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Abstract
I am a job. In job-scheduling applications, my friends and I are assigned to machines that
can process us. In the last decade, thanks to our strong employee committee, and the rise of
algorithmic game theory, we are getting more and more freedom regarding our assignment. Each
of us acts to minimize his own cost, rather than to optimize a global objective.

My goal is different. I am a secret agent operated by the system. I do my best to lead my
fellow jobs to an outcome with a high social cost. My naive friends keep doing the best they
can, each of them performs his best-response move whenever he gets the opportunity to do so.
Luckily, I am a charismatic guy. I can determine the order according to which the naive jobs
perform their best-response moves. In this paper, I analyze my power, formalized as the Price
of a Traitor (PoT), in cost-sharing scheduling games – in which we need to cover the cost of the
machines that process us.

Starting from an initial Nash Equilibrium (NE) profile, I join the instance and hurt its stability.
A sequence of best-response moves is performed until I vanish, leaving the naive jobs in a new
NE. For an initial NE assignment, S0, the PoT measures the ratio between the social cost of a
worst NE I can lead the jobs to, starting from S0, and the social cost of S0. The PoT of a game
is the maximal such ratio among all game instances and initial NE assignments.

My analysis distinguishes between instances with unit- and arbitrary-cost machines, and
instances with unit- and arbitrary-length jobs. I give exact bounds on the PoT for each setting,
in general and in symmetric games. While it turns out that in most settings my power is really
impressive, my task is computationally hard (and also hard to approximate).
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1 Introduction

I am a job. In job-scheduling applications, my friends and I are assigned to machines that can
process us. The authorities that assign us to machines like to analyze the way we are assigned.
They treat us as instances of combinatorial optimization problems, and our assignment
became a major discipline in operations research. In the old days, we were all controlled
by a centralized scheduler who assigned us in a way that achieves an effective use of the
system’s resources, or a target quality of service [20]. In the last decade, thanks to our strong
employees committee, and also the rise of algorithmic game theory, we are getting more and
more freedom regarding our assignment. Many modern systems provide service to multiple
strategic users, whose individual payoff is affected by the decisions made by other users of
the system. As a result, non-cooperative game theory has become an essential tool in the
analysis of our assignment [21, 15, 24, 4, 12, 3]. Each of us has strategic considerations and
acts to minimize his own cost, rather than to optimize any global objective. Practically, this
means that we choose a machine instead of being assigned to one by a centralized scheduler.
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Figure 1 A simple example of a traitor BR-sequence with PoT= 2.

My goal is different, I am not the regular job you are used to analyze. Already in my
childhood I was a problematic kid and my parents were invited regularly to school to discuss
my behavior1. Recently, I started to work as a secret agent, operated by the system. My
mission is to join a stable assignment of other jobs, perturb its stability, and lead a sequence
of best-response moves, whose outcome is as poor as possible. When I’m done, I vanish,
leaving the other jobs in a new stable profile, whose cost is hopefully higher. My naive friends
keep doing the best they can, each of them performs his best-response move whenever he
gets the opportunity to do so. Luckily, I am a charismatic guy; I can determine the order
according to which the naive jobs deviate.

In this paper, I analyze my power, formalized as the Price of a traitor (PoT), in cost-
sharing scheduling games. In these games every job has a subset of the machines on which it
can be assigned, and the cost of every utilized machine is shared by the job assigned to it,
where the share is proportional to the load generated by the jobs. My goal is to lead the
jobs into a stable assignment in which the total cost of utilized machines is maximal. Before
diving into the details, let me demonstrate my mission on a small example.

Example 1: Consider an instance with two machinesm1 andm2 of costs 1 and 2 respectively.
Assume that two naive jobs of length 1 are assigned on m1 (see leftmost assignment in Figure
1). The cost of each of them in this initial profile is 1/2. Assume that my length is 3 + ε,
and I appear and assign myself on m2 (I am Job 0 - the gray guy in the figure). Since
2/(4 + ε) < 1/2 each of the naive jobs will benefit from joining me. So they join me one after
the other. Once we are all on m2, I vanish. The jobs are left on the more expensive machine
(rightmost assignment in Figure 1), and their assignment is stable, since they each pay 1,
and a unilateral deviation to m1 will also result in this cost. My mission is completed with a
NE whose cost is doubled.

1.1 Preliminaries
An instance of a cost-sharing game with a traitor (CST) is given by a tuple
G = 〈J ,M, {Mj}j∈J , p0〉, where M is a set of m machines, and J is a set of k naive
jobs. Not all machines are feasible to all jobs. For each j ∈ J , the machines that may
process Job j are given by the set Mj ⊆M. Every job j ∈ J has processing time pj which is
independent of the machine on which it is assigned. Every machine i ∈M has an activation
cost, c(i). The last component of the tuple specifies my length - the processing time of the
traitor. Throughout this paper, I am denoted Job 0.

Every job is a player, where the strategy space of Job j is the set of machines in Mj .
A profile of a CST game is a vector S = 〈s0, s1, . . . , sk〉 ∈ ((M∪ {⊥}) ×M1 × . . . ×Mk),

1 Enthusiastic fans of the conference FUN with algorithms may recognize me as a bully job in [23].
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describing the machines selected by the jobs. My strategy, s0, is inM∪{⊥}, meaning that I
can go to any machine and also be away, in which case s0 = ⊥. A profile in which s0 = ⊥ is
denoted a traitor-free profile. For a machine i ∈M, the load on i in S, denoted Li(S), is the
total processing time of the jobs assigned to machine i in S, that is, Li(S) =

∑
{j|sj=i} pj .

When S is clear from the context it is omitted.

A machine i is utilized in a profile S if Li(S) > 0. The cost of a utilized machine is covered
by the jobs assigned to it, where the share is proportional to the load generated by the jobs.
Formally, the cost of Job j in the profile S is costj(S) = c(sj) · pj

Lsj
(S) . This cost-sharing

scheme fits the commonly used proportional cost-sharing rule for weighted players, (e.g.,
[21, 1, 11]).

Consider a game G. For a profile S, a job j, and a strategy s′j ∈ Mj , let (S−j , s′j)
denote the profile obtained from S by replacing the strategy of Job j by s′j . That is, the
profile resulting from a migration of Job j from machine sj to machine s′j . A profile s is
a pure Nash equilibrium (NE) if no job can benefit from unilaterally deviating from his
strategy in S to another strategy; i.e., for every job j and every strategy s′j ∈Mj it holds
that costj((S−j , s′j)) ≥ costj(S). This paper considers only pure strategies. Unlike mixed
strategies, pure strategies may not be random or drawn from a distribution.

Given a profile S, the best response (BR) of Job j is BRj(S) = arg mins′
j
∈Mj

costj(S−j , s′j);
i.e., a machine i such that Job j’s cost will be minimized if he is assigned to machine i,
fixing the assignment of all other jobs. If there are several such machines, each of them is
considered a best-response. Best-Response Dynamics (BRD) is a local-search method where
in each step some player is chosen and plays his BR.

A naive job j is said to be suboptimal in a profile S if he can reduce his cost by migrating
to another machine, i.e., if sj 6∈ BRj(S). Given an initial profile S0, a traitor BR-sequence
from S0 is a sequence of profiles 〈S0, S1, . . . ST 〉 in which for every t = 0, 1, . . ., either there
exists a naive job j such that St+1 ∈ (St−j

, BRj(St)), or St+1 = (St−0 , s
′
0). In other words,

either a naive job performs a BR move or I perform a move of my choice – even if it is not
beneficial for me. I am interested in traitor BR-sequences in which both S0 and ST are
traitor-free NEs. The stability of S0 is perturbed once I arrive and select some machine.
Formally, in S0 my strategy is ⊥, and no naive job is suboptimal. Then, S1 = (S0−0 , s

′
0) for

s′0 ∈ M. The last profile in a traitor BR-sequence is also traitor-free, that is s0(ST ) = ⊥.
For a profile S0, let TNE(S0) be the set of Nash equilibria reachable from S0 via a traitor
BR-sequence. If my departure leaves the naive jobs in a non-stable profile, they will keep
forming BR-moves until they converge to a NE (by [2] this will surely happen).

The social cost of a profile S is the total cost of resources utilized in S, which is equal to
the total cost of the players. Formally, cost(S) =

∑
j∈J∪{0} costj(S) =

∑
i∈∪jsj

c(i). Note
that I pay my part in utilizing a machine that I share with others – this is essential also
to keep my reliability among the naive jobs. However, the fact that the final NE in the
sequence is traitor-free guarantees that I cannot force a very expensive outcome by selecting
an expensive machine for myself.

Let NE(G) be the set of Nash equilibria in a CST game G. Being a weighted cost-sharing
game with singleton strategies, it is well known that NE(G) 6= ∅ and that BRD converges
to a NE [2]. Recall that TNE(S0) is the set of traitor-free Nash equilibria reachable from a
traitor-free NE S0 via a traitor BR-sequence.

The Price of a Traitor in a game G, denoted PoT(G), is defined as the worst ratio, among
all initial traitor-free NE profiles S0, between the social cost of a NE in TNE(S0) and the

FUN 2018
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social cost of S0. I.e.,

PoT (G) = sup
S0∈NE(G)

max
S∈TNE(S0)

cost(S)
cost(S0) .

For a class of games G, the price of a traitor with respect to G is defined as the worst-case
PoT over all games in G. That is, PoT(G) = supG∈G{PoT(G)}.

It is well known that NE profiles may be sub-optimal. Let OPT (G) denote the minimal
possible social cost of a feasible assignment of J , i.e., OPT (G) = minS cost(S). The
inefficiency incurred due to self-interested behavior is quantified according to the price of
anarchy (PoA) [15, 19] and price of stability (PoS) [1] measures. The PoA is the worst-case
inefficiency of a pure Nash equilibrium, while the PoS measures the best-case inefficiency of a
pure Nash equilibrium. Formally, PoA(G) = maxS∈NE(G) cost(S)/OPT (G), and PoS(G) =
minS∈NE(G) cost(S)/OPT (G).

The following observation bounds my power for any game instance.

I Observation 1. For every game G, 1 ≤ PoT(G) ≤ PoA(G)
PoS(G)

.

Proof. For every initial NE profile, S0, it holds that cost(S0) ≥ OPT (G) ·PoS(G). Also, for
every S ∈ TNE(S0), it holds that cost(S) ≤ OPT (G) · PoA(G). Therefore,

PoT(G) ≤ max
S∈TNE(S0)

cost(S)
cost(S0) ≤

OPT (G) · PoA(G)
OPT (G) · PoS(G) = PoA(G)

PoS(G) .

Also, since S0 ∈ TNE(S0), it holds that PoT(G) ≥ 1. J

Related work: I am not a young job. I participated in many assignments in my life, and
I always tried to analyze the performance of these assignments. In addition, I’m trying to
follow the huge effort done by researchers in analyzing our assignments. Before the rise of
algorithmic game theory, most of the study dealt with achieving a global objective of the
assignment such as load balancing, minimizing our total completion time, or the makespan
(corresponding to the maximal cost of some job) [20].

In the last decade, game-theoretic analysis became an important tool for analyzing our
assignments, as many other systems in which a set of resources is shared by selfish users.
Congestion games consist of a set of resources and a set of players who need to use these
resources. Players’ strategies are subsets of resources. Each resource has a latency function
which, given the load generated by the players on the resource, returns the cost of the
resource [21, 1]. CST games are congestion games with singleton strategies, in which each
resource has an activation cost that is shared by the players using it according to some
sharing mechanism. A generalized, traitor-free, model of this game, in which the processing
times of jobs depend on the machines they are assigned to was studied in [17, 2].

Best-Response dynamics corresponds to actual dynamics in real life applications. They
are therefore starring in the study of non-cooperative game theory [1, 13, 8]. The important
questions are whether BRD converges to a NE, if one exists [17, 12]; what is the converges
time [5, 6, 22, 13]; and what is the quality of the solution [8]. The paper [22] studies the
complexity of equilibria in a wide range of cost sharing games.

Other related work deal with games in which some of the players are not selfish. For
example, in the Stackelberg model [14, 10, 7], a fraction of the jobs are selfish, while the rest
are willing to obey a centralized authority. A Stackelberg strategy assigns the controllable
jobs, trying to minimize the inefficiency caused by the others.
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Table 1 The non-restricted jobs and their initial profile in the CST game constructed in the
reduction.

Job j pj Mj S0(j) cost0(j)
a 1 {m1, m2, m3} m1 1/4
b 1 {m2, m4} m2 1/2
c 2 {m3, m5} m5 2/5
d 2 {m3, m5} m5 2/5

1, . . . , n aj {m1, m2} m1 aj/4

Games in which some players are adversarial were defined and study in the areas of
Cryptography [16, 18] and Rational Synthesis [9]. However, the goals and the allowed actions
of the malicious players in these games are different, and their analysis is not relevant to my
power.

2 Unit-cost Machines

In this section I study my power in an environment of unit-cost machines. The cost of a
profile is simply the number of utilized machines. My goal is therefore to activate as many
new machines, and keep them utilized also after my departure. Unfortunately, it turns out
that my ambition exceeds my ability: in order to achieve my goal, I need to solve an NP-hard
problem. Moreover, the reduction below presents an instance for which (i) cost(S0) = 4,
(ii) for every ST ∈ TNE(S0) it holds that cost(ST ) ∈ {4, 5}, and (iii) an NP-hard problem
should be solved in order to lead the jobs to a profile of cost 5. This implies that it is unlikely
to have an algorithm that approximates my potential damage with ratio better than 4/5,
and thus, my mission is APX-hard.

I Theorem 2. My task is APX-hard even with a constant number of unit-cost machines.

Proof. I show a reduction from the Partition problem. The input is a set I of positive
numbers {a1, a2, ..., an} such that ∀j, 0 < aj < 1 and

∑
j aj = 2. The goal is to decide

whether there exists a subset I1 ⊂ I, such that
∑
j∈I1

aj =
∑
j∈I\I1

aj = 1. Given an
instance of Partition, consider the CST game and initial profile depicted in Figure 2(a). The
game is played on M = {m1,m2,m3,m4,m5}, where ∀i, c(mi) = 1. The are n + 8 naive
jobs. Four jobs of length 1 are restricted. Each of them is restricted to go to a different single
machine, m1,m2,m4 or m5. These are the gray jobs in the figure. Since |Mj | = 1 for each of
these jobs, they will not participate in the BR-sequence. The restricted jobs guarantee that
the cost of every profile is at least 4. The lengths, possible strategies, and initial assignments
of the other jobs are given in Table 1. My length is p0 = 2 + ε. Note that the last n jobs are
originated from the Partition instance. Let JI denote this set, whose total length is 2.

The initial profile, S0, depicted in Figure 2(a) is indeed a NE, as jobs can only migrate
to machines with a lower or equal load. My goal is to utilize m3 and keep it utilized after I
vanish. As I show, I must be able to solve the Partition problem in order to do it.

I Claim 3. I can lead the jobs to a NE on 5 machines if and only if a partition exists.

Proof. Assume first that a partition exists. Let JA be a set of jobs JA ⊂ JI such that∑
j∈JA

aj = 1, and let JB = JI \ JA. Here is a traitor BR-sequence that ends with a NE
on 5 machines: First, I’ll migrate to m2 and let the jobs in JA perform BR. Recall that my
length is 2 + ε. The loads on m1 and m2 are 4 and 4 + ε, respectively. Since aj

4 >
aj

4+ε+aj
,
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Figure 2 The CST game constructed in the reduction from Partition. (a) The initial profile S0,
(b) The profile before Job a performs BR, (c) The profile after c and d join us on m3, and (d) the
final NE if a Partition exists.

the jobs in JA will move to m2. Once the jobs of JA are all on m2, I’ll migrate to m4, and
let Job b perform BR. He will join me, since 1

3 >
1

4+ε . Then, I’ll move to m3. The profile at
this time-point is depicted in Figure 2(b). Let’s analyze the possible strategies of Job a: If
he stays on m1 or move to m2 his cost will be 1/3, while if he joins me on m3 his cost will
be 1/(3 + ε). Thus, joining me on m3 is his BR. This is exactly what I wanted - now I can
attract additional jobs to this machine! After Job a joins me, I will let Jobs c and d perform
BR. These guys are required in order to keep Job a on m3 after I leave. Job c currently pays
2/5. He will join us since 2/5 > 2/(5 + ε). Job d will clearly follow since 2/3 > 2/(7 + ε).
The profile at this time-point is depicted in Figure 2(c). Stay tuned, we are getting closer to
the end of our sequence. Next, I will let the jobs in JB move, and join their friends in JA on
m2; Job b will also join them. My mission is now completed - I can vanish, leaving the naive
jobs in the profile depicted in Figure 2(d). This profile is a traitor-free NE: Jobs c and d will
not return to m5 since their cost will increase to 2/3. Job a is staying with them since his
cost would be 1/5 also on m2. The jobs of JI are clearly happy together, and all other four
jobs are restricted. The cost of this traitor-free NE is 5.

Assume now that a partition of I does not exist. I argue that I have no chance to keep
m3 utilized. First, note that Jobs c and d will not join me on m3 if it’s only me there, since
2/(4 + ε) > 2/5. Next, let’s analyze the conditions for Job a to join me on m3. In order for
m3 to be his BR, the load on each of m1 and m2 must be less than my length, 2 + ε. In any
assignment, the jobs of JI are partitioned such that for some 0 ≤ α ≤ 2, jobs of total length
α are on m1 and jobs of total length 2− α are on m2. However, for a small enough ε, we
have that max(1 + α, 3− α) ≤ 2 + ε only for α = 1. Therefore, if I has no partition, I will
not be able to attract anyone to join me on m3, and exactly 4 machines will be utilized in
any traitor-free NE. J

J

2.1 PoT in Games with Unit-length Jobs
In this simplest setting, of unit-cost machines and unit-length jobs, my power is very limited.
The price of anarchy in this setting is k. PoA= k is achieved by an instance in which one
machine can process all the jobs, but in the NE each job is assigned on a different machine
that is only capable to process him. The price of stability in this setting is 1 since an optimal
assignment is stable - no job will utilize a new machine. Thus, by Observation 1, my potential
power is k. Unfortunately, independent of S0, I will never be able to lead the naive jobs to a
more expensive profile. Formally,
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I Theorem 4. For G = {CST games with unit-cost machines and unit-length jobs}, it holds
that PoT(G) = 1.

Proof. Let S0 be an initial NE. Along any traitor BR-sequence, no naive job activates a
new machine, since activating a new machine costs 1, which is the maximal cost of a job in
any profile. Assume that I move to a new machine and someone joins me. Each of us now
pays 1/2. Such a migration is beneficial only if the other guy was on a machine by himself,
implying that some machine was abandoned when he joined me. Moreover, additional jobs
may join us, meaning that additional machines may be abandoned. Therefore, whenever I
activate a new machine, if someone joins me, then the cost of at least one machine is saved,
and if no one joins me then the total cost of the machines for the other guys does not change.
Therefore, I will never be able to increase the number of machines that accommodate naive
jobs. J

2.2 PoT in Games with Arbitrary-length Jobs
In games with unit-cost machines and arbitrary-length jobs, I can do much better. My power
varies depending on k and m, and is equal to the price of anarchy [2].

I Theorem 5. Let G = {CST games on unit-cost machines}. (i) For G1 ⊆ G with k < m,
PoT (G1) = k, (ii) For G2 ⊆ G with m ≤ k ≤ 2m− 2, PoT (G2) = m− 1, (iii) For G3 ⊆ G
with k ≥ 2m− 1, PoT (G3) = m.

Proof. (i) Assume that k < m. Clearly, cost(S0) ≥ 1 and in any NE profile the naive jobs
may need to cover the cost of at most k machines. Thus, PoT ≤ k. For the lower bound,
given m and k such that k < m, consider a game G onM = {m0, . . . ,mm−1}. My length
is p0 = 2k, and for 1 ≤ j ≤ k, Job j has length pj = 2j and Mj = {m0,mj}. In the initial
profile, S0, the naive jobs are all together on m0. This is clearly a NE, since a deviating job
will need to pay for a new machine.

Here is a traitor BR-sequence that will lead us to a NE on k machines: starting from S0,
I will move to mk. Since 2k >

∑k−1
j=1 2j , poor Job k needs to pay a bit more than 1/2. Since

we have the same length, he will gladly join me to share the cost of mk. I will then move
to mk−1. It is now the turn of Job k − 1 to contribute a bit more than half of the load on
m0, and join me on mk−1. Well, I’m sure you can now complete the sequence by yourself.
Eventually, I will be together with Job 1 on m1, while m0 is empty and each of m2, . . . ,mk

is assigned only one job. This is the right time for me to vanish. The resulting profile is a
TNE. The only alternative of each naive job is returning to m0; however, m0 is empty so
it does not attract anyone. Since cost(S0) = 1, and in the final NE the naive jobs are on k
machines, we have that PoT(G) = k.

(ii) Assume that m ≤ k ≤ 2m− 2. Let me show you that PoT = m− 1. The lower bound
is similar to the case in which k < m. My length is p0 = 2k, while for 1 ≤ j ≤ m− 1, Job
j has length pj = 2j and Mj = {m0,mj}. For m ≤ j ≤ k, Job j has length pj = ε and his
capable machines are {m0,mm−1}. In S0 they are all assigned to m0. As in case (i), I can
lead the jobs to a profile in which they are assigned on m− 1 machines, by attracting them,
one by one starting from the longest job to their ‘second’ machine. Since cost(S0) = 1, The
PoT in this game is m− 1.

For the upper bound, assume by contradiction that there is a game G ∈ G2 such that
PoT(G) > m−1. Since S0 uses at least one machine and any profile uses at most m machines,
in an instance with PoT > m− 1 it must be that cost(S0) = 1 and some NE costs m. Since
there is just one active machine in S0, this machine is capable for all naive jobs. Denote this
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32:8 The Power of One Secret Agent

machine ma. Assume that ST ∈ TNE(S0) and cost(ST ) = m. It must be that there is at
least one naive job on every machine. Since k ≤ 2m− 2, by the pigeonhole principle, there
are at least two machines that are used by exactly one naive job. Let mb 6= ma be a machine
that is used only by some Job j. Thus, costj(ST ) = 1. Since there is at least one naive
job on ma and ma ∈Mj , by deviating to ma, Job j can reduce his cost, contradicting the
assumption that ST is a NE, and thus, contradicting the assumption that PoT(G) > m− 1.

(iii) Assume that k ≥ 2m− 1. Let me present a game G ∈ G3 in which cost(S0) = 1 and
some NE in TNE(S0) uses m machines, thus, PoT(G) = m. This is clearly a tight bound as
cost(S0) ≥ 1 and any schedule uses at most m machines. Given k,m, consider a game G on
M = {m0, . . . ,mm−1}. My length is p0 = 22m−2, and for 1 ≤ j ≤ 2m− 2, Job j has length
pj = 2j and Mj = {m0,mdj/2e}. Let JR be the set of jobs {j ≥ 2m− 1}. Since k ≥ 2m− 1,
the set JR is not empty. The jobs of JR have total length 1, and are restricted to m0. In the
initial profile, which is clearly a NE, all naive jobs are on m0.

Here is a traitor BR-sequence that will lead the naive jobs to a NE on m machines:
starting from S0, I will assign myself on mm−1. The load on m0 is

∑2m−2
i=0 2i = 22m−1 − 1.

Poor Job 2m− 2, whose length is 22m−2, needs to pay a bit more than 1/2. Since we have
the same length, he will gladly join me to share the cost of mm−1. The remaining load on m0
is

∑2m−3
i=0 2i = 22m−2− 1. It is now the turn of Job 2m− 3 to contribute a bit more than half

of the load on m0. He will gladly join us on mm−1. I will then move to mm−2 and attract
the next pair of long jobs on m0 to join me one after the other. The sequence continues
- in turn, I attract the pair with the largest length to their ‘second’ machine. Eventually,
only jobs from JR, of total length 1, remain on m0. At this time point, I will vanish. The
resulting profile uses m machines and is a NE. The jobs of JR have no alternative strategy,
and the only alternative of the other naive jobs is returning to m0. However, their current
cost is either 1/3 or 2/3, so they prefer it over returning to m0 and share it with JR. Since
cost(S0) = 1, we get that PoT(G) = m. J

3 Arbitrary-cost Machines

CST games with arbitrary-cost machines and unit-cost jobs fit the classic model of fair
cost-sharing with singleton strategies. For games without a traitor it is known that the PoA
is k and the PoS is Hk were H0 = 0, and Hi = 1 + 1/2 + . . .+ 1/i. As I show, my power is
quite limited, and moreover - my mission is computationally hard. On the other hand, as
detailed in Section 4, when jobs may have arbitrary lengths, then my power equals the PoA
already in symmetric games.

Let me start with the hardness result.

I Theorem 6. My task is APX-hard, even with unit-length jobs and if for every naive job j,
|Mj | ≤ 4.

Proof. I show a reduction from the maximum 3-bounded 3-dimensional matching problem
(3DM-3). The input to the 3DM-3 problem is a set of triplets U ⊆ X × Y × Z, where
|X| = |Y | = |Z| = n. The number of occurrences of every element of X ∪ Y ∪ Z in U is at
most 3. The number of triplets is |U | ≥ n. The desired output is a 3-dimensional matching
in U of maximal cardinality; i.e., a subset U ′ ⊆ U , such that every element in X ∪ Y ∪ Z
appears at most once in U ′, and |U ′| is maximal. It is known that 3DM-3 is APX-hard.

Given an instance of 3DM-3, construct the following CST game with unit length jobs.
J = {x1, x

′
1 . . . , xn, x

′
n, y1, y

′
1, . . . , yn, y

′
n, z1, z

′
1, . . . , zn, z

′
n}, that is, 3n pairs of jobs, one pair

for every element of X∪Y ∪Z. LetM = MX∪MY ∪MZ∪MU , where each ofMX ,MY ,MZ is
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𝑥1

mx1 mx2 mx3    my1 my2 my3   mz1 mz2 mz3   mu1 mu2 mu3

(a)
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Figure 3 The CST game constructed for n = 3 and U = {{x1, y2, z2}, {x1, y3, z3}, {x3, y1, z1}}.
(a) The initial profile S0, (b) The NE corresponding to the matching {{x1, y2, z2}, {x3, y1, z1}}.

a set of n element-machines, one machine per element, andMU is a set of |U | triplet-machines,
one machine per triplet.

Every machine in MX costs 3 + ε, every machine in MY ∪MZ costs 2 + ε, and every
machine in MU costs 3. The feasible machines for the naive jobs are as follows: For the
pair xi and x′i, Job xi can choose between mxi

and any machine of a triplet he belongs to,
while Job x′i is restricted to go to machine mxi

. Formally, Mxi
= {mxi

} ∪ {mu`
|xi ∈ u`},

and Mx′
i

= {mxi
}. Similarly, for the pair yj and y′j , Myj

= {myj
} ∪ {mu`

|yj ∈ u`}, and
My′

j
= {myj

}, and for the pair zk and z′k, Mzk
= {mzk

} ∪ {mu`
|zk ∈ u`}, and Mz′

k
= {mzk

}.
In the initial assignment, S0, every pair is assigned on his dedicated machine. See

an example in Figure 3(a). It is easy to verify that S0 is a NE. The cost for every job
corresponding to an X-element is (3 + ε)/2, the cost for every other job is (2 + ε)/2. Any
migration of a naive job is associated with an activation of a triplet-machine and is therefore
not beneficial. It holds that cost(S0) = 7n+ 3nε.

I Claim 7. I can lead to a NE whose cost is cost(S0) + 3w if and only if a matching of size
w exists.

Proof. Let W = {u1, . . . , uw} be a 3-dim matching of size w. The traitor BR-sequence I will
lead from S0 consists of w iterations, in each of them I attract the elements of one triplet
to their triplet-machine. Assume 〈xi, yj , zk〉 = u` ∈ W . After I move to mu`

, I offer Job
xi to perform a BR-move. His current cost, on mxi , is (3 + ε)/2, and he can reduce it to
3/2 by joining me. All other triplet-machines that are capable to process him are empty,
and therefore, joining me is his BR. Once he joins me, I offer yj to perform a BR-move.
Since (2 + ε)/2 > 3/3, he would join us. Next, zk will join us since (2 + ε)/2 > 3/4. I will
then move to attract the next triplet to their triplet-machine. After w such iterations, I will
vanish. The resulting profile (see Figure 3(b)) is a traitor-free NE - the jobs assigned to the
w triplet-machines each pays 3/3 = 1 while returning to their element-machines will cost
them (3 + ε)/2 or (2 + ε)/2. The other jobs are either restricted to their machine (jobs of
type x′i, y′j or z′k), or can move to an empty triplet-machine - which is not beneficial.

For the other side of the reduction assume that there is a traitor BR-sequence that ends
in a NE ST whose cost is cost(S0) + 3w. For every element-machine there is one job (the
‘prime’-job) who is restricted to it. Also, all element-machines are utilized in S0; therefore,
in order to achieve cost cost(S0) + 3w, exactly w triplet-machines are utilized in ST . I claim
that each such machine is assigned all its corresponding triplet. If u` is assigned only two
jobs, then the cost for each of them is 1.5. Since at least one of the two jobs is a Y -job or
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a Z-job, he can migrate from mu`
to join his pair in S0 for cost 1 + ε/2. Therefore, ST is

stable only if w machines are assigned their corresponding triplets - inducing a matching of
size w. J

J

3.1 PoT in Games with unit-length jobs
In order to bound my power in this setting, let us consider a stronger model, in which the
jobs are allowed to perform better-response moves, and not only best-response ones. An
upgraded traitor has the ability to select the next job to deviate and also his next strategy,
as long as it is better than his current strategy. My power in this model is at least as high
as in the regular model, since every BR-sequence is also a better-response one. The upper
bound for the PoT in CST games with unit-length jobs is valid also for the stronger model,
while the lower bound in my analysis below is achieved already by a traitor BR-sequence.

Let G = {CST games with unit-length jobs}. Let G ∈ G and let S0 be an initial profile
in G, such that PoT(G) is achieved by G starting from S0. The proof of the following
lemma is based on the fact that the setM can be tailored to include machines that can only
accommodate one specific job, and I can attract the jobs to these machines.

I Lemma 8. W.l.o.g., in the worst traitor better-response sequence from S0, all the initial
machines are emptied, and every job migrates exactly once.

Proof. Let ST be the most expensive profile in TNE(S0). Assume by contradiction that
there is a machine ma that was utilized in S0 and is not empty in ST . Assume that
La(ST ) = `. Consider a game G′ in whichM′ =M∪ {m′1, . . .m′`}. For 1 < z ≤ `, define
c(m′z) = 2c(ma)/z − ε. For m′1 define c(m′1) = c(ma). Let j1, j2, . . . , j` be the jobs on ma

in ST according to the order they joined ma. It is possible that some of them were on
ma in S0, in which case their enumeration is arbitrary. In G′, for every 1 ≤ z ≤ ` define
M ′jz

= Mjz ∪ {m′z}. Clearly, for all z, costjz (ST ) = c(ma)/`. I claim that I can lead G′

from S0 to a NE of cost cost(S0) +
∑`
z=1 c(m′z). Thus, G′ has a higher PoT. The traitor

better-response sequence from S0 in G′ will be identical to the sequence in G with the
following suffix: Before I vanish, I will migrate to machine m′`. Since c(m′`)/2 < c(ma)/`,
joining me is attractive for j`. I will continue in a similar way to evacuate ma. Note that
c(m′1) = c(ma). The machine m′1 is essential, since it is important to make sure that j1 also
leaves ma: this guarantees that the resulting profile is a NE - for all 1 ≤ z ≤ `, we have
c(m′z) ≤ c(ma), and therefore none of them has an incentive to return to ma and attract the
other jobs back after I’m gone. Also, since m′z is only capable to process Job jz, no other
job is affected. The above extension of the traitor better-response sequence can be applied
for any machine which is utilized in S0 but not emptied along sequence.

Using a similar extension of the sequence, I can show that there exists a worst traitor
better-response sequence from S0, in which every utilized machine accommodates exactly
one naive job. Finally, let me show that there exists a worst sequence in which every naive
job j migrates exactly once - from machine sj(S0) to some new machine: By the above,
there exists a sequence in which all the machines that were active in S0 are empty in ST and
every utilized machine accommodates a single job. Therefore, every job migrates at least
once. Assume by contradiction that there are naive jobs who migrate more than once. Let j
be the naive job who performed the last before-last migration. By the choice of j, after his
before-last migration there were migrations only to final destinations, and according to the
properties above, these migrations are into new dedicated machines - each accommodating a
single job.
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Assume that in his before-last migration, Job j moved from ma to mb. Let `a and `b
denote the loads on ma and mb, respectively, before the migration of Job j from ma to mb.
The migration is beneficial, therefore, c(ma)/`a > c(mb)/(`b + 1). Given that mb is about to
be evacuated, there exists some job on mb who will be the first to migrate to some dedicated
machine m′. His move would be beneficial, so his cost on m′ will be less than c(mb)/(`b + 1).
Define a game G′ in which M ′j = Mj ∪ {m′}. Consider the sequence in which before the
migration of job j I move to m′ and then let Job j perform a BR move. Joining me will be
j’s best-response. In G′ I need to permute the dedicated machines allowed for each of the
jobs currently on Mb - such that it will be emptied as before, maybe in a different order.
This permutation however does not hurt the total cost of the machines activated due to the
jobs leaving mb. Therefore, there exists a sequence in which the before-last migration of j is
saved, and the total cost of machines utilized is not hurt. The above process can be repeated
as long as there are jobs migrating more than once – to end up with a sequence fulfilling the
properties stated in the lemma. J

Based on the above characterization, the PoT can be bounded as follows.

I Theorem 9. For G = {CST games with unit-length jobs }, it holds that PoT(G) = 2Hk−1.

Proof. By Lemma 8, the PoT is achieved by emptying one by one the machines in S0,
where every job is attracted to a new machine. Thus, for every machine mi, the load on
mi reduces during the traitor BR-sequence from Li(S0) to 0. A naive job j that leaves
his machine ma when the load on it is ` will be attracted to join me on a new machine
only if its cost is less than 2c(ma)

` . Also, if ` = 1 then I can attract j to a machine
of cost at most c(ma), as otherwise, j will return to ma after I’m gone, and will also
attract the other jobs back to it. For ` > 1, the new machines have cost lower than
2c(ma)

` ≤ c(ma), and therefore, the trapped jobs will not have an incentive to return to ma

after I vanish. The total cost of machines I will utilize in order to empty ma is therefore less
than c(ma) +

∑La(S0)
`=2

2c(ma)
` = c(ma)(2HLa(S0) − 1). Summing over all the machines in S0,

we get that for the final NE ST , cost(ST ) <
∑
i|Li(S′0)>0 c(i)(2HLi(S′0) − 1). For at least one

machine, Li(S0) ≤ k, implying that cost(ST ) < cost(S0)(2Hk − 1).
For the lower bound, let me describe a CST game in which I can lead the jobs to a NE

whose cost is arbitrarily close to cost(S0)(2Hk−1). The game is played onm = k+1 machines,
M = {0, 1, . . . , k}. The cost of machine m0 is 1 + ε, for 1 ≤ i < k, we have c(mi) = 2

k−i+1 ,
and c(mk) = 1. There are k unit-length jobs, where for 1 ≤ j ≤ k, Mj = {m0,mj}. In the
initial profile, S0, all the jobs are on m0. Since the cost for each naive job is 1+ε

k and the
cheapest empty machine has cost 2

k , S0 is a NE. Here is a traitor BR-sequence I can initiate:
First, I appear on m1, whose cost is 2

k . Joining me is beneficial and possible for Job 1. Once
he migrates and joins me, I move further to m2 and let Job 2 perform best-response. His
current cost is 1+ε

k−1 and I offer him a cheaper alternative. I continue to attract the jobs one
after the other until eventually, m0 is empty, mi accommodates Job i, for all 1 ≤ i ≤ k − 1,
and mk is shared by Job k and myself. My mission is completed. The resulting profile is a
NE: the naive players have no incentive to activate m0, since each of them has current cost
at most 1.

The cost of this NE is
∑k
i=1 c(mi) =

∑k−1
i=1

2
k−i+1 + c(mk) = 2(Hk − 1) + 1 = 2Hk − 1.

Since cost(S0) = 1 + ε, the PoT is arbitrarily close to 2Hk − 1. J
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4 Symmetric Games

In a symmetric game, all the players have the same set of feasible machines. W.l.o.g., for
all j, Mj = M. It is well-known that in symmetric games, all the players use the same
strategy in every NE. Indeed, if two naive players use different strategies, then at least one
of them would benefit from joining the other. It is also known that PoA= k and PoS=1 in
this settings [1], where the high PoA is achieved even with unit-length jobs.

In this section I show that with unit-length jobs or with unit-cost machines I have no
power, that is, I cannot lead the players to a NE worse than S0. I then suggest an efficient
way to increase my power: I consider the lightest relaxation of the unit-length condition, and
show that allowing me to have an arbitrary length (while all other jobs have unit-length),
is sufficient to achieve PoT=PoA= k. I then provide a tight bound for my power with
arbitrary-length jobs and arbitrary-cost machines.

The first theorem follows trivially from the fact that in symmetric games all the players
use a single machine in every NE.

I Theorem 10. For G = {symmetric CST games with unit-cost machines}, it holds that
PoT(G) = 1.

Next, let me show that I cannot be of any help also with unit-length jobs.

I Theorem 11. For G = {symmetric CST games with unit-length jobs}, it holds that
PoT(G) = 1.

Proof. Since the game is symmetric, in S0 all the jobs are on the same machine, say m0.
Assume w.l.o.g., that cost(S0) = c(m0) = 1. For k = 1, I will be able to attract the single
naive job only to a machine whose cost is less than 2. However, once I vanish, he would
return to m0. Therefore, for every ST ∈ TNE(S0), cost(ST ) = cost1(ST ) ≤ 1 = cost(S0).

Assume next that k > 1. Clearly, I am the only job who may initiate the use of a machine
whose cost is more than 1. In order to end up with a more expensive profile, some job
must join me on an expensive machine. Assume by contradiction that there exists a traitor
BR-sequence in which I attract someone to join me on an expensive machine. Let ma be
the first expensive machine in which a job j joins me. When job j migrates, since k > 1,
apart from ma, there is at least one active machine mb utilized by jobs in J \ {0, j}. Since
ma is the first expensive machine to accommodate a naive job, it must be that c(mb) ≤ 1.
Therefore, Job j has an alternative strategy, mb, in which his cost would be at most 1/2,
contradicting the assumption that his BR-move is to join me on ma. We conclude that naive
jobs will only migrate to machines of cost at most 1. Since they will end-up on a single
machine, we get that also for k > 1, PoT = 1. J

To increase my power in symmetric games with unit-length jobs, I asked my operators to
increase my processing time. Gladly, this works above and beyond everyone’s expectations:

I Theorem 12. For G = {symmetric CST games with unit-length jobs and arbitrary-length
traitor}, it holds that PoT(G) = k.

Proof. The upper bound follows from Observation 1 and the fact that in cost sharing
symmetric games PoA ≤ k [15]. The lower bound is a generalization for arbitrary k of
Example 1. Consider an instance with two machines m1 and m2 of costs 1 and k respectively.
Assume that k unit-length jobs are assigned on m1. Assume now that I appear and assign
myself on m2. My length is k2 − 1 + ε, thus, a job that joins me would pay k · 1

k2+ε , which is
less than 1

k , his current cost on m1. The other jobs will follow, and once they are all on m2,
I will be gone, leaving them on in a traitor-free NE of cost k. J
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Table 2 My power in various environments. In entries marked by [?], the P oT is lower than the
P oA/P oS-bound and the P oA = k. In all other entries, P oT = P oA.

Jobs \ Machines unit-cost arbitrary-cost
general symmetric general symmetric

unit-length 1 [?] 1 Θ(Hk) [?] 1 [?]

arbitrary-length min(m, k) 1 k

∑
j

pj

maxj pj

Let’s consider next instances with arbitrary-length jobs and arbitrary-cost machines. Let
L(J ) =

∑
j∈J pj be the total length of the naive jobs, and let α(J ) = maxj∈J pj/L(J ).

Theorem 12 analyzes the case α(J ) = 1/k. The following theorem generalizes it for arbitrary
α(J ).

I Theorem 13. For G = {symmetric CST games}, it holds that PoT (G) = PoA(G) =
1/α(J ).

Proof. Let me first bound the PoA. Assume that Job 1 determines the value of α, and that
OPT = 1. Let S be a NE profile. Since the game is symmetric, all the jobs are on a single
machine, and the cost of Job 1 is α · cost(S). He can deviate to the machine of cost 1 utilized
in the optimal profile, therefore, in order for S to be a NE, it must hold that α · cost(S) ≤ 1,
implying cost(S) ≤ 1/α.

The lower bound is a generalization of Example 1. Given a set of naive jobs J , let
L = L(J ), α = α(J ). Assume that Job 1 determines the value of α. Consider a symmetric
CST game, on two machines, where c(m1) = 1 and c(m2) = 1

α = L
p1
. Let S0 be the initial

stable profile in which all the jobs are on m1. Assume now that I appear and assign myself
on m2. My length is L2

p1
− p1 + ε. Note that if Job 1 joins me, his cost would be L

p1
· p1

L2
p1

+ε

which is less than p1
L , his current cost on m1. It is easy to see that the other jobs will follow.

Once they are all on m2, I will be gone. The resulting profile has cost c(m2) = 1
α . The cost

for a job of length pj is L
p1
· pj

L ≤ 1, thus, no one will migrate back to m1 and this profile is a
traitor-free NE. J

5 Conclusions and Plans for My Retirement

Being the evil guy is not an easy task, but a rewarding one. My power is summarized in
Table 2. I’m a bit disappointed from my limited power in instances with unit-length jobs,
which is significantly lower than the PoA/PoS bound. However, if you run a system that
processes arbitrary-length jobs and would like to boost your revenue, you should definitely
hire me! If you deal with symmetric jobs then you will greatly enjoy my services if you
process arbitrary-length jobs on arbitrary-cost machines.

I am exploring several ways to increase my power. One clear direction is to employ
additional secret agents to work with me. I want to analyze the power of several traitors,
who coordinate their moves trying to lead the naive jobs to a poor outcome. In this general
setting, the number of traitors is γk for some fraction γ. Fooling the naive jobs by a bunch
of secret agents could be really fun and rewarding!

I would also like to devise algorithms that calculate, for a given initial profile, a traitor
BR-sequence with high PoT. In this paper I proved that the problem is NP-hard, but I
believe that there are interesting classes of instances for which it is possible to come up with
an optimal sequence, or at least an approximated one. Another interesting problem is to
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consider the power of a traitor in other congestion games. Specifically, after my retirement, I
hope to volunteer in networks, and be in charge of routing messages. After gaining the trust
of other players there, I will challenge myself harming the social cost in network formation
games.

Alternatively, I may enter the world of congestion games – in which the cost associated
with using a resource increases with the load on it. It seems that a totally different approach
is required in such games, because I will no longer attract naive players to join me, but to
get away from me. In general, almost every congestion game becomes more interesting when
a single or multiple traitors are involved.
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