Coping with Selfish On-going Behaviors

Orna Kupfermah Tami Tamif'

Abstract

A rational and selfish environment may have an incentive gatkhe system it interacts with.
Cheating the system amounts to reporting a stream of inpatsig different from the one corre-
sponding to the real behavior of the environment. The systey cope with cheating by charging
penalties to cheats it detects. In this paper, we formatisesetting by means of weighted automata
and their resilience to selfish environments. Automata Ipageen to be a successful formalism for
modeling the on-going interaction between a system anahits@ment. In particular, weighted fi-
nite automata (WFAs), which assign a cost to each input weoedyseful in modeling an interaction
that has a quantitative outcome. Consider a WF/over the alphabeX. At each moment in time,
the environment may cheat by reporting a letter different from the one it actually gextes. A
penalty function : = x ¥ — IRZ% maps each possible false-report to a penalty, charged wlene
the false-report is detected. A detection-probabilitycion p: X~ x ~ — [0, 1] gives the probability
of detecting each false-report. We say thais (n, p)-resilient to cheating ifn, p) ensures that the
minimal expected cost of an input word is achieved with naating. Thus, a rational environment
has no incentive to cheat'.

We study the basic problems arising in the analysis of thitnge In particular, we consider the
problem of deciding whether a given WEX is (n, p)-resilient with respect to a given penalty func-
tion n and a detection-probability functigm and the problem of achieving resilience with minimum
resources, namely, givew andn, finding the minimal (with respect t§, o n(0,0’) - p(a,d’))
detection-probability functiop, such thates is (n, p)-resilient. While for general WFAs both prob-
lems are shown to be PSPACE-hard, we present polynomialalgorithms for deterministic WFAs.

1 Introduction

The environment of modern systems often consists of other systems, labjgaives of their own.
For example, an e-commerce applications interacts with sellers and buyesslleA may provide a
non-reliable description of the goods he is selling. Furthermore, sellerproaige false feedback and
twisted rating of their competitors. Buyers may commit to some transaction butocomglish it, or
may provide a bid that is lower than the real value they are willing to pay, hdpingn even with it. As
another example, the environment of various service-providing systenstients that wish to minimize
their payment. Clients’ payments may be based on their self-reports, whicisaally screened but may
be false. In the same way, biased users may affect the quality of recoratitenglystems for various
products or services.

The above examples demonstrate the fact that environments have twoftppésaors: theruthful
behavior — the one they would produce if they follow their protocol, anaepertedbehavior — the one
they actually output, hoping it would lead to a better outcome for them. While thigrdes systems
cannot assume that the environment would take its truthful behavior, svassame that environments
arerational, in the sense they always take a behavior that maximizes their outcome.

*School of Engineering and Computer Science, Hebrew Universitysdkem, Israel. E-mail: orna@cs.huji.ac.il
fSchool of Computer Science, The Interdisciplinary Center, Herzlgrael. E-mail:tami@idc.ac.ll

Coping with Selfish On-going Behaviors Kupferman and Tamir

Mechanism desigis a field in game theory and economics studying the design of games for tationa
players. A game isicentive compatiblé no player has an incentive to deviate from his truthful behavior
[NR99, NRTVOQ7]. The outcome of traditional games depend on the finsitipo of the game. In
contrast, the systems we want to reason about maintaimayoing interactiorwith their environment
[HP85], and reasoning about their behavior refer not to their fintd étafact, much of the research in the
area considers non-terminating systems, with no final state) but ratherlantheageof computations
that they generate. In [FKL10], the authors studifonal synthesiswhere the synthesized systems are
guaranteed to satisfy their specifications when they interact with ratiomabaments (rather than with
hostile environments that do not have objectives other than to fail the syB®&9]). In this paper, we
suggest and study a possible model for reasoning about incentiaeigam the context of on-going
behaviors and quantitative properties, or formal power series. Regof trustworthy information is an
essential component also in service-providing systems.

Automata have proven to be a successful formalism for modeling on-geingviors. Consider a
system with a seP of atomic propositions. Each assignment to the atomic propositions corgsspon
to a lettero in the alphabet 2 Accordingly, a computation of the system, which is a sequence of
such assignments, is a word over the alphabetfd a specification for the system is a language over
this alphabet, describing the desired properties of the system. By trangpénijications to automata,
it is possible to reduce questions about systems and their specificationsdtioga about automata
[VW94]. For example, a systeM@satisfies a specificatiofi if the language that contains exactly all the
computations generated Bjis contained in the language of an automaton that accepts exactly all words
satisfyingy.

A boolean language maps words to true or false qualitative languaganaps words to values
from a richer domain [CCHO5, HenQ7]. AWeighted automator’ on finite words (WFAs, for short)
[Eil74, SS78, Moh97, DKe09] defines a quantitative languag&* — IR=%U {«}. Technically, each
transition of< has a traversal cost, each state has an acceptance cost, and tHeaquost i3 the sum
of the costs of the transitions taken along the run plus the acceptance itedast state. The cost of a
word is then the minimum cost over all runs on it (note that the cost may be ipfinite

A rational and selfish environment may have an incentive to cheat the \WéAeport a word dif-
ferent from the one generated by its truthful behavior. The WFA may edth cheating by charging
penalties to cheats it detects. Formally, at each moment in time, the environmeahezyhe WFA by
reporting a letter different from the one its truthful behavior generategdetection-probability function
p:Zx X — [0,1] gives the probability of detecting each false-reporpehalty functiom : X x = — IR=0
gives the penalty charged whenever a particular false-report istdétéichus, when the environment re-
ports that a letteo is d’, then the WFA detects the cheating with probabipfy, ¢’), in which case the
environment is chargegl(o, o’). The expected cost of a worwdis then the minimum (over all wordg
of the same length as) cost ofw plus the expected cost of reportimgto bew'. We say that a WFA
4/ is (n, p)-resilient to cheatingf (n, p) ensures that, for all words, the above minimal expected cost is
achieved in a cheat-free run. Thus, a dominant strategy for the emanmris one that does not cheat.

We study the basic problems arising in the analysis of this setting. First, wevelibat, by linearity
of expectation, a detection probability functiprand a penalty functiony can be combined to a single
expected-feRinction@ = n o p; that s, for allo, o’ € 2, we havef(o,0’) = n(o,d’)- p(o,o’). Accord-
ingly, we can studyf-resilience, which simplifies the probabilistic reasoning. Second, we makefus

2

Coping with Selfish On-going Behaviors Kupferman and Tamir

the fact it is possible to construct, given a WEAand an expected-fee functiéh a WFACheaf.<7, 0)
that takes cheating into account and in which the cost of a word is its minimsibp@gost (achieved
by a best cheating strategy). We show tBatsilience to cheating is a semantic property. Thus, given
a weighted language : =* — IR=%U {«}, and a penalty functio®, then either all WFAs forZ are
6-resilient to cheating, or none of them is. It follows that the natural proldétranslating a given WFA
< that need not bé-resilient to cheating to an equivalent WFA that8gesilient to cheating is not
interesting, as equivalent WFAs have the same resilience.

With these observations and constructions, we turn to study the practatdeprs of the setting.
From the environment’s point of view, we consider the problem of findgigen <7, 6, and a word
w € Z*, a wordw' such that the environment can minimize the cosivaf <7 by reporting it to bew.
We show that the problem can be reduced to the problem of finding a shpat# in a graph, which can
be solved in polynomial time [Dij59].

We then turn to study problems from the designer’s point of view. We stitint thve problem of
deciding whether a given WF#/ is 0-resilient to cheating with respect to a given expected fee function
6. We show that the problem is PSPACE-hard, but present a polynomial-tin#os for the cases is
deterministic. Our solution is based on dynamic programming, taking into acemuds of increasing
lengths. In particular, we show that cycles along which cheating is béald¢had can therefore lead to
an unbounded incentive to cheat) can be detected after quadraticallyiteratipns.

A system with no limits on penalties and with unbounded resources can poheasating by fixing a
high expected-fee function. In practice, penalties may be limited by an eksasthority, and increasing
the probability of detecting cheats requires resources. Consider ad/BAd two expected-fee func-
tions 6; and 6, such that; < 6, (thatis6,(0,0’) < 6,(0,a’) for all 0,0’ € %). If o/ is B;-resilient to
cheating, then is clearly alsof,-resilient to cheating, yef; achieves resilience more efficiently. In
particular,6, can be obtained froré, by reducing the probability of cheat detection, hence saving on re-
sources required for cheat detection. Recall thatn o p, for a penalty functiom and a detection prob-
ability function p. Assuming that the penalty functionpis determined by an external authority, and that
system’s resources are allocated to increase the detection probabilitynaider the following problem
of minimal resources resiliencé&iven a WFA.«Z and a penalty function, find a probability detection
function p such thate/ is (n o p)-resilient, and the detection budget, given®y . n(og,a’)p(o,a’),
is minimal. Note that the probabilities in our objective function are weighted byl his reflects the
fact that detecting a cheat with a high penalty tends to require high resouldeed, in practice, the
higher is the responsibility of a guard, the higher is his salary. We study thmaliresources resilience
problem and show that it is PSPACE-hard. As in resilience testing, thégonols easier in the deter-
ministic case, for which we present a polynomial-time solution, based onildiegcthe problem as a
linear program. Essentially, the constraints of the linear program are iddwycéhe restrictions used
in the testing algorithm, with the expected-fee values being variables. Themathed can be used in
order to solve additional minimal-budget problems, with any desired lineactlgeunction over the
detection-probability function or the penalty function.

We also consider two variants of the setting. In tiséng-penaltyvariant, the expected penalty for
cheating increases with the number of cheats. This variant reflects trsticaasponse of systems to
user’s false report: allocating more resources to cheat detectionrroalfg, increasing the detection
probability with each detected cheat. In theunded cheatingariant the number of times the environ-

3

Coping with Selfish On-going Behaviors Kupferman and Tamir

ment can cheat or the total budget it can invest in penalties is bounded.

2 Preliminaries

In this section we give a formal description of the model we consider, egskpt several observations
and constructions that will be used throughout the paper.

2.1 Weighted Finite Automaton

Given an alphabe, a weighted language is a functighi : =* — IR=9U {«} mapping each word ia*

to a positive (possiblyo) cost. Aweighted finite automatofWFA, for short) is«Z = (Z,Q,A, ¢, Qo, T),
whereZ is a finite input alphabetQ is a finite set of stated) C Q x Z x Q is a transition relation,
c:A— IR=% is a cost functionQy C Q is a set of initial states, and: Q — IR=°U {} is a final
cost function. A transitiod = (q,0, p) € A (also writtenA(q, o, p)) can be taken when reading the
input lettero € Z, and it causesy to move from statey to statep with cost ¢d). The transition
relationA induces a transition functiod : Q x =~ — 2%, where for a statg € Q and a lette € X, we
haved(q,0) = {p:A(q,0,p)}. We extendd to sets of states, by letting(S a) := Uges0(q,a), and
recursively to words irt*, by lettingd(q, €) = g, andd(q,u- o) := 8(d(q,u), o), for everyu € Z* and
oecz.

Note that a WFA« may be nondeterministic in the sense that it may have many initial states, and
the transition function may lead to several successor statéQo|lf= 1 and for every statq € Q and
lettero € ~ we have|d(q,0)| < 1, thene is adeterministicVFA (for short, DWFA).

For a wordw = wy...W, € =%, a run of &/ onw is a sequence = ro,rq,...,r, € Q™1 where
ro € Qo and for every 1< i < n, we haveA(ri_1,w;,ri). The cost of a run is the sum of the costs of
the transitions that constitute the run, along with the final c@st?ormally, letr =rg,r1,...,rh be a
run of & onw, and letd = d; ...d, € A* be the corresponding sequence of transitions. The casisof
cos{.«/,r) =S, ¢(di)+ 1(rp). For two indices XK j1 < jo < n, we usecos{.«,T, 1, j2) to denote the
cost of the sub-run leading from,_1 to gj,. Thus,cos{(.<7,r, j1, j2) = zijijlc(di) The cost ofw in &7,
denotedcost <7, w), is the minimal cost over all runs @ onw. Thus,cost{.<7,w) = min{cost{.<Z,r) :

r is an accepting run of/ onw}. Note that while WFAs do not have a set of acceptance states, runs that
reach states for which 7(q) = o have costo, thus the functiorr can be viewed as a refinement of
the partition of the state space to accepting and rejecting states. The weigigadda of</, denoted
L(«7), maps each wordl € Z* to cos{ </, w).

We assume that all statgs= Q are reachable iny. We assume that all states, except maybe the
initial states are not empty, in the sense they map at least one word to a finitd kost.for allg € Q
there isw € Z* such that the cost ok in <7 with initial stateq is in IR. Finally, given two WFAs/
and.«’, we say thate is cheaper thar?’, denoteds < .7/, if for every wordw € Z*, we have that
cos{.«Z,w) < cos{.?’,w).

1in general, a WFA may be defined with respect to any semifiigs, ®,0,1). The cost of a run is then the semiring
product of the weights along it, and the cost of a word is the semiring s@nailruns on it. For our purposes, we focus
on weighted automata defined with respect tortfie-sum semiring(IRZ% U {eo}, min, +, 00, 0) (sometimes called thigopical
semiring), as defined above.

Coping with Selfish On-going Behaviors Kupferman and Tamir

2.2 Input Cheating and Resilience of Automata

Recall that a WFA induces a weighted language that maps each word to ia #®3° U {«}. Words
may cheat the automaton hoping to be mapped to a lower cost: When the autooret@nra word
W=Ww...Wp € 2%, then in each position £ i < n, the word can cheat the automaton and report that the
letterw; is a different lettem/ € . Cheating has a price, and the setting includpsralty functiom :

T x I~ — IR=9, satisfyingn (o, o) = 0, and adetection-probability function pZ x = — [0, 1] indicating

the probability of catching each specific cheat. Formally, whene\srreported to be’, the automaton
detects the cheating with probabilip(cg, d’), in which case it charges(o, d’). The expected penalty
for reportingo to bed’ is thereforen (o, 0’) - p(o,d’).

For two wordsw = wy,Wo, ..., Wy, andw = wy,W,,...,w,, the expected cost of reportingto be
wis S n(wi,w) - p(wi,W). Given a WFA<7, a penalty functiom, a detection-probability func-
tion p, and two wordsnv,w such thatw| = |w/|, the expected cost af in <7 whenw is reported to
bew, denotedexpectediakedcos(</, n, p,w,w), is cos{., W) + 31 n(wi, W) - p(wi,w). Finally,
expectedbestcos(.«7,n, p,w) is the lowest expected cost with whishcan be read byy (with or with-
out cheating). Thussxpectedbestcos{.«7,n, p,w) = miny. |- expectedakedcost</, n, p,w,w).
We refer to the wordv with which the minimum is achieved as thkeating patterrior w.

We say that” is (n, p)-resilient to cheatingf it is not worthwhile to cheates given the penalty
function n and the detection-probability function Formally, <7 is (n, p)-resilient to cheating if for
every input wordw, it holds thatcos{ <7, w) = expectedbestcos{ <7, n, p,w).

Studying resilience of automata, it is convenient to consider a non-pistiabsetting in which
cheats are always detected. We dsdgenote the detection-probability function satisfyﬁ(gr, g)=1
for all 0,0’ € Z. As argued in Theorem 2.1 below, the probabilistic setting can be easilggdda the
non-probabilistic one. The theorem follows easily from the linearity of etqi@n.

Theorem 2.1. Consider a WFA</, penalty functiorn, and detection-probability function p. Lét=
nop. Thusf: 3 x X — IR=Cis such that for allo, ¢’ € %, we have tha8(o,0’) = n(o,0’)-p(a,d’).
Then, for every v& X*, we have expectebestcos{.<, n, p,w) = expectedbestcosi 7, 0, 1, w)

Thus, by considering the penalty functién= n o p, we can reduce a probabilistic setting with
and p to a non-probabilistic one. The cost of a word.df is still an expected one, but for simplic-
ity of notations, we use the ternfiakedcos{ <7, 8,w,w) andbestcos{.«7, 8,w), which are analogue
to expectediakedcost.<, n, p,w,w) and expectedbestcos{ </, n, p,w), and refer tof-resilience to
cheating, rather thafn, p)-resilience.

Example 2.2. Consider the DWFA« in Figure 1. Every statq in the figure is labeled by its final cost.
For example1(qs) = 4, andt(gs) = X, for somex € IR. Every transition is labeled by the letter and
cost associated with it. For examplgg, b, qgs) andc(ap, b, gs) = 1. Assume that the penalty function
is uniform and for allo, o’ € {a,b,c} with o # ¢’, we havefd (o, d’) = 2.

The DWFA .« demonstrates two of the phenomenon that makes the analysis of cheatinggihglle
First, testing an WFA foB-resilience (even a DWFA, and even with a unifoBnhmay not be local. In
our example, if we tak& = 0, then it is easy to see that for every three statgs andqg”, and two letters
o andd’, it holds thatc(q,0,q') + 1(d') <c(q,0’,q")+1(q")+ 6(0, 0’); that s, for all words of length
1 it is not beneficial to cheat, independent of the initial state. Clearly, thisvecassary condition for

5

Coping with Selfish On-going Behaviors Kupferman and Tamir

</ to be B-resilient: if there arey,q,q”’, 0, andg’ that violate the condition, then the wovd- o for
which &(qgo,w) = g, hasfakedcost{.«7,0,w- o,w- 0’) < cos{.«/,w- 0), thusbestcos{.«7,0,w- g) <
cos{.«Z,w- o) andw- g has an incentive to cheat and pretend tawb@’. This condition, however, is
not sufficient. For example&ost.«7’,aa) = 8 while fakedcos{.«, 8,aa bb) = 2+ 26(a,b) = 6. That
is, aa has an incentive to cheat and pretend tdbe

Second,«Z demonstrates that cheating may be beneficial only for words that areindédly long.
To see this, note thas{.e7,bc<) = k+ 1 andcost .7, c*"1) = x+ 1. Since cheating in the first letter
costs 2, we have thaestcost <7, 6, bd¢) = min(k+ 1,x+ 3) andbestcost(.«7, 8, c*1) = min(k+ 3,x+
1). Thus, the largex is, the longer are the shortest input words that have an incentive tb chea

Figure 1:The DWFA .

A basic challenge in the setting of rational environments is to design systemsich thie envi-
ronment has no incentive to cheat. In our setting, one could ask whetfieera WFA <7 that is not
B-resilient to cheating can be modified to an equivalent W#Athat is 6-resilient to cheating. Theo-
rem 2.3 below states that this is impossible.

Theorem 2.3. Resilience to cheating is a semantic property. Thatis, given a weighteddgadui>* —
IR=0U {0} and a penalty functio®, either all WFAs forZ are 8-resilient to cheating, or none of them
is B-resilient to cheating.

Proof: Let </ and .o/, be two WFAs forL. Thus, for everyw € ¥, we have thatost.e;,w) =
cost.e/o,w) = L(w). We show that ife; is not B-resilient to cheating, then so is5. Assume that
<1 is notB-resilient to cheating, and let andw’ be such thajw/| = |w| andfaked cos{ <7, 8,w,w) <
cos{.e71,w). Recall thatfakedcos{.<1, 0,w,w') = cos{.e1,W) + 6(w,w). By the equivalence af#
and.o%, we have thatos{ <7, w) = cos{.e%,w) andcos{.«1, W) = cos{.a%,W). Hence, sincé (w,w)
is independent of the WFA, we also hdaéedcos{.«%, 6,w,wW) < cos{.2%,w), and we are done. [

Note that Theorem 2.3 applies for both nondeterministic and deterministic WHAss, nondeter-
minism cannot help a WFA to cope with cheats. Note also that Theorem 2.Rlemna given penalty
function8 and does not include the possibility of achieving resilience by modifying thalfyeiunction,
possibly using the same budget. We will get back to this problem in Section 4.

6

Coping with Selfish On-going Behaviors Kupferman and Tamir

2.3 TheCheating-Allowed Automaton

Reasoning about a WF4/ and its resilience to cheating, one has to take into account the infinitely many
possible cheating patterns that should be resilient too. In this section we show that these patterns can
be modeled by a single WFA obtained fram by adding transitions that mimics cheating.

Theorem 2.4. Consider a WFAe and a penalty functio : = x = — IR=0, There is a WFA', with
the same state space a5, such that costez’, w) = bestcos{.«7, 6, w).

Proof: Let« = (X,Q,A,c,qo,T). We define?’ = (Z,Q,A’,c, o, T), where the transition relatiofy
and the cost functiod’ are defined as follows. For every two stateq € Q, if there iso’ € Z such that
A(g,0',d'), thenA'(qg, 0,q) for everyo € Z, andc'(q,0,q) = Ming.aqo,q)1¢(0,0',d) +6(0,0")}.
That is, if the seE’ of letters with whicheZ can move frongto g is not empty, thenz’ can move from
g to g with all letters — by reporting them to be some lettein The cost of this transition for a letter
o is calculated by taking the most beneficial replacement fEanthe one that minimizes the sum of the
cost of the transition and the cost of cheating.

It is not hard to see the correspondence between the nondeterminigtranid the choices of cheat-
ing patterns. Formally, for every womd, a cheating patterw’ for w induces a run ofz’ on w whose
cost isfakedcost{.«7,8,w,w'). Likewise, every run ofez’ on w induces a wordv' that can serve as a
cheating pattern fow. Hence, since the cost ofin 7’ is the minimal cost of some run of’ onw, we
have thabestcos{.«7, 6,w) = cos{.«’,w), and we are done. O

Given a WFA«7 and a penalty functiof, we refer to the WFA<’ constructed in Theorem 2.4 as
Cheat.«7, 6). For example, the WFA in Figure 2 Bheaf.«7, 6), for the WFA <7 described in Figure/1
and6(o,0’) =2forallo,0’ € Zwith o # 0.

a,6;b4;c4

a2

a,3;h3;c1
a,3 a4
0 » q5’0 ’

"% c3

Figure 2:The WFA &7/ =Cheaf.«, 8), with uniform 6 = 2.

Corallary 2.5. For every WFA«/ and penalty functior®, we have thak? is 0-resilient to cheating iff
o/ < Cheat.«7, 0), that is, for every word v& ~*, we have that cost?,w) < cos{Cheat.</, 0),w).

Theorem 2.6. Given a WFA«/, a penalty functiond, and a word we *, the problem of finding
bestcos{.<7, 6,w) and a cheating pattern for it, can be solved in polynomial time.

7

Coping with Selfish On-going Behaviors Kupferman and Tamir

Proof: Given a WFA</ and a wordw € ¥, it is possible to finccos{.e/,w) as follows (note that we
refer here to cost without cheating). 4f is deterministic, we traverse the single runfonw and
find its cost. If.«/ is nondeterministic, we first restrie¥ to runs along whictw is read, and then find
the cheapest such run. Formally, we define the prodgcof <7 with an un-weighted automaton with
|w| + 1 states whose languagefis}. The WFA .« describes exactly all the run of onw and it has no
cycles. We apply ta#, a shortest-path algorithm [Dij59] and find the shortest path from an inititd sta
to a final state.

Now, givene/ and#, let.«#' beCheat <7, 6). Then, for every wordv, we have thabestcos{.«, 8,w) =
cos{.«7’,w), which can be calculated as described above. Also, ther'rafi </’ on w for which
cost{.«7’,w) = cos{r’,w) reveals the cheating pattern. O

Limited Cheating and Rising Penalty Variants: In the above described setting, an input word can
cheat as many times as it wants. Also, the penalties are fixed throughout tfactiote It is easy

to modify the construction o€heaf.<7, 6) and, consequently, our results below, to account for variant
models. For example, by taking several copie€beat.«7, 6), it is possible to give a constant bound
on the number of allowed cheats (the states maintain the number of cheatsdistefde or constant
bound on the budget a word can use for cheating (the states maintain thehedtihg costs detected
so far). By taking several copies @heaf.e/, 68) and modifying the costs in the different copies, it is
possible to letes increase the penalties when cheats are detected (this correspondsdsimgreither
the detection-probability function or the penalties themselves; as indeedrsippractice when cheats
are detected).

3 Resilience Testing

In this section we study the problem of deciding, given a W#Aand a penalty functiof, whethere?
is B-resilient to cheating. Recall that is 8-resilient to cheating ifos{.</,w) = bestcos{.«Z, 0, w).
We show that the problem is PSPACE-hard for WFA but can be solvedymgmial time for DWFA.

3.1 Hardness Proof for WFA

Theorem 3.1. Consider a WFA« and a penalty functior®. The problem of deciding whether is
B-resilient is PSPACE-hard.

Proof: We do a reduction from the universality problem for NFAs, proven to BEACE-hard in
[RS59]. Given an NFAZ , we construct a WFA®,, such thate,, is O-resilient (thatisf(o,c’) = 0 for

all 0,0’ € %) iff % is universal. Note that an automaton is O-resilient iff no input word has@entive
to cheat even if cheating is free. The idea behind the construction is thdswot inL(%/) would
induce words that have an incentive to chegt. Thus,% is universal iff no word has an incentive to
cheatey, , so even the 0 penalties suffice to ensure resilience. Formally; let(X, Q,A,Qo, F), where

F C Qis a set of final states, and latbe some letter iit. We assume thak| > 1. We define, to
go with the lettera to a copy of% and to go with all letter& \ {a} to an accepting sink (see Figure 3).
Thus, <, = (£,QU{qo, dqcc}, A, {to},C, T), whereA' = AU ({qo} x {a} x Qo) U ({do} x (Z\ {a}) x
{bacc}) U ({Gacct X Z X {Gacc})-

Coping with Selfish On-going Behaviors Kupferman and Tamir

Figure 3:The WFA .27 .

Also, for all (q,0,q) € &', we havec((g,0,qd')) = 0 and for allqg € QU {dp, gqcc} We haver(q) = 0.
It is easy to see that#;, accepts (with cost 0) all words of the forax w, for w € L(%), or of the
form o -w, for o0 £ aandw € 2*. Accordingly, if % is universal, thens,, accepts all words irz*
with cost 0, and is therefore O-resilient. Also 4 is not universal, then there ¥ ¢ L(%) such that
cosi.<7y ,a-w) = oo, while fakedcost .« ,a-w,b-w) = 6(a,b), for anyb € Z\ {a}. Hence,« is not
O-resilient, and we are done.]

Many fundamental problems about WFAs are still open. Unlike standamhfreighted) automata,
not all weighted automata can be determinized [Moh97]. In fact, even tisgm of deciding whether
a given WFA has an equivalent DWFA is open, and so are problems skati@terminization in their
solution, like deciding whethew < .’ for two WFAs.«# and.«7’ [Kro94, CDHO08]. We note that the
problem of deciding whether < .7’ is open even when? is a DWFA — it is the nondeterminism i@’
that makes the problem challenging. Thus, even for the case deterministic, we cannot reduce the
problem of deciding whethe# < Cheaft.<, 6) to a problem whose solution is known. As we describe
below, we are still able to present a polynomial solution to the problem.

3.2 A Polynomial Algorithm for DWFA

We turn to consider the case whergis deterministic. We show that in this case, the problem of deciding
whethers/ is 6-resilient, for a given penalty functio6l, can be solved in polynomial time. Let =
(%,Q,A,c,qo, T) be a DWFA. Letn = |Q|. For a given penalty functiofl, let &’ = (£,Q,4’,c/,qo, T)
be Cheaf.«7,6). We describe an algorithm for deciding wheth#r=< «’. By Corollary 2.5, the latter
holds iff <7 is 6-resilient to cheating.

Our algorithm is similar to the algorithm for deciding whether a given DWFA is\vedent to a WFA
in which it is embodied [AKL09]. We define a sequence of functibfi$,...: Qx Q — IRU {0, —c0},
as foIIowsﬁ Intuitively, hi(q,q’) indicates how much a word of length at mestan gain if instead of
a run of &7 that leads tay it takes a run of’ that leads tay. This difference does not include the
final costs ofg, andg'. Note that there may not be words of length at magbng whichq andq' are
reachable, in which cade(q,q’) would be—w. Also, it may be that for all worde of length at most,
the cheapest run i’ that readsv and leads t@/ costs more than the run ef that readsv and leads
to g, in which caseh;(q,q) is negative.

2In the definition ofh; we use addition and subtraction on the elements of {R, —o}. For every finitex € IR, we have
00 —X =00, aNdx — oo = —o0, Also o — o0 = 0.

Coping with Selfish On-going Behaviors Kupferman and Tamir

It is easy to see that if for somec IN andq,q € Q, we have thabj(q,q") > 1(d') — 7(q), then there
is a word of length at mostfor which cos{.«7,w) > cos{.«/’,w), thus.«¥ A o7’. We show thah; can
be calculated efficiently, and that even though the sequence of funatiapsot reach a fixed-point, it
is possible to determine whethef < .’ after calculatingy for i = 0,...,0(?). Intuitively, it follows
from the fact that not reaching a fixed-point af@m?) iterations points to cycles along which the gain
of <7’ with respect tozZ is unbounded.

We initialize ho(qgo, go) = 0 andhy(g,q’) = —oo for all other pairs. Indeedgo, qo) is the only pair of
states to which an empty word might reach@hand.’.

The calculation ot 1, for i > 0, uses a functiomj;1: Q x Q x £ — IRU {0, —co}. Intuitively,
gi+1(9,q,0) indicates how much a word of length at most 1 that ends with the letter can gain if
instead of a run of7 that leads ta it takes a run ofe7’ that leads ta@. Then,

gir1(9.q,0)= max (hi(p,p) +¢c(p,0,9) —c'(p,0,d)). (1)
p.pA(p,0,0) A & (P,0.d)

Thus, the calculation of;i1(q,d,0) considers all pairgp, p’) € Q from whichq andd can be
reached, respectively, wheris read. Sincej;1(q,q,0) is the gain obtained by running i’ instead
of in &, we add tahi(p, p') the cost of the transitiofp, 0, q) in .« and subtract the cost of the transition
(p',o,q)in <. Now, fori > 0, we have

hi;1(9,9") = max{hi(q,q), rygzxgi+1(q,q’, 0)}. (2)

Fori > 0 andq,d € Q, we say that a words witnessesilig,d') if |w| <i and there is a run of7’ on
w that leads t@ and traversing its transitions costq, q') less than traversing the transitions of the run
of &/ onw, which leads taj. Note that since the functiorts ignore the final costs, the above refers to
the cost of traversing the transitions along the runs, rather than theftbstrans. Clearly, ihi(q,d') is
finite, then it has at least one witness.

We can now present the algorithm for deciding whettverx A':

1. Fori =0,...,n%: Calculatehy; if for someq,q € Q, we havehi(q,q) > () — 1(q), then return
(o 2 o).

2. Fori =n?+1,...,2n% Calculateh;; if for someq,q € Q, we haveh_1(qg,q) < hi(g,q), then
return(« £).

3. Returie/ < &7').

We prove the correctness of the algorithm.

Assume first that the algorithm returns that £ «7’. We distinguish between two cases. If the
algorithm declares tha¥ £ <7’ in Step 1, then the wond that witnessek; (g, q') satisfiecos{ ./, w) <
cost.e7,w). If the algorithm declares that/ £ <7’ in Step 2, letn® < i < 2n° andq,q € Qi1 be
such thathi(q,q) < hi+1(q,q), and letw be the word of length + 1 that witnessesi;1(q,q’). Let
I = Oo,...,0i+1 be the single run ok onw, and letr’ = q,...,q, , be a run ofe7’ onw such that
cos{(.«/’',w) = cos{.«/’,r"). Thus,r’ is the run of</’ along whichcos{.<?’,w) is obtained. Note that
q=0+1andq =g ,. Sincei+1> n?, there must be two indices0 j; < j» <i+1 such that;, = q;,
andqj, = q,. Lety=cos(/,r,j1+1, j2) andy’ = cos(./’,1’, j1+1, j2).

10

Coping with Selfish On-going Behaviors Kupferman and Tamir

Consider the worav' = wj - - -Wj, - Wj,+1---Wiy1. Thus,w is obtained fromw by removing the sub-
wordwj, 1 - -wj, along whiche and</’ cycle. The single run of7 onw isv=0o, . ..,Qj;,jo+1, - - - , Gi+1.
Also, V = qp, ..., dj,,d},1,---, 01 IS @ legal run ofe7’ onw. Note thatcos{(«7,v) = cos{«/,r) —y
andcos(.«/’,V') = cos{./’,r") — y. Sincehi(q,d') < hi;1(q,d), bothr andv end ing;,, bothr” andVv
end inqj,, andw is of length at most (and may therefore serve as a witneshk;ta, d')), it must be that
cos{.«/,v) —cos{./’,V) < cos{.<,r) —cos{(.«/’,r'). Hencey—y > 0.

Forj>1,letw; =wy---Wj, - (Wj,11-- 'Wj2>j. Thus,w;j is obtained fronw by pumping the sub-word
Wij,+1---Wj, for j times. Leta = cos{(.</,r,1, j1) and leta’ be the cost of the cheapest runef that
readsw; - - -wj, and leads frongj to q’jl. Recall thaty— y > 0, thusy > y. Hence, sincer, o', 1(qj,),
and7(qf,) are all finite, there must bg> 0 for whicha + j - y+1(q;,) > a’+ j -y +1(df,). Since
cos(.«/,wj) = a+j-y+1(qj,) andcos{(./’,wj) < a+ j-y+1(q;,), it follows that there isj > 0 for
which cost(.«7,wj) > cosi(.«’,w;), thus«/ £ <7’, and we are done.

Assume now thaty A «7’. Letw=w; - - -w; be the shortest word for whidwost <7, w) > cos{.&/’, w).
Letr =qo,...,q be the single run of7 onw, and letr’ = ¢,...,q be a run ofZ’ onw such that
cost{.«’,w) = cos{.«Z’,r"). Thus,r’ is the run along whicleost{.<7’, w) is achieved.

We distinguish between two cases. First,<f n?, then, by the definition of the functiors, we have
hi(ai,q) > t(q) — (1), thus the algorithm detects thaf £ <7’ in Step 1.

Second, ifl > n?, then there must be two indices0j; < j» < n? such thanj, = qj, andq’jl = q’jz.
Let y = cos{<,r,j1+1,j2) andy = cos{/’,r’, j1+ 1, j2). Sincew is the shortest word for which
cost(.«7,w) > cos{(.&/’,w), it must be thay > y. Indeed, otherwise, the wovd = wy - - - Wj, -Wj, 1+ - W,
which is shorter tham, also satisfiesost.«/,w') > cos{.</’,w).

Lety € =* be a word of length at mosf that witnesseianz(qjl,q’jl). Thus,ly| =t, fort < n?, and
there are runs=s,...,§ ands =s,,..., 5 of & and.’, respectively, oly, such thak = qj,, § = dj,,
andcos(«/, s, 1,t) —cos(«/’,s, 1,t) = h2(qj,, qj,)-

Let j = jo— j1. Consider the wor@V' =y-wj,;1---Wj,. The wordw is of lengtht + j. The single
runof&Z onw isv=s,s1,...,%,0j;+1,---,0j,- Also,V =g,,9, ... ,q,q’le, .. .,q’j2 is a legal run ofz’
onw. Note thattos{.«/,v,1,t + j) = cos{«/,s,1,t) + yandcos{.«/’,V,1,t + j) = cos{«/’, S, 1,t) + V.
Also, sincew’ may serve as a witness k. j(q;j,, dj,), it must be thatyj(qj,,qj,) > cos(./,v,1,t +
j) —cos(«’,V, Lt + j). Sincey witnessedx(q;,,dj,) andy—y > 0, it follows thath.(qj,,q],) >
he (9j,. o,). Sinceh(aj,,dj,) = hy(dj,, dj,), we conclude thaltc., j(q;,, aj,) > he(aj,, dj,)-

We claim than? < t+ j < 2n?. Sincet, j < n?, then clearlyt + j < 2n?. To see thah? <t + j, assume
by way of contradiction that+ j < n?. Then, the wordv is of length at mosh?, and it can serve as
witness tohyz(qj,, dj,). Sinceheyj(dj,,dj,) > hy(dj,,qj,), this contradicts the fact that witnesses
hr2 (0,). Now, sincehyj(q;,,d;,) > he(ay,, o,), we conclude that there is an iteratioh< i < 2n?
such thahi(qj,, d},) < hiz1(qj;, d],), and the algorithm declares that £ </’ is Step 2.

The functionhg can be calculated in polynomial time, and so is the funchion, givenh;. Hence,
since we need only a polynomial number of iterations, we can conclude withltbwing.

Theorem 3.2. Consider a DWFAw and a penalty functio®. The problem of deciding whether is
B-resilient can be solved in polynomial time.

11

Coping with Selfish On-going Behaviors Kupferman and Tamir

4 Achieving Resilience with Minimum Resour ces

A system with no limit on penalties and with unbounded resources can prelreating by fixing a
high penalty function. In practice, penalties may be limited by an external @iyttend increasing the
probability of detecting cheats requires resources. In this section we thtegoroblem of minimizing
the resources required in order to guarantee resilience.

We assume that the penalty functigris determined by an external authority and thats (n,i)—
resilient. Thus, the environment has no incentive to cheat if cheating a'ayaldetecteE.Given a WFA
</, and a penalty function, our goal is to find a detection-probability functipnsuch thate is (n, p)-
resilient to cheating and the budd®@t 5 ; oz 1(0,0’) - p(0,a’) is minimal. The rationale behind our
goal is that the system can control the probability of catching cheats.abipe, detection probability
can be increased by investing in “guards”, each responsible forcifisgessible cheat. The budget we
have is the total payment for the guards. The payment to the guard séisiecior detectingo being
reported ag’ is independent of the actual number of timess being reported as’. On the other
hand, the payment is proportional to the penglfy, o’) charged whenever the guard detects the cheat.
Indeed, in practice, detecting a cheat with a high penalty tends to requiredsigurces: knowing that his
success leads to a high revenue, a guard would require high salasayeates can achieve resilience
with budget Bif there aren and p such that the budget of and p is B, and.</ is (n, p)-resilient to
cheating.

As explained in Section 2.2, we can consider an equivalent non-ghshalsetting in which all
cheats are always detected and are charged according to the penetiyrf@ = n o p. In the rest of this
section we therefore consider the problem of deciding, given a Wrand a budgeB < IR=°, whether
</ can achieve resilience with budgBt as well as the optimization problem of finding the minimal
budget with whiche can achieve resilience. A solution for the above problems induces thetegpe
fee function6. Having 6 in hand, we use the given penalty functignto fix p(o,d’) = g%gg% In
order to guaranteed that our solution is feasible, that is, the probabilitfidumis over the rag¢0, 1],
our algorithm only considers solutions in which for allo’ € Z we haven (o,0’) > 8(g,d’).

4.1 Hardness Proof for WFA

We first show that, as in the resilience testing problem, the nondeterministic ssttmgh more diffi-
cult.

Theorem 4.1. Consider a WFAw. Given a budget B, the problem of deciding whether there is a penalty
function8 with budget B such that? is 8-resilient to cheating is PSPACE-hard.

Proof: As in the proof of Theorem 3.1, we do a reduction from the universalibplem for NFAs.
Given an NFA%, we construct a WFA«,, such that there is a penalty functiénwith budget 0 with
which <7, is 8-resilient to cheating iffZ is universal.

The construction is similar to the one described in the proof of Theorem &épethat now the
transition fromqp to gacc is labeled by both all the letters I\ {a}, with cost 0, and the lette, with
cost 1. Itis easy to see that the costdf), of words of the forma-w is O forw € L(«7) and is 1 for

SNote that this is a reasonable assumption as otherwise, the authority pgaiidipenalty function encourages cheating.

12

Coping with Selfish On-going Behaviors Kupferman and Tamir

w ¢ L(<). Also, for o # a, the cost of words of the forra - w s 0, regardless of the membershipwof
in L(«7). Accordingly, if 7 is universal, then;, accepts all words ix* with cost 0, and is therefore
O-resilient, in which a budget 0 suffices to ensure resilience. Als@; if not universal, then there is
w ¢ L(%) such thatost <7 ,a-w) = 1, whilefakedcosi <7 ,a-w,b-w) = 6(a,b), foranyb € Z\ {a}.
Hence, in order to ensur@-resilience, a penalty functiof must satisfyf(a,b) > 1, thus the budget
required tof is at least>| — 1, and we are done. O

4.2 A Polynomial Algorithm for DWFA

We turn to consider deterministic WFAs. Note that if we define an ordbetween penalty functions,
whereb; < 6, iff 61(0,0") < 6;(0,0’) forall 0,0’ € Z, then the penalty functions that ensure resilience
are not linearly ordered. This last observation hints that the problemmdihfi a minimal sufficient
penalty with respect to whick? is resilient cannot be solved in a straightforward way, as it cannot be
based on a search in a linearly ordered domain. Still, as we show below, s/hie a deterministic
DFA, it is possible to describe the resilience requirements as a set of liregprality constraints. Since
the optimization objective can be also described as a linear function, it i$b[go$s determine the
minimal sufficient penalty function using linear programming (LP). LP is a mattieatdool suitable
for determining an optimal solution for a linear objective function defined awet of variables, while
obeying a set of requirements represented as linear equations [Chv83]

We describe the problem as a linear programming optimization problem with agmighnumber
of variables and constraints. Given a WEA and a penalty functiom, the algorithm returns a new
penalty functiond such that:

1. So.0es 6(0,07) is minimal.

0(o,0)
n(o,0’)

2. Forallo,o’ € X, we have 0 <1.

3. & is B-resilient.

Note that the second property assures that n o p, for some probability functiorp satisfying
p(o,d’) € [0,1].

The first property defines the objective function of the LP. The LP ttamgs assure the second and
third properties. Specifically, for the third property, the LP constrairgsrasthat the algorithm described
in Section 3.2, for testing whethey is 6-resilient, would returnzz’ < Cheat.«, 8). Accordingly, the
variables we use are the following:

e Forallo,o’ € 3, the variablef; » maintains the penalty functiof(o, o’).
e For0<i<2n?andq,q € Q, the variable o maintainshi (q,q).

e For0<i<2n?q,q €Q, ando € 3, the variable; q¢.0 Maintainsgi(q,q’, o).

The objective function is mifi, , 65 o. Since the penalty function is non-negative, we hgjé
constraints9, - > 0 for all 0,0’ € Z. In addition,6, , = 0 for all o € . Also, in order to guarantee
that the detection-probability function is feasible, we have, fooali’ € Z, the constraindy o < N o'

13

Coping with Selfish On-going Behaviors Kupferman and Tamir

The additional constraints follow the structure of the algorithm presenteedtid® 3.2. Fok =
1,...,n?, thek-th set of constraints assures that no word of length at kisispuld benefit from cheating.
Fork=n?+1,...,2n% thek-th set of constraints assures that no cycle that can lead to unlimited gain
exists. Each such set consists of a polynomial number of constraintstesdlices a polynomial number
of variables. Specifically, variables of tygpg,y bound the gain of words of length at mastand
variables of type; q .o bound this gain for words of length at mestnding witha. While the variables
hi.q.q> 9 q.q,0 are defined for every 8 i < 2n?, g,q € Q, ando € Z, in practice, many of these variables
are not constrained, as it might be that no word of length at st reach statgin «# andq in &".

We first describe the constraints considering words of length 1, andhkeronstraints for general
k. Note that the first set of constraints can be viewed as a special cHhsegdneral set, however, since
we know thaiyg is the only possible state preceding states reachable by a single letter gbetatien of
this setis simpler. We also note that in order to clarify the intuition behind eaddtraint, the constraints
are not necessarily presented in the canonical form of an LP (thaitisalvariables in the left hand
side and all constants in the right hand side).

In order to assure that words of length 1 will not cheat, we have a Varal 4 for all g,q' € Q,
and a variabley, .o for all g, € Q,0 € X. To reflect Equation (1) in the algorithm described in
Section 3.2, we have, for all” € X such thatA(qo, 0,q) and A(qo, 0’,q), the constrainty qq,o >
c(qo, 0,q) — c(qo,0’,qd) — 6(0,0’). To reflect Equation (2), we have, for @jlq € Q ando € Z for
which g1 4,0 IS bounded, the constraiil qq¢ > g1qq,0- Sincehp(go,do) = 0 and the sequence of
functionshg, hy, . .. is non-decreasing, we also have, for the stigi¢he constraint; (do,do) > 0. Finally,
to reflect the comparison done in Step 1 of the resilience-testing algorithml) fpf’ € Q we have the
constrainthy g ¢ < 1(q) — 7(0).

For example, the first set of constraints defined for the DW#An Figure 4 is as follows.

O1q1.00a > 2— 3~ 6ap
O1,a1,qpa > 2—8—0Oac
O1aqb > 3—2—6ha
O1Lpac > 8—2—6ca
O1,0p,qp0 = 3— 8— b
O1,05,q0,c > 8—3—6cp
h1(do,do) > 0

h1 (01, %) > Gr.q1,00.a
hi(d1,02) <5-10
h1(02,01) > 916,000
h1(G2,G1) > G1.gp.0.c
h1(d2,q1) <10-5
ha(t2, %2) > G050,
h1 (02, G2) > G1.65.00.
h1(G2,0d2) <5-5

In order to assure that words of lengttio not cheat, we have a varialtlg,y for all g,q € Q, and a
variableg; q¢.c for allg,q € Qando € X. To reflect Equation (1), we have, for @llp’ € Qando’ € X

such thatA(p,0,q) andA(p',o’,q'), the constraint

gi,q7q’,o > hi—l.,p,p’ +C(p, o, q) - C(p/’ O-laq,) - 9(07 OJ).

To reflect Equation (2), we have, for @llq’ € Q ando € X for whichg; 4 4. is bounded, the constraint
hiqq = Gigq,0- Also, forallg,q € Q we have the constraintgq ¢ > hi_1 4. Finally, for allg,q € Q

Coping with Selfish On-going Behaviors Kupferman and Tamir

a2 @’ ad: b2 ¢l
e 1
@’ a,6: b7

Figure 4:The DWFA .

we have the constraitt ¢ < 7(q) — 7(q). This last type of constraints, considering the final costs,
corresponds to the comparison done in Step 1 of the resilience-testinghatgor

For example, for the DWFA presented in Figure 4, the following are thet@ints relevant to words
of length 2 that without cheating must getdgbut consider getting tg;. Since words of length 1 can
only reachq; or g2 andA(qs, ¢,q2) = A(dz,¢,q2) = 0, there are no constraints involving the variable

92,02,01.¢-
P.a.q.a > Nge +6—2—06(a,0) R.aqb > Mg +7—4—0(ba)
P.q.q.a > Nga +6—4—6(a,a) R.aqub > Mg +7—2—0(b,b)
R.apqa> Mg +6—2—0(a,b) R.aqb > Mg +7—1-0(b,c)
R.apq.a > Mg +6—1—06(a,c) R.aqb > Mg +7—2—-0(b,C)
h2.go.00 > G200 h2.qo.00 = o
M2 g0 = 92,0,00.b h2gp.qp <10-5

Fork =n?+1...2k?, the set of variables and the set of constraints are very similar to these sets
for k < n?. The only difference is the last type of constraints for evgny € Q. Instead ofh qq <
7(q) — 1(q), we haveh ¢ < hi_1q¢. These constraints corresponds to the detection of gain increasing
cycles, done in step 2 of the resilience testing algorithm.

The correctness of the following claim follows from the construction of thestraints.

Claim 4.2. The set of penalty functions in all feasible solutions to the LP is identical to tioé pehalty
functions for which the resilience algorithm provides a positive answer.

In particular, the feasible solution for whigty, /85 ¢ is minimized, corresponds to a penalty func-
tion with minimal total budget. The total number of constraints and variables ihBus polynomial
in |Q| and|Z|. Therefore, it is possible to find an optimal solution for it [Kha79, Chvi@3)olynomial
time. This implies a polynomial algorithm for the minimum cost resilience problem V&,

Acknowledgment We thank Pnina and Yosef Bernholtz for many helpful discussions.

15

Coping with Selfish On-going Behaviors Kupferman and Tamir

References

[AKLO9]

[CCH*05]

[CDHO8]

[Chv83]
[Dij59]

[DKe09]
[Eil74]
[FKL10]

[HenO7]

[HP85]

[Kha79]
[Kro94]
[Moh97]
[NR99]
[NRTVO7]
[PR89]
[RS59]
[SS78]

[VW94]

B. Aminof, O. Kupferman, and R. Lampert. Reasonirgpat online algorithms with weighted au-
tomata. InProc. 20th ACM-SIAM Symp. on Discrete Algorithmpages 835-844, 2009.

A. Chakrabarti, K. Chatterjee, T.A. Henzinger, O. Kupfi@n, and R. Majumdar. Verifying quantita-
tive properties using bound functions. Pmoc. 13th Conf. on Correct Hardware Design and Verifica-
tion Methodsvolume 3725 ot ecture Notes in Computer Scienpages 50-64. Springer, 2005.

K. Chatterjee, L. Doyen, and T. Henzinger. Quantatanguages. IRroc. 17th Annual Conf. of the
European Association for Computer Science Lpgages 385-400, 2008.

V. Chvatal.Linear Programming W.H. Freeman and Company, 1983.

E.W. Dijkstra. A note on two problems in connexiontivigraphs.Numerische Mathematil :269—
271, 1959.

M. Droste, W. Kuich, and H. Vogler (edsllandbook of Weighted Automat8pringer, 2009.

S. Eilenberg.Automata, Languages and Machinéscademic Press, San Diego, 1974.

D. Fisman, O. Kupferman, and Y. Lustig. Rational #yesis. InProc. 16th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systdresture Notes in Computer Science.
Springer, 2010.

T.A. Henzinger. Quantitative generalizations afiduages. IDevelopment in Language Theory
pages 20-22, 2007.

D. Harel and A. Pnueli. On the development of reactiygtems. In K. Apt, editot,ogics and Models
of Concurrent Systemgolume F-13 oNATO Advanced Summer Institutpages 477-498. Springer,
1985.

L. G. Khachiyan. A polynomial algorithm in linearggramming. Doklady Akademii Nauk SSSR
244:1093-1096, 1979.

D. Krob. The equality problem for rational seriestlvimultiplicities in the tropical emiring is unde-
cidable.Journal of Algebra and Computatipad:405—-425, 1994.

M. Mohri. Finite-state transducers in language apdech processingComputational Linguistics
23(2):269-311, 1997.

N. Nisan and A. Ronen. Algorithmic mechanism desidn.Proc. 31st ACM Symp. on Theory of
Computing pages 129-140, 1999.

N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vaair Algorithmic Game Theory Cambridge
University Press, 2007.

A. Pnueliand R. Rosner. On the synthesis of a reactadule. InProc. 16th ACM Symp. on Principles
of Programming Languagepages 179-190, 1989.

M.O. Rabin and D. Scott. Finite automata and theiisii@c problemsIBM Journal of Research and
Development3:115-125, 1959.

A. Salomaa and M. SoittoldAutomata: Theoretic Aspects of Formal Power Seri®pringer-Verlag
New York, Inc., 1978.

M.Y. Vardi and P. Wolper. Reasoning about infinite carggions. Information and Computatign
115(1):1-37, 1994.

16

	Introduction
	Preliminaries
	Weighted Finite Automaton
	Input Cheating and Resilience of Automata
	The Cheating-Allowed Automaton

	Resilience Testing
	Hardness Proof for WFA
	A Polynomial Algorithm for DWFA

	Achieving Resilience with Minimum Resources
	Hardness Proof for WFA
	A Polynomial Algorithm for DWFA

