine.

Proof

Recall that the number of non-zero variables, in any basic solution for a linear program, is bounded by the

number of tight constraints in some optimal solution (since non-tight constraints can be omitted). Since

the number of non-trivial constraints (i.e., constraints other than xji ≥ 0) is (|S| + d · m), it follows that

the number of strictly positive variables in any basic solution is at most (|S| + d ·m). Since each vector is

assigned to at least one machine, the number of vectors which are fractionally assigned to more than one

machine is at most d ·m. 2

The above type of argument was first made and exploited by Potts [39] in the context of parallel machine

scheduling. It was later applied for other problems, such as job shop scheduling (see e.g., [27]).
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Thus, we solve the above program and obtain a basic solution. Denote by S′ the set of vectors which are

assigned fractionally to two machines or more. Since |S′| ≤ d ·m, we can partition the set S′ to subsets of

size at most d each, and schedule the i-th set to the i-th machine. Since ‖ Jj ‖∞≤ δ = ε/d, for all Jj ∈ S′,

the total height of the machines is violated at most by ε in any dimension. We can therefore summarize in

the following theorem.

Theorem 1.6 For any ε > 0, there is a (1 + ε)-approximation algorithm for VS whose running time is

(nd/ε)O(f), where f = O(( ln(d/ε)
ε )d).

Proof

By the above discussion, given the correct guess of the optimal value, the scheme yields a schedule of value

(height) at most 1 + O(ε) the optimal. We need to find a packing of the vectors in L and S, for each bin

configuration M . The running time for a single configuration is dominated by the packing of L, and since

the number of configurations is mW = O(nO(1/εd)), we get the running time from Lemma 1.2. The value of

an optimal schedule can be guessed, within factor 1 + ε, by obtaining first a (d + 1)-approximate solution.

This can be done by applying an approximation algorithm for resource constrained scheduling due to [20].

2

3.2 LP Rounding Combined with Enumeration

As described in Section 2.1, a common technique for obtaining a PTAS is to extend all possible solutions

for small subsets of elements. This technique can be combined with LP rounding as follows. Repeatedly

select a small subset of input elements, Sg ⊆ I, to be the basis for an approximate solution; solve an LP for

the remaining elements, I \ Sg. Select the subset Sg which gives the best solution. We exemplify the usage

of the technique to obtain a PTAS for covering integer programs with multiplicity constraints (CIP). In this

core problem, we must fill up an R-dimensional bin by selecting (with bounded number of repetitions) from

a set of n R-dimensional items, such that the overall cost is minimized. Formally, let A = {aji} denote the

sizes of the items in the R dimensions, 1 ≤ j ≤ R, 1 ≤ i ≤ n; the cost of item i is ci ≥ 0. Let xi denote

the number of copies selected from item i, 1 ≤ i ≤ n. We seek an n-vector x of non-negative integers, which

minimizes cT x, subject to the R constraints given by Ax ≥ b, where bj ≥ 0 is the size of the bin in dimension
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j. In addition, we have multiplicity constraints for the vector x, given by x ≤ d, where d ∈ {1, 2, . . .}n.

Covering integer programs form a large subclass of integer programs encompassing such NP-hard problems

as minimum knapsack and set cover. This implies the hardness of CIP in fixed dimension (i.e., where R is a

fixed constant). For general instances, the hardness of approximation results for set cover carry over to CIP.

Comprehensive surveys of known results for CIP and CIP∞, where the multiplicity constraints are omitted,

are given in [44] and in [35] (see also in [36]).

We now describe a PTAS for CIP in fixed dimension. The scheme presented in [44] builds on the classic

LP-based scheme due to Frieze and Clarke for the R-dimensional knapsack problem [17]. Consider an instance

of CIP in fixed dimension, R. We want to minimize
∑n

i=1 cixi subject to the constraints
∑n

i=1 aijxi ≥ bj for

j = 1, . . . , R, and xi ∈ {0, 1, . . . di} for i = 1 . . . , n.

Assume that we know the optimal cost, C, for the CIP instance. The scheme of [44] uses a reduction

to the binary minimum R-dimensional multiple choice knapsack (R-MMCK) problem. For some R ≥ 1, an

instance of binary R-MMCK consists of a single R-dimensional knapsack, of size bj in the j-th dimension,

and m sets of items. Each item has an R-dimensional size and is associated with a cost. The goal is to pack

a subset of items, by selecting at most one item from each set, such that the total size of the packed items

in dimension j is at least bj , 1 ≤ j ≤ R, and the overall cost is minimized.

Given the value of C, the parameter ε and a CIP instance with bounded multiplicity, we construct an

R-MMCK instance in which the knapsack capacities in the R dimensions are bj , 1 ≤ j ≤ R. Also, we have

n sets of items denoted by Ai, 1 ≤ i ≤ n. Let K̂i be the value satisfying dici ∈ [K̂iεC/n, (K̂i + 1)εC/n),

then the number of items in Ai is Ki = min(K̂i, bn/εc). The set Ai represents all possible values which xi

can take in the solution for CIP. In particular, the k-th item in Ai, denoted (i, k), represents the assignment

of a value in [0, di] to xi, such that c(i, k), the total cost incurred by item i is in [kεC/n, (k + 1)εC/n). This

total cost is rounded down to the nearest integral multiple of εC/n; thus, c(i, k) = kεC/n. The size of the

item (i, k) in dimension j, 1 ≤ j ≤ R, is given by sj(i, k) = aij .

Given an instance of R-MMCK, we guess a partial solution, given by a small size set, S; these items have

the maximal costs in some optimal solution. The size of S is a fixed constant, namely, |S| = h = b 2R(1+ε)
ε c.

The set S will be extended to an approximate solution, by solving a linear program for the remaining items.
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We choose the value of h such that the resulting solution is guaranteed to be within 1 + ε from the optimal,

as computed below. Let E(S) be the subset of items with costs that are larger than the minimal cost of

any item in S, that is, E(S) = {(i, k) /∈ S | c(i, k) > cmin(S)}, where cmin(S) = min(i,k)∈S c(i, k). We select

all the items (i, k) ∈ S, and eliminate from the instance all the items (i, k) ∈ E(S) and the sets Ai from

which an item has been selected. In the next step we find an optimal basic solution for the following linear

program, in which xi,k is an indicator variable for the selection of the item (i, k).

(LP (S)) minimize
n∑

i=1

Ki∑

k=1

xi,k · c(i, k)

subject to :
Ki∑

k=1

xi,k ≤ 1 for i = 1, . . . , n,

n∑

i=1

Ki∑

k=1

sj(i, k)xi,k ≥ nj for j = 1, . . . , R

0 ≤ xi,k ≤ 1 for (i, k) /∈ S ∪ E(S)

xi,k = 1 for (i, k) ∈ S

xi,k = 0 for (i, k) ∈ E(S)

(1.5)

Given an optimal fractional solution for the above program, we get an integral solution as follows. For

any i, 1 ≤ i ≤ n, let kmax = kmax(i) be the maximal value of 1 ≤ k ≤ Ki such that xi,k > 0, then we set

xi,kmax = 1 and, for any other item in Ai, xi,k = 0. Finally, we return to the CIP instance and assign to xi

the maximum value for which the total (rounded down) cost for item i is c(i, kmax).

The next three lemmas show that the scheme yields a (1 + ε)-approximation to the optimal cost, and

that the resulting integral solution is feasible.

Lemma 1.4 If there exists an optimal (integral) solution for CIP with cost C, then the integral solution

obtained from the rounding for R-MMCK has the cost ẑ ≤ (1 + ε)C.

Proof

Let x∗ be an optimal (fractional) solution for the linear program LP(S), and let S∗ be the corresponding

subset of items, that is, S∗ = {(i, k)| x∗i,k = 1}. If |S∗| < h then we are done: in some iteration, the scheme

with try S∗; otherwise, let S∗ = {(i1, k1), . . . , (ig, kg)}, such that c(i1, k1) ≥ · · · ≥ c(ig, kg), for some g > h.
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Let S∗h = {(i1, k1), . . . , (ih, kh)}, and σ =
∑h

t=1 c(it, kt). Then, for any item (i, k) /∈ (S∗h ∪ E(S∗h)), we have

c(i, k) ≤ σ/h. Let z∗, ẑ denote the optimal (integral) solution and the solution output by the scheme for the

R-MMCK instance, respectively. We denote by xB(S∗h),xI(S∗h) the basic and integral solutions of LP(S) as

computed by the scheme, for the initial guess S∗h.

By the above rounding method, for any 1 ≤ i ≤ n, the cost of the item selected from Ai is c(i, kmax).

Let F denote the set of items for which the basic variable was a fraction, that is, F = {(i, k)| xB
i,k(S∗h) < 1}.

Then, we get that

z∗ ≥
n∑

i=1

Ki∑

k=1

c(i, k)xB
i,k(S∗h)

≥
n∑

i=1

Ki∑

k=1

c(i, k)xI
i,k(S∗h)− δ

where δ =
∑

(i,k)∈F c(i, k), and F is the set of items for which the basic variable was a fraction, that is,

F = {(ik)| xB
i,k(S∗h) < 1}.

Recall that in any basic solution for a linear program, the number of non-zero variables is bounded by

the number of tight constraints in some optimal solution. Assume that in the optimal (fractional) solution

of LP (S∗h) there are L tight constraints, where 0 ≤ L ≤ n + R. Then in the basic solution xB(S∗h), at most

L variables can be strictly positive. Thus, at least L − 2R variables get an integral value (i.e. ‘1’), and

|F | ≤ 2R. Note that, for any (i, k) ∈ F , c(i, k) ≤ σ/h, since F ∩ (S∗h ∪ E(S∗h)) = ∅. Hence, we get that

z∗ ≥ ẑ + 2Rσ
h ≥ ẑ + 2Rẑ

h ≥ ẑ
1+ε . 2

Lemma 1.5 The scheme yields a feasible solution for the CIP instance.

Proof

The feasibility of the solution follows from the definition of Ki and the fact that kmax(i) ≤ Ki. Thus, the

value assigned to xi is at most di. 2

Lemma 1.6 The cost of the integral solution for the CIP instance is at most ẑ + εC.

Proof

We note that, for any variable xi, the cost incurred by the integral solution for the CIP instance is at most
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c(i, kmax(i)) + εC/n. It follows that the total cost value for the R-MMCK instance is increased at most by

εC. 2

Note that C can be guessed in polynomial time within factor (1 + ε), using binary search over the range

(0,
∑n

i=1 dici). Thus, combining the above lemmas we get:

Theorem 1.7 There is a polynomial time approximation scheme for CIP in fixed dimension.

Consider now the special case where the multiplicity constraints are omitted; that is, each variable xi can

get any non-negative (integral) value. For this special case, we can use a linear programming formulation

in which the number of constraints is R, which is fixed. A PTAS for this problem can be derived from

the scheme of Chandra et al. [10] for integer multidimensional knapsack. drawing from recent results on

solutions of CIPs, we describe below the PTAS of [44], that achieves a better running time, by using a fast

approximation scheme for solving the linear program.

A Scheme for CIP∞ The scheme, called below multi-dimensional cover with parameter ε (MDCε),

proceeds in the following steps.

(i) For a given ε ∈ (0, 1), let δ = dR · ((1/ε)− 1)e.

(ii) We renumber the items by 1, . . . , n, such that c1 ≥ c2 ≥ · · · ≥ cn.

(iii) Denote by Ω the set of integer vectors x = (x1, . . . , xn) satisfying xi ≥ 0 and
∑n

i=1 xi ≤ δ. For any

vector x ∈ Ω: Let d ≥ 1 be the maximal integer i for which xi 6= 0. Find a (1 + ε)-approximation to

the optimal (fractional) solution of the following linear program.

(LP ′) minimize
n∑

i=d+1

cizi

subject to :
n∑

i=d+1

aijzi ≥ bj −
n∑

i=1

aijxi for j = 1, . . . , R (1.6)

zi ≥ 0, for i = d + 1, . . . , n

The constraints (1.6) reflect the fact that we need to fill in each dimension j at least the capacity bj −
∑n

i=1 aijxi, once we obtained the vector x.
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Let ẑi, d+1 ≤ i ≤ n be a (1+ε) -approximate solution for LP ′. We take dẑie as the integral solution. De-

note by CMDC(x) =
∑n

i=d+1 cidẑie the value obtained from the rounded solution, and let c(x) =
∑n

i=1 cixi.

(iv) Select the vector x for which CMDCε(x) = minx(c(x) + CMDC(x)).

We now show that MDCε is a PTAS for CIP∞. Let Co be the cost of an optimal integral solution for

the CIP∞ instance.

Theorem 1.8 MDCε is a PTAS for CIP∞ which satisfies the following. (i) If Co 6= 0,∞ then CMDCε
/Co <

1+ ε. (ii) The running time of algorithm MDCε is O(ndR/εe · 1
ε2 log C), where C = max1≤i≤n ci is the max-

imal cost of any item, and its space complexity is O(n).

We use in the proof the next lemma.

Lemma 1.7 For any ε > 0, a (1 + ε)-approximation to the optimal solution for LP ′ can be found in

O(1/ε2R log(C ·R)) steps.

Proof

For a system of inequalities as given in LP ′, there is a solution in which at most R variables get non-zero

values. This follows from the fact that the number of non-trivial constraints is R. Hence, it suffices to solve

LP ′ for the
(
n−d
R

)
possible subsets of R variables, out of (zd+1, . . . , zn). This can be done in polynomial time

since R is fixed. Now, for each subset of R variables we have an instance of the fractional covering problem,

for which we can use a fast approximation scheme (see, e.g., in [16]) to obtain a (1+ε)-approximate solution.

2

Proof of Theorem 1.8: For showing (i), assume that the optimal (integral) solution for the CIP∞ instance

is obtained by the vector y = (y1, . . . , yn). If
∑n

i=1 yi ≤ δ then CMDCε = Co, since in this case y is a valid

solution, and y ∈ Ω, therefore, in some iteration MDCε will examine y. Suppose that
∑n

i=1 yi > δ, then we

define the vector x = (y1, . . . , yd−1, xd, 0, . . . , 0), such that y1 + · · ·+ yd−1 + xd = δ. (Note that xd 6= 0.) Let

C̃o(x) =
∑n

i=d+1 ciẑi be the approximate fractional solution for LP ′. We have that x ∈ Ω, therefore

CMDC(x)− C̃o(x) ≤ Rcd, (1.7)

Let Co(x) be the optimal fractional solution for LP ′ with the vector x. Note that Co, the optimal (integral)

solution for CIP∞, satisfies Co > c(x) + Co(x), since Co(x) is a lower bound for the cost incurred by the
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integral values yd+1, . . . , yn. In addition, c(x) + CMDC(x) ≥ CMDCε
. Hence, we get that

Co

CMDCε

≥ c(x) + Co(x)
c(x) + CMDC(x)

> 1− CMDC(x)− Co(x)
c(x) + CMDC(x)− Co(x)

≥ 1− CMDC(x)− C̃o(x)(1− ε)
c(x) + CMDC(x)− C̃o(x)

≥ (1− ε)

(
1− CMDC(x)− C̃o(x)

c(x) + CMDC(x)− C̃o(x)

)

≥ (1− ε)(1− CMDC(x)− C̃o(x)
δcd + CMDC(x)− C̃o(x)

)

The third inequality follows from the fact that C̃o(x) ≥ Co(x) ≥ C̃o(x)(1 − ε), and the last inequality

follows from the fact that c(x) ≥ δcd.

Using (1.7), we get that Co

CMDCε
≥ (1−ε)1−Rcd/(δcd +Rcd) ≥ (1−ε)2. By taking in the scheme ε̃ = ε/2

we get the statement in (i).

Next, we show (ii). Note that |Ω| = O(nδ), since the number of possible choices of n non-negative integers,

whose sum is at most δ is bounded by
(
n+δ

δ

)
. Now, given a vector x ∈ Ω, we can compute CMDC(x) in O(nR)

steps, since at most R variables out of zd+1, . . . , zn can have non-zero values. Multiplying by the complexity

of the FPTAS for fractional covering, as given in Lemma 1.7, we get the statement of the theorem. 2

Enumeration is combined with LP rounding in the PTAS of Chekuri and Khanna for Multiple Knap-

sack [12], as well as in the PTAS of Caprara et al. [9] for the knapsack problem with cardinalities constraints.

The scheme of [9] is based on the scheme of Frieze and Clarke [17], with the running time improved by factor

of n, the number of items. The scheme of [17] is the basis also for PTASs for other variants of the knapsack

problem. (A comprehensive survey is given in [31]; see also in [45].)

4 Approximation Schemes for Geometric Problems

In this Section we present approximation techniques that are specialized for geometric optimization problems.

For a complete description of these techniques we refer the reader to the survey by Arora [3], Chapter 11 in

[47], and Chapters 8 and 9.3.3 in [24]. A typical input to a geometric problem is a set of elements in the
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space (such as points in the plane); the goal is to connect or pack these elements in a way that minimizes

the resources used (e.g., total length of connecting lines, total number of covering objects).

4.1 Randomized Dissection

We present below the techniques used in the PTAS of Arora [2] for the Euclidean Traveling Salesman Problem

(TSP). In the classical TSP problem, given non-negative edge weights for the complete graph Kn, the goal

is to find a tour of minimum cost, where a tour refers to a cycle of length n. In other words, the goal is go

find an ordering of the nodes such that the total cost of the edges along the path visiting all nodes according

to this ordering is minimal. In general, TSP is NP-hard in the strong sense, and it can not be approximated

within a multiplicative factor unless P = NP. Arora’s PTAS considers the relaxed problem of Euclidean TSP:

The input is n points in Rd , and the edge weights are the Euclidean (`2) distances between them.

The idea of the PTAS is to dissect the plane into squares, and to look (using dynamic programming)

for a tour that crosses the resulting grid lines only at specific points, denoted portals. The parameter ε of

the PTAS determines the depth of the recursive dissection as well as the density of the portals. A smaller

ε results in more portals and a finer dissection, that leads to a less restricted tour and a larger dynamic

programming instance. Randomization is used to determine an initial shift of the grid lines.

A dissection of a square is a recursive partitioning into squares. It can be viewed as a tree of squares

whose root is the square we started with. Each square in the tree is partitioned into four equal squares,

which are its children. The leaves are squares of a small sidelength - determined by the parameter ε of the

PTAS.

The location of the grid lines is determined randomly as follows: Given a set of n points in R2, enclose

the points in a minimum bounding square. Let ` be the side of this square. Let p ∈ R2 be the lower left

endpoint of the bounding box. Enclose the bounding box inside a larger square, denoted the enclosing box

of sidelength L = 2` and position the enclosing box such that p has distance a from the left edge and b

from the lower edge, where a, b ≤ ` are chosen randomly. The randomized dissection is the dissection of this

enclosing box. Note that the randomness is used only to determine the placement of the enclosing box (and

its accompanying dissection).
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We will now describe Arora’s PTAS for the Euclidean TSP problem that uses the above randomized

dissection. Formally, for every ε > 0, this PTAS finds a (1 + ε)-approximation to Euclidean TSP.

First, perform randomized dissection to the bounding box of the n points. Recall that L is the side of

the enclosing box. The recursive procedure of subdividing the squares stops when the side lengths of the

squares becomes less than Lε/8n, or when each square at the last level contains at most one point. We may

assume by scaling that L is a power of 2 and that the sides of squares at the last level are unit length. Thus,

at most log L iterations are required, and L ≤ 8n/ε. When there is more than one point in a unit square,

consolidate them into one new ”bigger” point. Any tour for the resulting set of points can be augmented to

a tour for the original set of points with an increase in length bounded by
√

2nLε/8n, which is negligible,

since L ≤ OPT/2. Henceforth we shall assume there is at most one point per unit square.

The level of a square in the dissection is its depth from the root; the root square has level 0. We also

assign a level from 0 to log(L−1) to each horizontal and vertical grid line that participates in the dissection.

The horizontal (resp., vertical) line that divides the enclosing box into two has level 0. Similarly, the 2i

horizontal and 2i vertical lines that divide the level i squares into level i + 1 squares each have level i.

The following property of a randomized dissection is used: Any fixed vertical grid line that intersects the

bounding box of the instance has probability 2i

` = 2i+1

L to be a line at level i.

Next, the location of the portals is determined: Let m = 1
ε log L. The parameter m is the portal parameter

that determines the density of the points the path can pass through. A level i line has 2i+1m equally spaced

portals. In addition, we also refer to the corners of each a square as a portal. Since the level i line has 2i+1

level i + 1 squares touching it, we conclude that each side of the square has at most m + 2 portals (m usual

portals, and the 2 corners), and a total of at most 4m + 4 portals on its boundary. A portal-respecting tour

is one that, whenever it crosses a grid line, does so at a portal.

Finally, dynamic programming is used to find the optimum portal-respecting tour in time 2O(m)L log L.

Since m = O(logn/ε) we get a total running time of nO(1/ε). The dynamic programming as well as the

complete analysis of bounding the PTAS error and the time complexity are given in [3].

Note that since the PTAS uses randomization, its error of the PTAS is a random variable. Formally,

let Let OPT denote the cost of the optimum salesman tour and OPTa,b,m denote the cost of the best
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portal-respecting tour when the portal parameter is m and the random shifts are a, b, then,

Theorem 1.9 The expectation (over the choice of a, b) of OPTa,b,m−OPT is at most 2logL/mOPT , where

L is the sidelength of the enclosing box.

As listed in Arora’s survey [3], this method of dissection can be used to develop PTASs for other geometric

optimization problems such as minimum Steiner tree, facility location with capacities and demands, and

Euclidean min-cost k-connected subgraph.

Another class of geometric optimization problem is the class of clustering problems, such as metric max-

cut and k-median, In recent research on clustering problems the core idea in the design of an approximation

scheme is to use sampling of data points at random from a biased distribution that depends on the pairwise

distances. This technique is used e.g. in the PTAS of Fernandez de la Vega and Kenyon’s for metric max-cut

[19], and in Indyk’s work for metric 2-clustering [26]. For more details on this technique and its usage the

reader is referred to [18].

4.2 Shifted Plane Partitions

The next technique is called shifting: it is based on selecting the best solution over a (polynomial size) set

of feasible solutions. Each candidate feasible solution is a result of a divide-and-conquer approach, in which

the plane is partitioned into disjoint areas (strips). This technique fits geometric problems such as square

packing or covering with disks. The above geometric problems arise in VLSI design, image processing and

many other important applications. A common goal in these problems is to cover or pack elements (like

points in the plane) into a minimal number of objects (like squares of given size).

Recall that each candidate solution is a result of a divide-and-conquer approach in which the plane is

partitioned into disjoint areas (strips). A solution to the whole problem is formed by a union of the strips’

solutions. Consequent solutions refer to consequent partitions of the plane into strips - that differ from each

other by shifting the partitioning bars by the shifting parameter. The smaller the shifting parameter is, the

more candidate solutions to be considered and the better resulting approximation.

We illustrate the shifting technique for the problem of covering n points in the 2-dimensional plane. The

complete analysis is given in [24, 25]. Assume that the n points are enclosed in an area I. The goal is to
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cover these points with a minimal number of disks of diameter D. Denote by ` the shifting parameter. The

area I is divided into vertical strips of width D. Each set of ` consequent strips are grouped together to

form strips of width `D. Note that there are ` different ways to determine this grouping - and they can

derive from each other by shifting the partitioning bars to the right over distance D. Denote the ` distinct

partitions that results by S1, S2, ..., S`.

Let A be an algorithm to solve the covering problem on strips of width at most `D. The algorithm A can

be used to generate a solution for a given partition Sj by applying A to each strip in Sj and union the disks

used. The shift algorithm, sA defined for a given A, uses A to solve the problem for the ` possible partitions

and selects the solution that requires minimum number of disks.

The following lemma gives the performance ratio of sA (denoted rsA
) as a function of ` and the perfor-

mance ration of A (denoted rA).

Lemma 1.8

rsA
≤ rA(1 +

1
`
).

The local algorithm A may itself be derived from an application of the shifting technique. In our example,

in order to solve the covering problem on a strip of width `D, the strip is cut into squares of size `D × `D,

for which an optimal solution can be found by exhaustive search.

We note that the above shifting technique can be used also to derive PTASs for several problems including

minimum vertex-cover and maximum independent-set in planar graphs [6]. The idea is that a planar graph

can be decomposed into components of bounded outer-planarity. The solution for each component can

be found using dynamic programming. The shifting idea is to remove one ’layer’ from the graph in each

iteration. This removal guarantees that the number of cross-cluster edges is small, so by considering the

union of the local cluster solutions one can get a good approximation to the general problem.

5 Concluding Remarks

There are many other interesting applications of the techniques described in this chapter. We mention a

few of them. Golubchik et al. apply enumeration to a structured instance in solving the problem of data
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placement on disks (see also in [30]). The technique of extending solutions for small subsets is applied by

Khuller at al. [34] to the problem of broadcasting in heterogeneous networks. Kenyon et al. [32] used a

non-trivial combination of grouping with periodic scheduling to obtain a PTAS for data broadcast.

Some techniques are specialized for certain types of problems. For graph problems, some PTASs exploit

the density of the input graph (see, e.g., [5]). There are PTASs which build on the properties of planar

graphs (see, e.g., [22, 14]).

Finally, we have mentioned in Sections 2.3 and 4 some techniques used in randomized approximation

schemes. A detailed exposition of randomized approximation schemes for counting problems is given in

Chapter 11 in [38] (see also Chapter R-8 in this book). Benczúr and D.R. Karger present in [7] randomized

approximation schemes for cuts and flows in capacitated graphs. Efraimidis and Spirakis used in [15] the

technique of filtered randomized rounding in developing randomized approximation schemes for scheduling

unrelated parallel machines.
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