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Abstract. We consider reoptimization problems arising in production
planning. Due to unexpected changes in the environment (out-of-order
or new machines, modified jobs’ processing requirements, etc.), the pro-
duction schedule needs to be modified. That is, jobs might be migrated
from their current machine to a different one. Migrations are associated
with a cost – due to relocation overhead and machine set-up times. The
goal is to find a good modified schedule, which is as close as possible to
the initial one. We consider the objective of minimizing the total flow
time, denoted in standard scheduling notation by P ||∑Cj .

We study two different problems: (i) achieving an optimal solution
using the minimal possible transition cost, and (ii) achieving the best
possible schedule using a given limited budget for the transition. We
present optimal algorithms for the first problem and for several classes
of instances for the second problem.

1 Introduction

This work studies a reoptimization variant of the classical scheduling problem
of minimizing the total flow time (denoted in standard scheduling notation by
P ||∑Cj [12]). This problem can be solved efficiently by the simple greedy SPT
rule [23,9] that assigns the jobs in nondecreasing order by their length. This
algorithm, as many other algorithms for combinatorial optimization problems,
solves the problem from scratch, for a single arbitrary instance without having
any constraints or preferences regarding the required solution - as long as it
achieves the optimal objective value. However, many of the real-life scenarios
motivating these problems involve systems that change dynamically over time.
Thus, throughout the continuous operation of such a system, it is required to
compute solutions for new problem instances, derived from previous instances.

Moreover, since there is some cost associated with the transition from one
solution to another, a natural goal is to have the solution for the new instance
close to the original one (under certain distance measure). Thus, solving a re-
optimization problem combines the challenge of computing an optimal (or close
to the optimal) solution for the new instance, with the challenge of efficiently
converting the initial solution to the new one. Each of these challenges, even
when considered alone, gives rise to many theoretical and practical questions.
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Obviously, combining the two challenges is an important goal, which naturally
shows up in many applications.

Reoptimization variants of scheduling problems arise naturally in production
planning – due to unexpected changes in the environment (out-of-order or new
machines, modified jobs’ processing requirements, etc.). Migrating tasks among
the machines is costly, due to relocation overhead and machine set-up times.
This work studies the problem of finding a good modified schedule, which is as
close as possible to the initial one. To the best of our knowledge, no previous
work combines these two objectives in a scheduling setting.

Applications: As mentioned above, the scenario we consider often arises in
manufacturing systems. In fact, our work is relevant to any dynamic scheduling
environment. We describe below two less intuitive applications in cloud comput-
ing and semiconductor wafers production line.

Consider an RPC (Remote Procedure Call) service. In this environment, a
cloud of servers can provide service to a limited number of simultaneous users.
If the number of requests is high, another virtual server could be temporarily
rented, where the cost for using it is per user. The options are to put the RPC
in a queue, thus causing latency in the service, or renting more virtual servers,
enabling faster service and paying the additional servers’ cost. In this application,
the transition cost is not due to the migration itself, but due to the activation
cost of the additional resources.

Some of our results will be extended to consider modifications that occur after
the processing has begun, that is, at time t > 0. For this extension (see Section
2.1.1) we distinguish between environments in which the currently processed jobs
can migrate and be restarted on a different machine, and applications in with
restarts are not allowed, and a currently processed job must complete its partial
processing. The following application describes a system in which restarts are not
allowed: In a semiconductor wafers production line, some of the coating methods
involve purely physical processes such as high temperature vacuum evaporation
(physical vapor deposition - PVD). During the process, a vacuum is created to
enable the coating. Once the elements are in a vacuum environment, the process
can not be stopped as if the machine halts, it will be severely damaged [16].
Assume that at time t > 0 machines are added. Transferring jobs is costly - to
capture the transition overhead and the changes required in programming the
machines workplan. Also, the elements that are currently produced, that are
already in vacuum state, must complete their production.

1.1 Problem Statement and Notation

An instance of our problem consists of a set J0 of n0 jobs and a set ofm0 identical
machines. Denote by pj the processing time of job j. A schedule S0 of the initial
instance is given. That is, for every job in J0, it is specified on which machine it
is assigned and on which time interval it is going to be processed. At any time,
a machine can process at most one job and a job can be processed by at most
one machine.
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At time t ≥ 0, a change in the system occurs. Possible changes include addition
or removal of machines and/or jobs, as well as modification of processing time
of jobs in J0. Let J denote the modified set of jobs, and let n = |J |. Let M
denote the modified set of machines, and let m = |M |. Our goal is to suggest a
new schedule, S, for the modified instance, with good objective value and small
transition cost form S0. Assignment of a job to a different machine in S0 and
S is denoted migration and is associated with a cost. Formally, we are given a
price list θii′j , such that it costs θii′j to migrate job j from machine i to machine
i′. We consider two problems:

1. Rescheduling to an optimal schedule using the minimal possible transition
cost.

2. Given a budget B, find the best possible modified schedule that be be
achieved without exceeding the budget B.

Some of our results assume identical transition costs, that is, for all j and i �= i′,
θii′j = 1.1 For a given schedule, let Cj be the completion time of job j, that is,
the time when the process of j completes.

Example: Assume that six jobs of lengths 1, . . . , 6 are scheduled on a single
machine in an optimal SPT order. Assume that a second machine is added, and
that all migrations have unit transition cost. Figure 1(a) presents an optimal
modified schedule, for which the total flow-time is

∑
Cj = 34. The budget

required to reach this schedule (or any other schedule with
∑

Cj = 34) is 3. For a
given budget, B = 2, it is possible to move, for example, to the modified schedules
given in Figures 1(b) and (c), having total flow-time 36 and 35, respectively. The
schedule (c) is optimal for this budget. Note that the natural greedy approach of
migrating the long jobs if the budget is low (as in schedule (b)) is sub-optimal.
Two other natural approaches of prefix-SPT, or suffix-SPT (use the budget to
maximize the prefix of the schedule or the suffix of the schedule that is identical
to an SPT schedule) are also sub-optimal.2
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Fig. 1. An initial assignment (top), an optimal reassignment achieved with transition
cost 3 (a), a possible (b) and an optimal (c) reassignments achieved with budget 2

1 Note that the constant 1 can be replaced by any other constant.
2 In the example, schedule (c) is suffix-SPT and optimal, however, suffix-SPT fail on
other instances.
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1.2 Related Work

The ‘single-shot’ minimum total flow-time, P ||∑Cj , can be solved in polynomial
time by using the shortest processing time (SPT) rule [23,9]. The problem is
solvable also on unrelated machines, R||∑Cj , [7,14] by a reduction to a min-
weight complete matching problem.

The work on reoptimization problems started with the analysis of dynamic
graph problems (see e.g. [10,24]). Reoptimization algorithms were developed also
for some classic problems on graphs, such as shortest-path [18,17] and minimum
spanning tree [1]. A different line of research deals with the computation of a
good solution for an NP-hard problem, given an optimal solution for a close
instance. Among the problems studied in this setting are TSP, [4,6], Steiner
Tree on weighted graphs [11] and Knapsack [2]. A survey of other research in
this direction is given in [3]. In all of the above works, the goal is to compute
an optimal (or approximate) solution for the modified instance. The resulting
solution may be significantly different from the original one, since there is no
cost associated with the transition among solutions.

The paper [21] suggests the framework we adopt for this work, in which the
solution for the modified instance is evaluated also with respect to its difference
from the initial solution. This framework is in use also in [20], to analyze algo-
rithms for data placement in storage area network. Considering both the quality
of the solution and the transition cost from an initial solution can also be seen as
a special case of multiobjective optimization problems. In these problems, there
are several weight functions associated with the input elements. The quality of
a solution is measured with respect to a combination of these weights (see e.g.,
[19,13]).

1.3 Our Results

In Section 2 we explore the problem of moving to a modified optimal schedule
using the minimal required budget. We present optimal algorithms that return
both an optimal schedule and the minimum budget B required to reach an
optimal schedule. We first describe an optimal algorithm for arbitrary migration
costs and arbitrary changes in the instance. Its running time is dominated by
the time required to find a minimum weight complete matching in a complete
bipartite graph with O(nm) vertices. We then present a more efficient algorithm
for instances with uniform migration costs. The time complexity of this algorithm
is varies between O(n) (if the initial schedule is an SPT schedule) and O(n log n)
(for arbitrary initial schedule). The first algorithm is described assuming the
modification takes place at time t = 0. In Section 2.1.1 we describe how and
under which conditions it can be extended to handle modifications at time t > 0.
The second algorithm is valid for changes at any time t ≥ 0.

In section 3 we consider the problem of rescheduling with a limited budget.
The goal is to utilize the budget in the best possible way, that is, the modified
schedule should have a low total flow-time - the minimal possible among all
schedules that can be achieved using the given budget. Our results for this model
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assume unit migration costs, thus, the budget B gives the maximal number
of allowed migrations. We present optimal algorithms for two cases: when the
budget is a constant and when migrations are allowed only to new machines.

We conclude, in Section 4, with a discussion and some directions for future
work. We note that our results can be applied also on a sequence of modifications.
That is, the environment might change more than once, and the algorithms are
performed after each modification. Due to space constraints, some of the proofs
are omitted. All proofs are available in the full version [5].

2 Optimal Modified Schedule Using Minimum Budget

In this section we consider the problem of moving to a modified optimal schedule
with respect to the minimal total flow objective using the minimal required
budget.

2.1 Arbitrary Costs and Modifications

Let S0 be a given initial schedule. We do not assume that S0 is optimal nor
that it has a specific structure or properties. Assume that at time t = 0, the
environment is modified. Possible modifications include addition or removal of
machines and/or jobs, and changes in jobs’ processing times. The price list θii′j
specifies for every job j assigned to machine i, how much it costs to migrate j to
machine i′. The goal is to find a new schedule, S, that is optimal with respect
to the total flow-time, and has the minimal transition cost from S0 among all
optimal schedules.

We reduce the problem into a minimum weight complete matching problem
in a bipartite graph. This approach was used by Horn [14], and Bruno, Coffman
and Sethi [7] for solving the problem of minimum flow time on unrelated ma-
chines (R||∑Cj). While the processing time of the jobs do not change due to
migrations, it is possible to adopt this technique for our problem by setting the
weights in the corresponding bipartite graph in a way that reflects the migration
overhead.

Recall that n andm represent the number of jobs and machines in the modified
instance. Let G = (V,E), where V = J∪U . The set J represents the set of n jobs
(a single node per job). The set U consists of mn nodes, qik, for i = 1, . . . ,m and
k = 1, . . . , n, where node qik represents the kth from last position on machine
i. The edge set E includes an edge (vj , qik) for every node in J and every node
in U (a complete bipartite graph). The following is an optimal algorithm for
our problem. Note that edge weights (determined in Steps 1-2) consist of two
components: first, a dominant component corresponding to the contribution of
a job assigned in a specific position to the total flow-time, and second, a minor
component corresponding to the associated transition cost. Both components are
combined to form a single weight. Figure 2 illustrates the edges corresponding
to a single job.
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Algorithm 1. An optimal algorithms for rescheduling using minimum budget

1. Let θii′j be a price list, i.e., it costs θii′j to migrate job j from machine i to machine
i′. In particular, for all i, j, θiij = 0.
Let Δ = maxj,i,i′ θii′j and let Z be a constant lager than nΔ.

2. Let G be the complete bipartite graph corresponding to the problem. Set the edge
weights as follows:
– For every job that is assigned to i , the weight of (vj , qik) is Zkpj .
– For every i′ �= i, the weight of (vj , qi′k) is Zkpj + θii′j .

3. Find a min-cost complete matching in G. Let H denote the set of edges in this
matching.

4. Return the schedule corresponding to H . That is, for every (vj , qi′,k) ∈ H , assign
j in the kth from last position on machine Mi′ . The minimum transition cost is∑

(vj ,qi′,k)∈H θii′j , where i is the machine on which j is assigned in S0.

In the following claims we show that H induces an optimal schedule with the
minimal possible transition cost from S0. First, we show that H corresponds to a
schedule with minimum total flow-time, then we show that among all schedules
achieving minimum total flow-time, the schedule induced by H has minimum
transition cost from S0.
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Fig. 2. The bipartite graph for Algorithm 1. The job j is assigned to machine i in S0.

Claim. The set of edges H corresponds to a feasible schedule with minimum
total flow-time.

Claim. Among all schedules achieving minimum total flow, the schedule induced
by H has the minimal transition cost.
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Proof. Let H∗ be any perfect matching in G, corresponding to a schedule,
S(H∗), achieving minimum total flow-time. We show that the transition cost
to S(H∗) is not lower than the transition cost to S(H). We know that H is
a min-cost matching in G, therefore,

∑
e∈H w(e) ≤ ∑

e∈H∗ w(e). Also, since
both achieve minimum total flow-time and the weights w′ reflect the total
flow-time without the transition costs,

∑
e∈H w′(e) =

∑
e∈H∗ w′(e). The def-

inition of w implies that for every matching H ′, it holds that
∑

e∈H′ w(e) =
Z
∑

e∈H′ w′(e) +
∑

e=(vj ,qik)∈H′ θii′j , where the second term is exactly the tran-

sition cost from the initial schedule to the schedule induced by H ′. We conclude
that the transition cost to S(H∗) is not lower than the transition cost to S(H).

2.1.1 Extension: When the Modification Occurs at Time t > 0
The change in the system might occur after the processing has begun, that is,
at time t > 0. Let Jt be the set of jobs processed at time t. In some systems the
processing of j ∈ Jt must complete on its current machine. In others, j can be
migrated to another machine. If reassigned, the corresponding transition cost is
applied and the job must restart. We assume that preemptions are not allowed3.
For every machine i, let γi denote the time required to complete the job from Jt
processed at time t on machine i.

When restarts are not allowed, the only modification we consider is machines
addition. Note that if machines can be removed, and restarts are not allowed then
the problem is not well-defined for the jobs that are currently processed. The
problem can be viewed as a scheduling problem in which machine i is available
starting at time γi. Algorithm 1 can be generalized by setting the weights in the
bipartite graph (described in Section 2.1) in the following way:

– For every job that is assigned to Mi , the weight of (vj , qik) is Z(kpj + γi).

– For every i′ �= i, the weight of (vj , qi′k) is Z(kpj + γi′) + θii′j .

When restarts are allowed, for every job j ∈ Jt an additional possibility is to
migrate j to a different machine and restart its processing. For this case our
extension assumes that the initial schedule was optimal, that is, in SPT order.
We set the weights in the bipartite graph as follows:

– For every job j ∈ Jt that is currently processed on Mi the weight of (vj , qik)
is Zkγi.

– For every job j �∈ Jt that is assigned to Mi, the weight of (vj , qik) is Zkpj.

– For every i′ �= i, the weight of (vj , qi′k) is Zkpj + θii′j .

Note that the above weights correspond to the contribution of jobs to the total
flow-time, assuming the following property: if a currently processed job j remains
on Mi then in the optimal modified assignment it is processed first on Mi. The
proof of this property and the extensions’ proofs are given in the full version [5].

3 Enabling preemptions affects all the jobs of the instance, thus causing the problem
to be intractable [22].
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2.2 An Efficient Algorithm for Identical Migration Costs

In this section we consider systems with identical migration costs, that is, for all
j, i, i′, it holds that θj,i,i′ = 1. We present an efficient algorithm for finding an
optimal modified schedule using the minimal possible budget. The algorithm can
be applied for addition or removal of machines and/or jobs, as well as changes
in jobs’ processing times.

The algorithm is based on some properties of the SPT algorithm [23,9] for
P ||∑Cj . For completeness, we describe a specific form of SPT algorithm: Given
an instance of n jobs and m parallel machines, add dummy jobs of length 0 such
that the total number of jobs is a multiple ofm. Specifically, if n is not a multiple
of m, then add to the instance m− (n mod m) jobs of length 0. The dummy jobs
can be scheduled on arbitrary machines and (when rescheduling) their migration
cost is 0. Given that n is a multiple of m, the SPT algorithm can be described
as follows: First, sort the jobs in non-decreasing order of processing time (break
ties arbitrarily). Next, partition the jobs into n/m rounds of m jobs each. The
k-th round consists of the jobs indexed (k − 1)m+ 1, . . . , km in the sorted list.
Schedule on each machine one job from the first round, followed by one job from
the second round, etc.

We use the following known property of SPT schedules: the internal assign-
ment of jobs from a particular round to the machines does not affect the total
flow-time. That is, any schedule in which the m jobs of round k are assigned on
the k-th slots of the m machines is optimal.

Let L be the set of job lengths in the modified instance. The set L includes
at most n distinct values. By the above property of SPT schedules, an optimal
schedule can be characterized by the numbers n�,k, for all � ∈ L and 1 ≤ k ≤ n

m ,
where n�,k is the number of jobs of length � in round k, in any optimal schedule.
Moreover, the problem of finding an optimal schedule using minimum transition
cost reduces to the problem of finding a schedule obeying the optimal n�,k values
with a minimal number of migrations from the initial schedule. The following is
an overview of our optimal algorithm:

Algorithm 2. An efficient optimal algorithm for rescheduling with identical
migration costs.

1. For every length � ∈ L and round 1 ≤ k ≤ n
m
, calculate n�,k, the number of jobs

of length � in round k, in any optimal modified schedule.
2. Partition L into two sets of job lengths: Let L1 ⊆ L be the set of lengths such that

� ∈ L1 if and only if n�,k > 0 for a single round k. Let L2 = L \ L1 be the set of
lengths such that � ∈ L2 if and only if n�,k > 0 for more than a single round.

3. For every round 1 ≤ k ≤ n
m
, schedule a maximal number of non-migrating jobs in

round k. First, assign jobs having lengths in L1, then in L2. When assigning jobs
from L2, give higher priority to short jobs.

4. Schedule migrating jobs.
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The idea is to assign first a maximal number of non-migrating jobs, and then
assign the migrating jobs. When assigning the non-migrating jobs, we first assign
the more restricted jobs – having lengths in L1, and then the more flexible jobs
whose lengths are in L2.

Denote by S the schedule built by the algorithm. Steps (3-4) are implemented
as follows: Denote by Si,k the slot in the kth round on machine i. Initially, for all
1 ≤ i ≤ m, 1 ≤ k ≤ n

m it holds that Si,k is available (=EMPTY). During steps
(3-4) some slots are assigned to non-migrating jobs. Whenever a job j of length
� is assigned to the k-th slot on machine i, the corresponding variable Si,k is set
to j, and the corresponding counter of n�,k is reduced by one. Specifically, steps
(3-4) are implemented as follows:

Step 3: Step 3 consists of n
m iterations. In iteration k, the algorithm assigns

non-migrating jobs into slots of round k. Consider a slot Si,k. Let ForFree(i, k)
denote the set of jobs that can be assigned to Si,k with no migration. Formally,
j ∈ ForFree(i, k) if and only if (i) npj ,k > 0, (ii) j is assigned to Mi in S0, and
(iii) j was not assigned to Mi in earlier rounds.

In step 3, if possible, the algorithm assigns to Si,k a job from ForFree(i, k)
giving priority to lengths in L1, and then to shorter lengths in L2. Formally,

For k = 1 to n
m

For i = 1 to m
Calculate ForFree(i, k).
If ForFree(i, k) �= ∅

If there exists j ∈ ForFree(i, k) such that pj ∈ L1. Set Si,k = j , npj ,k −−.
Else, let j be the shortest job in ForFree(i, k) such that pj ∈ L2.

Set Si,k = j , npj ,k −−.

Step 4: Step 4 consists of n
m iterations. In iteration k, the algorithm assigns,

with migrations, jobs to slots Si,k for which ForFree(i, k) = ∅. Formally,

While there exist �, k such that n�,k > 0,
Assign any unassigned job j of length � to any machine i s.t. Si,k = EMPTY .

Set Si,k = j , n�,k −−.

The number of migrations is the number of non-dummy jobs assigned in step 4.
This number is the minimum budget required to reach an optimal schedule. We
prove the optimality of the algorithm by combining two lemmas.

Lemma 1. The algorithm produces an optimal schedule with respect to the total
flow-time.

Proof. The schedule S satisfies the n�,k values calculated by SPT algorithm,
therefore it must be optimal. Since these values were calculated according to
the amounts of jobs in the modified instance, all jobs are assigned, that is, in
Step 4, while there exist �, k such that n�,k > 0, it is guaranteed that there is an
available empty slot for a job of length � in round k.
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Lemma 2. Every schedule minimizing the total flow-time requires at least the
same number of migrations as the number of migrations applied by the algorithm.

Proof. We prove the following greedy choice property: for every round k there
exists an optimal solution minimizing the total number of migrations, in which
the non-migrating jobs assigned to round k are identical to those selected by the
algorithm. The following simple observation will be used to analyze the assign-
ment of jobs having lengths in L2.

Observation 1 For every round k, there are at most two lengths �1, �2 ∈ L2

such that n�1,k > 0 and n�2,k > 0.

Proof. By definition, jobs of lengths in L2 span across more than one round
in any optimal schedule. Another known property of SPT schedules is that all
job lengths in round k are not shorter than job lengths in round k − 1 and not
longer than job lengths in round k+1. Therefore, it is not possible to have three
different lengths, all spanning over round k and an additional round. In order to
preserve the above SPT property, jobs of the middle length, must all be assigned
to round k.

We prove the greedy choice property for round k: Assume that an optimal sched-
ule agrees with the algorithm in rounds earlier than k, and consider the assign-
ment to round k. For every machine i, if ForFree(i, k) = ∅ then this is valid
also for the optimal assignment, and a migration from another machine to Si,k

is inevitable. If ForFree(i, k) includes at least one job then we use exchange
argument to show that any selection of job to Si,k that is different from the
algorithm’s choice can be changed to the algorithm’s choice without hurting the
total number of non-migrating jobs. Let j ∈ ForFree(i, k) be the job assigned
by the algorithm to Si,k. Let j

′ �= j be the job assigned in the optimal schedule
to Si,k. If j

′ �∈ ForFree(i, k), then by switching j and j′, we can only reduce
the number of non-migrating jobs. If j′ ∈ ForFree(i, k), we distinguish between
two cases:

1. pj ∈ L1. In this case, j must be assigned to round k, and assigning it to
Si,k is the only way to assign it for free. By switching the assignment of j′

and j in the optimal assignment, we avoid the migration of j, and cause a
migration to j′, thus, the total number of migrations does not increase.

2. pj ∈ L2. Since the algorithm gives priority to jobs whose lengths are in L1, it
must be that all job lengths in ForFree(i, k) are in L2 and in particular, pj′ ∈
L2. By Observation 1, pj , p

′
j are the only lengths of jobs in ForFree(i, k).

Among lengths in L2, the algorithm gives priority to shorter jobs, therefore,
pj < pj′ . Moreover, k is the last round in which jobs of length pj will be
assigned, as otherwise, the SPT order is not preserved (given that jobs of
length pj′ are assigned on both k and k+1). Therefore, assigning j to Si,k is
the only way to assign it for free. By switching the assignment of j′ and j in
the optimal assignment, we avoid the migration of j, and cause a migration
to j′, thus, the total number of migrations does not increase.
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We conclude that any optimal assignment can be modified such that it agrees
with the algorithm’s choice, without hurting the number of migrations. Thus,
the algorithm produces an optimal assignment.

Thus, our algorithm produces an optimal schedule using the minimal number of
migrations.

Time Complexity Analysis: Algorithm 2 consists of 4 steps. In order to
calculate the n�,k values in step 1 the jobs should be sorted by processing times.
If the initial schedule S0 is arbitrary, or if the modification includes jobs addition
or jobs’ length modification, then the sorting takes in O(n log n) time. If the
initial schedule is optimal, that is, in SPT order, and the modification does not
include jobs’ length modification, then the algorithm only needs to sort the jobs
of each round in S0 separately, and concatenate the resulting lists. As there are
m0 jobs in each round we get an O(n logm0) time algorithm. If in the initial
SPT schedule the jobs are assigned sequentially on the machines, or if m0 is a
constant, then Step 1 takes O(n) time.

The partition of job lengths into L1, L2 in Step 2 is clearly linear. Step 3
iterates on the rounds and in each round assigns jobs using the already sorted
list. The ForFree structure can be implemented using a list of pointers. Since
ForFree jobs are assigned in a non-decreasing order and by observation 1, we
conclude that this step takes O(m n

m ) = O(n). In step 4, the algorithm assigns
the remaining jobs in time O(n).

We conclude that the time complexity of the algorithm varies between O(n)
and O(n log n), depending on the initial schedule and the allowed modification
in the instance.

3 Rescheduling with a Limited Budget - Unit Migration
Costs

In this section we consider the rescheduling problem assuming a limited budget.
Naturally, the goal is to utilize the budget in the best possible way, that is,
the modified schedule should have a low total flow-time – the minimal possible
among all schedules that can be achieved using the given budget. We assume
unit migration costs, that is, θii′j = 1, independent of the job j and the involved
machines. Thus, the budget B gives the maximal number of allowed migrations.
We also assume that n > B, as otherwise an optimal schedule can be found by
ignoring the migration costs.

The problem can be described as the following weighted matching problem:
Similar to the technique used in Section 2.1, let G = (V,E), be a complete bipar-
tite graph with n nodes on one side and mn nodes in the other side. The node
qik, for i = 1, . . . ,m and k = 1, . . . , n, corresponds to the kth from last position
on machine i. The edge (j, qik) has weight kpj , reflecting the contribution of j
to the total flow-time if it is assigned on the kth from last position on machine i.
We color the edges of G as follows: If an edge (j, qik) corresponds to a migration
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of j, that is, i is not the machine j is assigned to in S0, then the edge is red,
otherwise the edge is blue.

It is easy to verify that a min-weight perfect matching with at most B red
edges corresponds to an optimal reschedule. For an arbitrary bipartite graph
with arbitrary weights, the complexity of the above restricted matching problem
is unknown. Some special cases for which efficient algorithms exist include bi-
partite graphs with unit-weights [15], or with equal sizes (Kn,n) [25]. The more
general problem of determining whether a complete weighted bipartite graph
has a complete matching with a specific weight w in known to be NP-hard [8].
We present optimal polynomial time algorithms for several classes of instances
of our problem.

3.1 The Budget B Is a Constant

Assume that the modification occurs at time t = 0, and the budget B is a
constant. Clearly, every job j may either migrate or not, and as the budget is a
constant, there are at most nB possible ways to select the subset of jobs that are
allowed to migrate. The following algorithm considers each selection separately.

Algorithm 3. An optimal algorithm for rescheduling when the budget B is a
constant

For every possible selection of B jobs J ′ ⊂ J :

1. Let G = (V,E), be a bipartite graph with n nodes on one side and mn nodes in
the other side. The node qik, for i = 1, . . . ,m and k = 1, . . . , n, corresponds to the
kth from last position on machine i. For every job j ∈ J ′, there is an edge (j, qik)
for every i = 1, . . . ,m and k = 1, . . . , n. For every job j �∈ J ′, there is an edge
(j, qik) for every k = 1, . . . , n, but only for the machine i on which j is assigned to
in S0. The weight of (j, qik) is kpj .

2. Find a min-cost complete matching in G.

Return the schedule induced by the minimal min-cost matching.

Theorem 2. Algorithm 3 returns a modified schedule whose total flow-time is
minimal among all schedules achieved with budget at most B.

3.2 Migrations Are Allowed Only to New Machines

Another case for which it is possible to solve the problem optimally is when
the system’s modification consists of machines addition and the only allowed
migrations are to the new machines. This scenario arises in practice when the
system is upgraded with new machines that are ready to receive tasks, while
the old machines are not capable to accept new tasks. We present an optimal
algorithm for this problem based on a reduction to a min-cost max-flow problem.
An illustration of the flow network is given in Figure 3.
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An Overview of the Flow Network: The set of nodes rik for 1 ≤ i ≤ m0, 1 ≤
k ≤ n correspond to positions on the initial machines. The set of nodes qi′k for
1 ≤ i′ ≤ m′, 1 ≤ k ≤ B correspond to positions on the added machines. All the
q-nodes are connected to node d. The capacity of the edge (d, t) is the budget B.
This limited capacity guarantees that the total number of slots occupied on the
new machines will not exceed B. The set of nodes 1 ≤ j ≤ n correspond to the
jobs. Every job j that is assigned to machine i in S0 is connected to the nodes
corresponding to positions on machine i and to all the q-nodes. The capacities
of all edges except for (d, t) are 1. The cost of an edge connecting job j to a node
corresponding to a kth from last position (on any machine) is kpj . All other
edges have cost 0.

Theorem 3. A minimum-cost maximum-flow (of value n) in G corresponds to
an optimal schedule without exceeding the budget B.

Proof. (Sketch) First, note that every valid schedule corresponds to a maximum-
flow in G. On the other hand, not every maximum-flow in G corresponds to a
schedule, since a job might be assigned to the kth from last position in some
machine, while less than k jobs are assigned to that machine. However, such a
maximum-flow is clearly not of minimal cost - a better matching can be obtained
by shifting the k′ < k jobs assigned to that machine into the k′ last slots.
Therefore, a schedule of minimum total flow-time corresponds to a minimum-
cost maximum-flow in G.

As the capacity of (d, t) is B, while all other edges’ capacity is 1, at most B
q-nodes have incoming flow. These nodes correspond to migrating jobs. Thus, a
minimum-cost maximum-flow in G corresponds to an optimal schedule without
exceeding the budget B.
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Fig. 3. The flow network built for the rescheduling with limited budget problem. Each
edge is labeled by its capacity and the cost of one flow unit.
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This algorithm can be extended for the case in which the systems’ modification
occurs at time t > 0 - similar to the extensions described in Section 2.1.1. If
restarts are allowed, then our extension assumes that every currently processed
job is the shortest job on its machine (which is true if the initial schedule is
optimal, or if the schedule is a result of our algorithm - even on a sequence of
modifications). If restarts are not allowed then our extension is valid for any
initial schedule.

4 Conclusions and Future Work

We studied reoptimization problems arising in production planning, in which the
goal is to combine the objective of finding a schedule with low total flow-time,
with the goal of efficiently converting a given initial schedule to the modified
one. We presented the first positive results in this framework. We presented
algorithms for finding an optimal schedule achieved using the minimal possible
transition cost, and algorithms for optimal utilization of a limited number of
migrations.

Several interesting important problems remain open:

1. Identify the complexity status of the second problem for arbitrary transition
costs and arbitrary modifications. As explained in Section 3, even with unit
transition costs this is a special case of a more general open problem (min-
weight matching with limited number of red edges).

2. Identify the range of budget B for which it is guaranteed that an optimal
reschedule can be achieved using no internal migrations. It is easy to see
that this range is included in m′ < B ≤ m′ n

m0+m′ .
3. Another open research direction is to consider different objective functions.

In particular, minimizing the makespan of the schedule, given by the last
completion time of some job. Since the problem is NP-hard, the reoptimiza-
tion problem is clearly also NP-hard. The goal is to develop an algorithm
for the reoptimization problem whose approximation-ratio is similar to the
best approximation-ratio known for the original problem.
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