
J Sched (2012) 15:141–155
DOI 10.1007/s10951-011-0263-8

Windows scheduling of arbitrary-length jobs on multiple
machines

Amotz Bar-Noy · Richard E. Ladner · Tami Tamir ·
Tammy VanDeGrift

Published online: 4 January 2012
© Springer Science+Business Media, LLC 2011

Abstract The generalized windows scheduling problem for
n jobs on multiple machines is defined as follows: Given
is a sequence, I = 〈(w1, �1), (w2, �2), . . . , (wn, �n)〉 of n

pairs of positive integers that are associated with the jobs
1,2, . . . , n, respectively. The processing length of job i is �i

slots where a slot is the processing time of one unit of length.
The goal is to repeatedly and non-preemptively schedule
all the jobs on the fewest possible machines such that the
gap (window) between two consecutive beginnings of ex-
ecutions of job i is at most wi slots. This problem arises
in push broadcast systems in which data are transmitted on
multiple channels. The problem is NP-hard even for unit-
length jobs and a (1 + ε)-approximation algorithm is known
for this case by approximating the natural lower bound
W(I) = ∑n

i=1(1/wi). The techniques used for approxi-

A preliminary version appeared in the 17th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pp. 56–65, 2005.

A. Bar-Noy
Computer & Information Science Department, Brooklyn College,
2900 Bedford Ave., Brooklyn, NY 11210, USA
e-mail: amotz@sci.brooklyn.cuny.edu

R.E. Ladner
Department of Computer Science and Engineering, University of
Washington, Box 352350, Seattle, WA 98195, USA
e-mail: ladner@cs.washington.edu

T. Tamir (�)
School of Computer Science, The Interdisciplinary Center,
Herzliya, Israel
e-mail: tami@idc.ac.il

T. VanDeGrift
Electrical Engineering & Computer Science, University of
Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
e-mail: vandegri@up.edu

mating unit-length jobs cannot be extended for arbitrary-
length jobs mainly because the optimal number of machines
might be arbitrarily larger than the generalized lower bound
W(I) = ∑n

i=1(�i/wi). The main result of this paper is an
8-approximation algorithm for the WS problem with arbi-
trary lengths using new methods, different from those used
for the unit-length case. The paper also presents another al-
gorithm that uses 2(1 + ε)W(I) + logwmax machines and
a greedy algorithm that is based on a new tree representa-
tion of schedules. The greedy algorithm is optimal for some
special cases, and computational experiments show that it
performs very well in practice.

Keywords Periodic scheduling · Approximation
algorithms

1 Introduction

The windows scheduling problem with arbitrary job length
for n jobs on multiple machines is defined as follows: Given
is a sequence of n positive integer pairs I = 〈(w1, �1),

(w2, �2), . . . , (wn, �n)〉 that are associated with the jobs
1,2, . . . , n, respectively. The processing length of job i is
�i slots. For simplicity, we assume integer lengths and that
each unit of length is processed in one slot of time. The goal
is to repeatedly and non-preemptively schedule all the jobs
on the fewest possible machines such that the gap (window)
between two consecutive beginnings of executions of job i is
at most wi slots. Migrations are allowed, that is, a particular
job might be scheduled on different machines (in different
executions).

Example Let I = 〈(4,2), (8,4), (8,2), (16,4), (16,4)〉 and
call the jobs a, b, c, d, e, respectively. By calculating the

mailto:amotz@sci.brooklyn.cuny.edu
mailto:ladner@cs.washington.edu
mailto:tami@idc.ac.il
mailto:vandegri@up.edu

142 J Sched (2012) 15:141–155

total processing requirements of the jobs, it is clear that
more than one machine is needed. A possible schedule using
two machines is the following: [a, a, c, c, a, a,∗,∗] on one
machine and [b, b, b, b, d, d, d, d, b, b, b, b, e, e, e, e] on the
other. Schedules are represented by their periodic cycle
where the “∗” symbol stands for an idle slot. Observe that
the window between any two appearances of any of the five
jobs is always exactly as required.

The windows scheduling problem belongs to the class of
periodic scheduling problems in which n jobs need to be
scheduled infinitely often on m parallel machines (the num-
ber of machines is sometimes part of the input and not an
optimization goal). Each job has a length and is associated
with a frequency (or share) requirement. For example, a job
might need to be executed one half of the time. The quality
of a periodic schedule is measured by the actual frequencies
in which the jobs are scheduled, and the regularity of the
schedule regarding the gaps between consecutive executions
of each job. This distinguishes periodic scheduling from tra-
ditional scheduling in which each job is executed only once
and is associated with parameters like release time and dead-
line. The traditional optimization goal for periodic schedul-
ing is an “average” type goal in which job i must be exe-
cuted a specific fraction of the time. The windows schedul-
ing problem considers a different objective of a “max” type:
the gap between any two consecutive executions of job i

must be at most wi which implies in particular that job i is
executed at least �i/wi fraction of the time.

Previous results for the windows scheduling problem
considered either the case of one machine with unit-length
jobs (the pinwheel problem, Holte et al. 1989, 1992), or
the case of unit-length jobs with multiple machines (Bar-
Noy and Ladner 2003; Bar-Noy et al. 2007), or the case of
one machine with arbitrary-length jobs (the generalized pin-
wheel problem, Baruah and Lin 1998; Feinberg et al. 2002;
Feinberg and Curry 2005). This paper considers the gener-
alized windows scheduling problem of multiple machines
with arbitrary-length jobs.

1.1 Applications and motivation

Periodic scheduling in general and windows scheduling in
particular can be thought of as a scheduling problem for
push broadcast systems (as opposed to pull broadcast sys-
tems). One example is the Broadcast Disks environment
(e.g., Acharya et al. 1995) where satellites broadcast pop-
ular information pages to clients. Another example is the
TeleText environment (e.g., Ammar and Wong 1985) where
running banners appear in some television networks. In such
systems, there are clients and servers where the servers
choose what information to push and in what frequency in
order to guarantee short delays of clients waiting for desired

information. This optimization objective belongs to the av-
erage type periodic scheduling problems. In a more gener-
alized model (e.g., Bar-Noy et al. 2003; Gondhalekar et al.
1997), the servers “sell” their broadcasting service to vari-
ous providers who supply content and request that the con-
tent be broadcast regularly. The regularity can be defined by
a window that represents the maximum delay before a client
receives a particular content. This is modeled by the win-
dows scheduling problem.

In harmonic windows scheduling (e.g., Bar-Noy et al.
2003), jobs represent segments of movies. For 1 ≤ i ≤ n,
the window of segment i is wi = D + i, where n is the num-
ber of equally sized segments of the movie and DL/n is the
guaranteed startup delay for an uninterrupted playback of a
movie of length L. Harmonic windows scheduling is the ba-
sis of many popular media delivery schemes (e.g., Juhn and
Tseng 1997; Hua and Sheu 2000) that are based on the con-
cept of receiving data from multiple channels and buffering
data for future playback. This concept was first developed in
Viswanathan and Imielinski (1996) and was the subject of
numerous papers in the last decade.

There is an interesting application of the generalized
windows scheduling problem in compressed video deliv-
ery. When the video is compressed, frame (segment) i is
associated with a length �i measured in time slots. Different
compressed frames may have different lengths. Let L be the
length of a decompressed frame also in time slots. The entire
frame would have to be received before it could be decom-
pressed and played back. Suppose the desired delay to play
back the video is D slots. The first frame of length �1 must
be entirely received in every window of size w1 = D. The
second frame of length �2 must be entirely received in every
window of size w2 = D + L. In general, the ith frame of
length �i must be entirely received in every window of size
wi = D + (i − 1)L.

1.2 Related work

The pinwheel problem was defined in Holte et al. (1992) and
the generalized pinwheel problem was considered in Baruah
and Lin (1998), Feinberg et al. (2002), Feinberg and Curry
(2005). In these and other papers about the pinwheel prob-
lem, the focus was to characterize the instances that can be
scheduled on one machine. For example, Chan and Chin
(1993) optimized the bound on the value of

∑n
i=1(1/wi)

that guarantees a feasible schedule. The windows scheduling
problem was defined in Bar-Noy and Ladner (2003). This
paper designed schedules using opt + O(ln(opt)) machines,
where opt is the number of machines used by an optimal
solution.

In Liu and Laylend (1973) periodic scheduling was de-
fined to be a schedule where a job with window w is
scheduled exactly once in every time interval of the form

J Sched (2012) 15:141–155 143

[(k − 1)w, kw] for any integer k. This is a typical fairness
requirement for the average type periodic scheduling. In Ti-
jdeman (1980) an optimal solution for the chairman assign-
ment problem was presented for a stronger fairness condi-
tion that depends on the prefixes of the schedule. These pa-
pers considered unit-length jobs on a single machine. Other
work on periodic scheduling are Korst et al. (1997), Camp-
bell and Hardin (2005), Grigoriev et al. (2006). In the gener-
alized model, each job has an arbitrary length and it can be
scheduled on multiple machines. For this case, Baruah et al.
(1996) proposed Pfair schedules in which for any prefix of
t time slots, and for any job j , the number of slots allocated
to j is either �fj · t� or �fj · t	, where fj is j ’s share request
(measured by the fraction of time it should be processed).

The broadcast disks problem, which is an average type
periodic scheduling problem, was introduced in Acharya
et al. (1995). The case of unit-length jobs was addressed
in Bar-Noy et al. (2002) where a 9/8-approximation algo-
rithm was presented. This result was improved in Kenyon
et al. (2002) that presented a polynomial-time approxima-
tion scheme. The arbitrary-length case was considered in
Kenyon and Schabanel (2003) where a 3-approximation al-
gorithm was presented.

In perfect periodic schedules, each job has a fixed win-
dow size (a period) between consecutive executions. The
objective is to minimize the maximum or average ratio be-
tween the granted period and the requested one. This prob-
lem differs from windows scheduling since jobs may get
larger windows than they request. The unit-length case was
considered in Bar-Noy et al. (2002) and the general case of
jobs with arbitrary lengths was considered in Brakerski et al.
(2003).

Closely related problems from the operation research
and the communication networks areas include the ma-
chine maintenance problem (Wei and Liu 1983; Anily et
al. 1998), the multi-item replenishment and other inven-
tory problems (Hadley and Whitin 1963; Roundy 1985;
Hassin and Megiddo 1991), and the sensor resource man-
agement problem (Feinberg et al. 2002).

Windows scheduling with unit-length jobs is a special
case of the bin-packing problem (e.g., Coffman et al. 1996)
and one of our results takes advantage of this fact. In the unit
fractions bin-packing problem, the goal is to pack all the
items in bins of unit size where the size of item i is 1/wi .
In a way, bin packing is the fractional version of windows
scheduling while windows scheduling imposes another re-
striction on the packing. The relationship between these two
problems and their off-line and the on-line cases were con-
sidered in Bar-Noy et al. (2007).

Recent work on video-on-demand systems has provided
lower bounds on delay required to deliver media that also
applies to the special case of windows scheduling as a me-
dia delivery scheme (Engebretsen and Sudan 2006; Evans

and Kirkpatrick 2004; Gao et al. 2002). These bounds can
be achieved in the limit in the windows scheduling model
(Bar-Noy et al. 2003). Recently, our greedy algorithm for
the windows scheduling problem with arbitrary job lengths
(presented in Sect. 5) was used in an implementation of
an algorithm for periodic broadcast of variable bit rate
movies (Cherniavsky and Ladner 2006). In this paper, the in-
duced periodic broadcast problem is mapped into a windows
scheduling problem that is solved with the greedy algorithm.
The result is a lossless and practical method, achieving low
client delay and low bandwidth requirement.

1.3 Contributions

We develop new approximation algorithms that are based
on novel methods and techniques. We consider two special
cases separately and combined: (i) In thrift schedules the
gap between two executions of job i must be exactly wi

(in non-thrift schedules jobs may be scheduled more fre-
quently). (ii) In power-2 instances, windows and lengths are
powers of 2. This case can be optimally solved for unit-
length jobs, but complex and interesting problems arise in
the general case. In particular, the thriftiness paradox pre-
sented in this paper implies that even for power-2 instances it
might be useful to schedule some jobs more frequently than
their demand in order to use fewest machines. This para-
dox joins additional resource-paradoxes such as the trans-
portation paradox (Szwarc 1971), Graham’s multiprocess-
ing anomaly (Graham 1969), and the no-wait flow-shop
paradox (Spieksma and Woeginger 2005), in all of which
improving the resources of a system or decreasing their de-
mand hurts the overall system performance.

For thrift schedules of power-2 instances, we present an
optimal algorithm. This algorithm serves as the basis for
an 8-approximation algorithm for the general problem af-
ter rounding both the windows and the lengths to power of 2
values.

We also present an algorithm that uses 2(1 + ε)W(I) +
logwmax machines, where W(I) is the total width of the
jobs (formally, W(I) = ∑

i (�i/wi)), and wmax is the max-
imum window size of some job. Next, we present a greedy
algorithm that is based on a tree representation of sched-
ules. This greedy algorithm is evaluated by computational
experiments, and performs very well in practice. A variant
of this algorithm is optimal for thrift schedules of power-2
instances.

Our solutions do not use migrations. That is, a particu-
lar job is scheduled only on one machine. We note that if
migrations are allowed, then for some instances the optimal
solution might required fewer machines. Even though our
algorithms do not use migrations, our bounds hold with re-
spect to the optimum with migration allowed.

144 J Sched (2012) 15:141–155

1.4 Paper organization

In Sect. 2 we motivate the study of approximation algo-
rithms for the generalized windows scheduling problem by
proving that it is strongly NP-hard even if all the windows
are powers of 2. We then study the thriftiness property and
present a worst-case bound on the ratio between the number
of machines used in an optimal thrift schedule and an opti-
mal schedule. Finally, we present algorithms for two special
cases: instances with identical lengths or identical windows.
These algorithms will serve as components in some of the
approximation algorithms to be described later in the paper.
In Sect. 3 we present an optimal algorithm for thrift sched-
ules of instances in which all the wi ’s and �i ’s are powers
of 2. In Sect. 4 we present two approximation algorithms:
first, an algorithm that uses 2(1 + ε)W(I) + logwmax ma-
chines, and then an 8-approximation algorithm. Finally, in
Sect. 5, we introduce a tree representation of perfect sched-
ules and a greedy algorithm that is based on this representa-
tion. The output of the greedy algorithm is a perfect, but not
necessarily thrift, schedule. For arbitrary instances, the algo-
rithm is evaluated by computational experiments, according
to which it performs very close to the optimal.

2 Preliminaries

2.1 Notations and definitions

Denote by w-job a job with window w and by (w, �)-
job a job with window w and length �. An instance in
which all the windows and all the lengths are powers of 2
is called a power-2 instance. The width of a (w, �)-job
is �/w. The total width of the jobs in an instance I =
〈(w1, �1), (w2, �2), . . . , (wn, �n)〉 is

W(I) =
n∑

i=1

(�i/wi).

We consider only non-preemptive schedules in which the
�i slots allocated to job i must be successive. We assume that
�i ≤ wi for all 1 ≤ i ≤ n. Otherwise, since a job can only be
processed by a single machine at any time slot, there is no
feasible schedule of job i. Two special types of schedule
are:

Perfect schedules schedules in which for each job there ex-
ists some w′

i ≤ wi such that the gap between any two exe-
cutions of job i is exactly w′

i slots.
Thrift schedules perfect schedules in which for all i,
w′

i = wi .

For an instance I , let OPT(I) denote the number of ma-
chines used in an optimal, not necessarily thrift, schedule,

and let OPTT (I) denote the number of machines used in an
optimal thrift schedule.

Since a restricted version of the optimal windows schedul-
ing problem is NP-hard even for one machine (Bar-Noy
et al. 2002, 2007; Feinberg et al. 2002), we look for ap-
proximate solutions. A natural lower bound to the windows
scheduling problem is the total width of the jobs. Since job i

requires at least �i/wi fraction of a machine, at least �W(I)	
machines are required in order to accommodate all the jobs.
This width bound is stated in the following lemma.

Lemma 2.1 For any instance, I , we have OPT(I) ≥
�W(I)	.

For the unit-length case this lower bound is very close
to the optimal solution and indeed (1 + ε)-approximation
solutions exist for small values of ε (Bar-Noy and Ladner
2003). The following example demonstrates that this lower
bound can be arbitrarily far from the optimal solution for the
windows scheduling problem with arbitrary job lengths.

Example Let I = 〈(r,1), (r2, r), . . . , (rn, rn−1)〉 be an in-
stance consisting of n jobs where r ≥ 2 is an integer. It is not
hard to see that no two jobs can be executed on the same ma-
chine and therefore any feasible schedule must use at least
n machines. On the other hand, each job demands 1/r of a
machine for a total demand of n/r machines. Thus, the ratio
between the optimal solution and this lower bound is at least
r which can be arbitrarily large.

2.2 Hardness proof

The windows scheduling problem for unit-length jobs is
known to be NP-hard. For this case, an optimal polynomial-
time algorithm exists when all the wi ’s are powers of 2
(Bar-Noy and Ladner 2003). By contrast, with arbitrary job
lengths problem is strongly NP-hard even if all the wi ’s are
powers of 2.

Theorem 2.2 The windows scheduling problem with arbi-
trary job lengths is strongly NP-hard even if all the windows
are powers of 2.

Proof We show a reduction from 3-partition, which is
strongly NP-hard (Garey and Johnson 1979). An instance
of 3-partition is defined as follows.

Input: A set A of 3m elements, a number B ∈ Z+, and a
size s(x) for each x ∈ A such that B/4 < s(x) < B/2 and∑

x∈A s(x) = mB .
Output: Is there a partition of A into m disjoint sets,

S1, S2, . . . , Sm, such that
∑

x∈Si
s(x) = B for 1 ≤ i ≤ m?

Note that the above constraints on the element sizes imply
that such a partition exists if and only if every Si is com-
posed of exactly three elements from A.

J Sched (2012) 15:141–155 145

Given an instance of 3-partition, construct an input, I ,
for windows scheduling, such that all the windows in I are
powers of 2 and I has a schedule on one machine if and
only if A has a 3-partition. Let W > B be a power of 2,
and let k > m be a power of 2. For each x ∈ A there is a
job with parameters (kW, s(x)) in I . In addition, I includes
one job z with parameters (W,W − B), and k − m dummy
jobs, d1, d2, . . . , dk−m with parameters (kW,B). Obviously
the above construction can be done in polynomial time in n

and the size of I is also polynomial in n.
Assume now that A has a partition. It follows that I has

the following schedule:

[z, S1, z, S2, z, . . . , Sm, z, d1, z, d2, . . . , z, dk−m]
where Si is a schedule in arbitrary order of the jobs associ-
ated with the elements from Si . Since

∑
x∈Si

s(x) = B , the
window of z is �z +B = W −B +B = W , as needed. Also,
the window of each of the other items is kW , since the total
length of the items in this schedule is
∑

x∈A

s(x) + k�z + (k − m)B

= mB + k(W − B) + (k − m)B = kW.

Now assume that there exists a schedule of I on one ma-
chine. Note that

W(I) =
∑

x∈A

s(x)

kW
+ W − B

W
+ (k − m)B

kW

= mB

kW
+ 1 − B

W
+ kB

kW
− mB

kW
= 1.

Thus, any schedule of I on one machine must be thrift.
In particular, if I has a schedule on one machine then the
schedule of job z must be with an exact W -window. This
means that m out of the k gaps of B slots between the k

executions of job z induce a partition of A where the other
k − m gaps are allocated to the dummy jobs. Note that the
schedule is cyclic and therefore there are k gaps between the
k executions of job z. �

2.3 The thriftiness price

For an instance I , the thriftiness price is defined as the ratio
OPTT (I)/OPT(I). We show that sometimes the thriftiness
price can be very high. It means that although thrift sched-
ules allocate the fewest possible number of slots to jobs, they
might require many more machines. In fact, even for unit-
length jobs the thriftiness price is not bounded. For a desired
ratio r , consider an instance with r jobs such that wi = pi

and �i = 1 where p1, . . . , pr are r distinct primes greater
than r . A thrift schedule must use r machines since jobs
with relatively prime windows cannot be scheduled on the
same machine. On the other hand, the simple round-robin
schedule is a not necessarily thrift schedule on one machine.

It is feasible since the granted window for job i is r which
is smaller than the required window wi .

For power-2 windows and unit-length jobs, a known op-
timal algorithm for a thrift schedule (Bar-Noy and Ladner
2003) uses OPT(I) machines, and therefore the thriftiness-
price ratio is 1 for this case. Also, for power-2 instances, two
polynomial-time optimal algorithms that use OPTT (I) ma-
chines are given in this paper. However, even for power-2 in-
stances, we can sometimes gain from scheduling a job with
a window smaller than its demand. The complexity status
of the problem of finding a schedule with OPT(I) machines
for power-2 instances remains open. Moreover, we do not
know if the problem is NP-hard (our hardness result in The-
orem 2.2 refers to instances with arbitrary job lengths and
power-2 windows). The following example demonstrates
this “paradox”.

Example Consider an instance consisting of one job z =
(4,1) and five (16,2)-jobs a, b, c, d, e. A perfect non-thrift
schedule of length 15 for this instance is

[z, a, a, z, b, b, z, c, c, z, d, d, z, e, e] .

Job z is granted a window of size 3 and each of the other five
jobs is granted a window of size 15. However, no 1-machine
schedule in which the window size of z is 4 exists because
only one (16,2)-job can be scheduled between any two z’s
that are four slots apart. In any 16 consecutive slots there are
four such gaps but five (16,2)-jobs to schedule.

The next two theorems show that the above example can
be extended to any number of machines h, and that on the
other hand, this 2-ratio (two machines instead of one ma-
chine in the example) is tight. The proof of Theorem 2.3 is
given at the end of Sect. 3—as it uses the optimal algorithm
that is presented in that section.

Theorem 2.3 If I is a power-2 instance, then OPTT (I) ≤
2 · OPT(I).

Theorem 2.4 For any integer h, there exists a power-2 in-
stance I such that OPT(I) = h and OPTT (I) = 2h.

Proof For any i = 0,4,8,4k, . . . , define the instance Ii con-
sisting of six jobs: a single (2i+2,2i)-job, denoted zi , and
five (2i+4,2i+1)-jobs, denoted ai, bi, ci, di, ei . For example,

I0 = 〈
(4,1), (16,2), (16,2), (16,2), (16,2), (16,2)

〉

which is the instance from the paradox example above, and

I4 = 〈
(64,16), (256,32), (256,32), (256,32), (256,32),

(256,32)
〉
.

For a given h, the instance I ∗
h consists of a union of any h

different instances from the above set of instances (say, the

146 J Sched (2012) 15:141–155

first h). An important observation is that jobs from Ii and Ij

for i
= j cannot be scheduled on the same machine. This is
true since, assuming w.l.o.g. that i > j , the length of any job
in Ii is at least the window of any job in Ij .

Claim 2.5 For any i, there is a non-thrift schedule of Ii on
one machine.

Proof The following is a non-thrift perfect schedule for
ai, bi, ci , di, ei, zi :

[zi, ai, zi , bi, zi , ci , zi , di, zi , ei] ,

where each appearance of zi is for 2i slots and each ap-
pearance of one of the other five jobs ai, bi, ci, di, ei is for
2i+1 slots. The window of zi is therefore 2i + 2i+1 < 2i+2,
and the window of the other five jobs ai, bi, ci , di, ei is
5(2i + 2i+1) < 2i+4. �

Claim 2.6 For any i, there is no thrift schedule of Ii on one
machine.

Proof Note that only one (2i+4,2i+1)-job can be scheduled
between any two consecutive schedules of z = (2i+2,2i). In
any 2i+4 consecutive slots, there are four such gaps but five
(2i+4,2i+1)-jobs to schedule. Thus, an additional machine
must be used. �

Combining the above claims with the fact that jobs from
different Ii ’s cannot be scheduled on the same machine,
yields the 2-ratio. �

2.4 Identical lengths or identical windows

If all the jobs have the same length then we show that the
problem can be reduced to the unit-length case. Let � be the
identical length of all jobs. If all windows are multiples of �

then it is possible to replace any (k�, �)-job by a (k,1)-job.

Theorem 2.7 Let I be an instance in which all jobs have
the same length �. Let I ′ be the instance obtained from I by
replacing each (k� + r, �)-job (0 ≤ r < �) by a (k,1)-job.
Then any schedule of I induces a schedule of I ′ and vise-
versa. In particular, OPT(I) = OPT(I ′).

Proof Given I , consider first the instance I ′′ obtained from
I by replacing each (k� + r, �)-job (0 ≤ r < �) by a (k�, �)-
job. In words, each window is rounded down to the nearest
multiple of �. Since all the windows in I are not smaller
than the windows in I ′′, any schedule of I ′′ is feasible for I ,
in particular this implies that OPT(I) ≤ OPT(I ′′). For the
other direction, we show that any schedule of I can be con-
verted to a schedule of I ′′ without increasing the number of
machines. Consider a schedule of I . Partition this schedule
into “slices” of � slots. If for all jobs, all the executions of

a job are in a single complete slice, it means that the actual
windows are multiples of � and therefore this schedule is
feasible also for I ′′. Else consider the first time in the sched-
ule in which some job, j , is not “aligned” in a single slice.
That is, j is processed during the last x slots of some slice
and during the first � − x slots of the next slice. Since all
jobs have length �, and this is the first time that some job
is not aligned in a slice, it must be that the machine is idle
in the � − x slots before the process of j begins. It is possi-
ble to shift the whole schedule on this machine � − x slots
to the left. This action does not hurt the feasibility of the
schedule of j or any other job following it since gaps only
decrease. Repeating this process, it is possible to keep de-
laying the first time in which some job is not aligned in a
single slice until all jobs are scheduled in a window that is a
multiple of �. Since windows only decrease in this process,
the resulting schedule is a feasible schedule of I ′′.

We next show a correspondence between a schedule of
I ′′ and I ′. Any schedule of I ′, with unit-length jobs, can be
“stretched” by a factor of � to produce a schedule for I ′′.
Also, any schedule of I ′′ can be “shrunk” to induce a sched-
ule for I ′ (given the above method, the schedule is aligned
to slices of � slots each). All together, we have shown that
a correspondence of schedules for I and I ′′, as well as cor-
respondence of schedule for I ′′ and I ′. Transitivity implies
the statement of the theorem. �

The above theorem implies that any approximation algo-
rithm for unit-length jobs suits also instances in which all
the jobs have the same length. Another special case is when
all jobs have the same window, w. In this case the prob-
lem is reduced to Bin packing with discrete sizes. Formally,
items of sizes in {1/w,2/w, . . . ,w/w} are to be packed in
a minimal number of bins of size 1, where a (w, �)-job is
represented by an item of size �/w. Using the known result
for bin packing (Fernandez de la Vega and Lueker 1981), we
get the following.

Corollary 2.8 There exists an APTAS for windows schedul-
ing with identical windows.

3 Optimal thrift schedule of power-2 instances

We present an optimal algorithm for thrift schedules of in-
stances in which all the wi ’s and �i ’s are powers of 2. The
algorithm, denoted AT , schedules all the jobs on a minimal
number of machines. Let wmin and wmax denote the mini-
mal and maximal windows in I . The algorithm produces a
schedule of length wmax (to be repeated cyclically). We use
the following property of thrift schedules of jobs with power
of 2 windows:

J Sched (2012) 15:141–155 147

Fig. 1 The Algorithm AT Let k = log2 wmax/wmin.
I0 = I

1. For i = 0 to k − 1 do:
Let w = wmax/2i .
1.1 schedule each (w,w)-job from Ii on a dedicated machine.
1.2 build from the remaining jobs of Ii an instance Ii+1 with maximal window w/2.

2. Schedule Ik greedily on h′ = �∑j∈Ik
�j /wmin	 machines.

3. For i = k down to 1 do:
3.1 Double the schedule of Ii

3.2 Replace each (wmax/2i)-job originated from Ii−1 by the (wmax/2i−1)-jobs composing it.

Claim 3.1 In any thrift schedule of a power-2 instance, for
each of the machines, if a w-job is scheduled on slot x, then
slot x + w/2 on this machine is idle or allocated to a job
having window at least w.

Proof Consider a wi -job with wi < w. We show that job
i cannot be scheduled on slot x + w/2. Since all windows
are powers of 2, wi = w/2j for some j > 0. Thus, if job i

is scheduled on slot x + w/2, it must be scheduled also on
slot x, which is occupied by the w-job. �

The above property motivates the main idea in our al-
gorithm: the jobs having window w are partitioned into
‘paired-groups’, such that the jobs of each group are pro-
cessed w/2 slots apart from their paired group.

Algorithm AT Let wmax = 2kwmin. The algorithm pro-
ceeds in three phases. An overview of these phases is given
in Fig. 1.

Phase 1 The first phase of the algorithm consists of k it-
erations. In the first iteration, the algorithm considers the
wmax-jobs. Some of these jobs are scheduled and the rest
are replaced by (wmax/2)-jobs. The set of non-scheduled
jobs (original jobs and the newly created (wmax/2)-jobs),
are moved to the next iteration. Generally, let Ii denote the
set of jobs that are not scheduled before iteration i, where i

goes from 0 to k − 1, in particular, I0 = I . In iteration i, AT

schedules some of the (wmax/2i)-jobs on hi machines, and
replaces the rest of the (wmax/2i)-jobs by (wmax/2i+1)-jobs.
This way, in Ii , all the jobs have window at most wmax/2i .

We now describe the way Ii+1 is built from Ii . Let J be
the set of jobs having the maximal window, w = wmax/2i ,
in Ii . AT first schedules each (w,w)-job on a dedicated ma-
chine. Let hi be the number of these jobs. From the remain-
ing jobs, AT constructs the instance Ii+1 as follows: Sort
the jobs of J such that �1 ≥ �2 ≥ Let j be such that
�1 = �2 + �3 + · · · + �j . If no such j exists, it must be that
�1 > �2 + �2 + · · · + �|J | (because each �i is a power of 2)
and all the jobs of J are replaced by a single (w/2, �1)-job.
Practically, this means that idle slots are introduced, as we

show in the analysis, these idle slots are inevitable. If such a
j exists, AT replaces the j jobs with a single (w/2, �1)-job,
and continues in the same way with the rest of J . In addi-
tion, all the jobs of Ii having window smaller than w are
moved to Ii+1.

Phase 2 Recall that in Ii all the jobs have windows at
most wmax/2i , thus, all jobs in Ik have windows at most
wmax/2k = wmin. In other words, Ik consists of wmin-jobs.
In the second phase of the algorithm, AT schedules Ik op-
timally on h′ = �∑(w,�)∈Ik

�/wmin	 machines by partition-
ing them into h′ sets such that the total length of the jobs
in each set is at most wmin. Since � is a power of 2 and
� ≤ wmin for all (w, �) ∈ Ik , such a partition exists and can
be found by any “any fit” algorithm that considers the jobs
in non-increasing order of their lengths. Given such a par-
tition, AT allocates one machine to each of the h′ sets and
schedules the jobs of each set sequentially and thriftily on
this machine. The length of this optimal schedule of Ik is
wmin.

Phase 3 During the third phase of the algorithm, after
scheduling optimally Ik , AT backtracks to schedule the
original set of jobs, I . This phase consists of k iterations.
In iteration i, i = k, k − 1, . . . ,1, AT moves from a sched-
ule of Ii of length wmax/2i to a valid thrift schedule of Ii−1

of length wmax/2i−1. Given a schedule of length wmax/2i

of Ii , repeat it to get a schedule of double length. The jobs
with window smaller than wmax/2i−1 were not modified
in the move from Ii−1 to Ii and therefore they are legally
scheduled. In the doubled schedule, every (wmax/2i)-job
appears twice. Some of the (wmax/2i)-jobs in Ii originate
from (wmax/2i−1)-jobs in Ii−1. Each such job of length �

originates from one (wmax/2i−1, �)-job, j , and a set, Bj of
(wmax/2i−1)-jobs with total length at most �. In the double-
length schedule, replace the first appearance of this job by j

and the second appearance by Bj and some idle slots such
that the total length of Bj and the idle slots is �. This pro-
cess is done for each of the grouped (wmax/2i)-jobs and for
each machine in the schedule of Ii . The resulting schedule
is a feasible thrift schedule of Ii−1 of length wmax/2i−1.

148 J Sched (2012) 15:141–155

Example 1 Consider the instance I = 〈a = (4,1), b =
(8,2), c = (8,1), d = (8,1), e = (16,2), f = (16,2), g =
(16,16)〉. It has wmax = 16. AT first dedicates one machine
to job g. Next, it replaces e and f by e′ = (8,2). The remain-
ing instance is I1 = 〈a = (4,1), b = (8,2), c = (8,1), d =
(8,1), e′ = (8,2)〉 in which w = wmax/2 = 8. In the second
iteration, AT replaces b and e′ by b′ = (4,2), and c and d by
c′ = (4,1). The remaining instance is I2 = 〈a = (4,1), b′ =
(4,2), c′ = (4,1)〉 in which w = wmax/4 = wmin = 4. That
is, all the jobs have w = 4 and

∑
(4,�)∈I2

�/4 = 1. AT now
constructs the 1-machine schedule [a, c′, b′, b′]. Next, it
constructs a schedule of I from the schedule of I2. This
is done by “opening” the groups, first to get a schedule of
I1: [a, c, b, b, a, d, e′, e′] and again, to get the final schedule
[a, c, b, b, a, d, e, e, a, c, b, b, a, d, f,f]. Together with the
machine that processes g, this is an optimal two-machine
schedule of I .

Example 2 Consider the instance I = 〈a = (4,2), b =
(8,2), c = (8,2), d = (16,8), e = (16,4), f = (16,2), g =
(16,1)〉. It has wmax = 16. First, AT replaces d, e, f and
g by d ′ = (8,8). That is, I1 = 〈a = (4,2), b = (8,2), c =
(8,2), d ′ = (8,8)〉. One machine is dedicated to the new job
d ′ and AT continues with a, b, c. The jobs b and c are re-
placed by b′ = (4,2). Thus, I2 = 〈a = (4,2), b′ = (4,2)〉.
Now all the jobs have the same window w = 4, and an op-
timal schedule is [a, a, b′, b′]. Next, AT doubles this sched-
ule to get the schedule [a, a, b, b, a, a, c, c] of I1 and dou-
bles the schedule of the d ′-machine to get the schedule
[d, d, d, d, d, d, d, d, e, e, e, e, f,f, g,∗]. These two ma-
chines together form a schedule of I0 = I .

3.1 Analysis of AT

We show that AT is optimal for power-2 instances. Recall
that for i = 0, . . . , k − 1, hi is the number of machines al-
located in iteration i to (wmax/2i ,wmax/2i)-jobs. Also, h′
is the number of machines used to schedule Ik . The total
number of machines used by AT to schedule I is therefore

nT (I) =
k−1∑

i=0

hi + h′.

We bound the value of hi using the following lemma.

Lemma 3.2 For all i, 0 ≤ i ≤ k − 1, hi ≤ OPTT (Ii) −
OPTT (Ii+1).

Proof We show that for all i, 0 ≤ i ≤ k − 1, if Ii has a
feasible schedule on h machines, then Ii+1 has a feasible
schedule on h − hi machines. In particular this implies that
OPTT (Ii+1) ≤ OPTT (Ii) − hi .

Let Si be a schedule of Ii on h machines. Let w =
wmax/2i . In the move from Ii to Ii+1, w-jobs are elimi-
nated. Some of them, the (w,w)-jobs, are scheduled on ded-
icated machines. According to the algorithm, there are hi

such jobs. Since each such (w,w)-job has width = 1, it must
have a dedicated machine in Si . Therefore, all other jobs are
scheduled in Si on h − hi machines. The following is an al-
gorithm that produces a schedule, Si+1, of Ii+1 on h − hi

machines.
First, all the jobs of Ii with window smaller than w

appear also in Ii+1 and their schedule in Si induces their
schedule on Si+1. When constructing Ii+1, w-jobs of Ii

with width < 1, are replaced by (w/2)-jobs. Consider the
longest (w/2)-job in Ii+1 that is originated from w-jobs
of Ii , specifically, from a (w, �1)-job, j1, and a set B1 of
w-jobs such that

∑
j∈B1

�j ≤ �1. Consider the schedule of
j1 in Ii . By Claim 3.1, the (w/2)-apart slots are idle or allo-
cated to w-jobs. Thus, these slots can be used to schedule in
Si+1 the jobs of B1. If other w-jobs were scheduled in these
slots in Si , the other jobs can be scheduled in the slots allo-
cated to the jobs of B1 in Ii . It is always possible to move
these jobs into the slots of the jobs of B1 since all the lengths
are powers of 2 and the jobs of B1 are the longest among the
w-jobs of Ii (according to the way AT groups them with j1).
Continue in the same way with the next largest grouped job
in Ii+1 and schedule it in Si+1 according to the schedule of
the longest job in the group, until all the grouped jobs of Ii+1

are scheduled in the slots that were allocated to the w-jobs
composing them. �

Combining the above Claim with the observation that Ik

is packed optimally by AT (in other words OPTT (Ik) = h′),
we get

nT (I) =
k−1∑

i=0

hi + h′ ≤
k−1∑

i=0

(
OPTT (Ii) − OPTT (Ii+1)

) + h′

= OPTT (I0) − OPTT (Ik) + h′ = OPTT (I0).

Therefore,

Theorem 3.3 For any power-2 instance AT schedules I on
nT (I) = OPTT (I) machines.

3.2 Proof of thriftiness price

We use Algorithm AT to prove the thriftiness price stated in
Sect. 2.3.

Theorem 2.3 If I is a power-2 instance, then OPTT (I) ≤
2 · OPT(I).

Proof Given any schedule for I on h machines, construct a
thrift schedule for I on 2h machines. In particular, for the
optimal schedule for I , we get the statement of the theorem.

J Sched (2012) 15:141–155 149

The construction is per-machine, that is, given a machine,
M , on which the set of jobs IM ⊆ I is scheduled, we show
that the algorithm AT schedules this set of jobs thriftily on
at most two machines. Since the jobs of IM are scheduled
on a single machine it is known that W(IM) ≤ 1, and also,
for any job (w, �) in IM , � < wmin(IM). In other words, the
length of any job in IM is less than the minimal window
of a job in IM . This is true since otherwise, these two jobs
cannot be assigned to the same machine—as job (w, �) must
be allocated � consequent slots, leaving no slot for a job with
wmin in this segment.

Consider the execution of AT on IM . Observe first that
the algorithm never dedicate machines to (w,w)-jobs. This
is true since grouped jobs have the length of the longest job
in the group, which is by the above, always less than wmin,
and thus also less than the current considered window size.
Thus, all the jobs will be packed in the last iteration. Let
wmax = 2kwmin. When moving from iteration i to iteration
i + 1, AT might add at most one dummy job of window
wmax/2i and length at most wmin/2 (by the above, this is
the maximal possible length of any job). The width of this
additional job is at most (wmin/2)/(2k−iwmin) = 1/2k−i+1.
Therefore, along the whole execution, as i is increased from
0 to k − 1, the total width added by dummy jobs is at most
1/2k+1 + · · · + 1/8 + 1/4 < 1. Since these are the only
dummy jobs added, and AT packs optimally all the jobs of
the last iteration (all having window wmin), the total number
of machines used is it most �W(IM) + W(dummy jobs)	 ≤
�1 + 1	 ≤ 2. �

4 Approximation algorithms for arbitrary instances

4.1 An algorithm that uses 2(1 + ε)W(I) + logwmax

machines

Consider the following algorithm that is based on partition-
ing the instance into subsets of jobs and scheduling each
subset independently. First, as a preprocessing, one machine
is dedicated to each job whose width is more than 1/2. Next,
for the remainder of the instance, reduce each window wi

to the nearest power of 2. Let Su be the subset of the in-
stance whose windows were rounded to 2u. Clearly, a sched-
ule of the rounded instance is also a feasible schedule of the
original instance because jobs are processed at least as fre-
quently as required. The rounding process creates at most
logwmax different instances, S1, S2, . . . , Slogwmax each hav-
ing jobs with identical windows. Note that S0 is empty as
jobs with w = 1 must be (1,1)-jobs that are scheduled on a
dedicated machine.

As explained in Sect. 2.4, each sub-instance Su can be
scheduled separately on a disjoint set of machines by any
algorithm for the bin-packing problem. In particular, by

Corollary 2.8 one can use the asymptotic PTAS of Fer-
nandez de la Vega and Lueker (1981) that uses at most
(1 + ε)OPT(I) + 1 bins to pack an instance I . This AP-
TAS can in fact provide a stronger corollary. Let SIZE(I)

denote the total size of items to be packed, then the num-
ber of bins used in the APTAS in Fernandez de la Vega and
Lueker (1981) is at most (1 + ε)SIZE(I) + 1. In the analy-
sis of our algorithm for arbitrary instances, we are going to
use the following stronger corollary of this APTAS for the
identical-windows case.

Corollary 4.1 Let S be an instance of windows scheduling
with identical windows; then it is possible to schedule S on
(1 + ε)W(S) + 1 machines.

Theorem 4.2 The above algorithm uses at most 2(1 + ε) ×
W(I) + logwmax machines.

Proof Consider first the jobs with width larger than 1/2—
each machine dedicated to such a job is busy at least half
of the time, thus, a 2-ratio between the number of ma-
chines and the total width processed is preserved for this
sub-instance. Next, for any subset of jobs Su, let S′

u be the
set of rounded jobs in Su. Since the rounding might in-
creases the width of each job by a factor of less than 2,
we have W(S′

u) < 2W(Su). By Corollary 4.1, the approx-
imation scheme for bin packing then schedules (packs) the
jobs of S′

u on at most (1 + ε)W(S′
u) + 1 machines. Thus,

at most 2(1 + ε)W(Su) + 1 machines are used to sched-
ule Su. All together, since there are logwmax different sub-
sets, and since the 2-ratio is kept for the wide jobs, at most
2(1 + ε)W(I) + logwmax machines are used. �

4.2 An 8-approximation algorithm

In this section we present an 8-approximation algorithm for
arbitrary instances, the factor of 8 is a result of three com-
ponents, each contributing a factor of at most 2.

Let I be an arbitrary instance. Let J ′ be the instance ob-
tained from I by rounding the lengths down to powers of 2
and rounding the windows up to powers of 2. Clearly, J ′ is
a power-2 instance. Note that J ′ is easier than I . In other
words, every schedule for I induces a valid schedule for J ′,
by allocating to each job of J ′ the slots allocated to the cor-
responding job in I . In particular, OPT(J ′) ≤ OPT(I).

Let J be the power-2 instance obtained from J ′ by re-
placing each (w, �)-job by a (w/2,2�)-job. If w/2 < 2� then
the (w, �)-job of J ′ contributes a (w,w)-job to J ′. Note that
each (w, �)-job in I is represented in J by a (w′, �′)-job
such that w′ ≤ w and �′ ≥ �, therefore, the instance I is eas-
ier than J , meaning that every schedule for J induces a valid
schedule for I . This is also valid for the jobs with w/2 < 2�:
being replaced by a (w,w)-job, each such job will be allo-
cated a machine—which is clearly sufficient.

150 J Sched (2012) 15:141–155

Algorithm A Execute the algorithm AT , which is optimal
for power-2 instances, to find an optimal thrift schedule of J ,
the hardest instance among the three. The resulting schedule
induces a valid (perfect but not necessarily thrift) schedule
of I .

In order to analyze the approximation ratio of A, we first
bound the cost of doubling the job lengths and the cost of
dividing all windows by 2 in a power-2 instance.

The cost of doubling the lengths For a power-2 instance J ′,
consider the instance J ′′ obtained from J ′ by replacing each
(w, �)-job by a (w,2�)-job. In other words, each job in J ′
contributes to J ′′ a job with the same window and a doubled
length. Clearly, J ′′ is also a power-2 instance. Note that if
w = �, then a non-feasible (w,2w)-job is created. To avoid
this problem, a (w,w)-job in J ′ contributes to J ′′ one iden-
tical (w,w)-job. However, since we give an upper bound on
OPTT (J ′′), and a (w,w)-job must be allocated a dedicated
machine in a schedules of J ′ as well as on any schedule of
J ′′, we can assume w.l.o.g. that such jobs do not exist.

Lemma 4.3 OPTT (J ′′) ≤ 2 · OPTT (J ′).

Proof Given a thrift schedule of J ′ on h machines, construct
a thrift schedule of J ′′ on 2h machines. In particular, for the
optimal schedule of J ′ we get the statement of the theorem.

The construction is per-machine, that is, given one ma-
chine that processes thriftily a set of jobs S′ = {wi, �i} ⊆ J ′,
construct a two-machine schedule of the corresponding set
S = {wi,2�i} ⊆ J ′′ of jobs. If S′ consists of a single (w,w)-
job, then the corresponding (w,w)-job in S can be sched-
uled on a single machine.

Consider an execution of the optimal thrift algorithm,
AT , on S′. Denote this execution AT (S′). Since AT is opti-
mal and it is given that S′ is scheduled on a single machine,
AT ends up with a one-machine schedule for S′. Consider an
execution of AT on S. Denote this execution AT (S). Recall
that AT is based on grouping jobs having the same window
to a single job with a half-window. The grouping is done
in non-increasing order of job’s length, and since this order
is identical in S and S′, as long as there are no dedicated
machines (that are dedicated to (w,w)-jobs), the grouping
in AT (S) and AT (S′) is identical. That is, if in AT (S′)
a (w, �1)-job is grouped with a set B ′ of w-jobs to get
a (w/2, �1)-job, then in AT (S), a (w,2�1)-job is grouped
with the set B of w-jobs, where B is the set of double-length
jobs corresponding to B ′.

The proofs of the following claims are given in the se-
quel.

Claim 4.4 No dedicated machines are allocated in AT (S′).

Claim 4.5 No dedicated machines are allocated in AT (S).

Let Slast, S
′
last denote the instance of wmin-jobs to be

packed in the last iteration of AT (S), AT (S′), respectively.
Consider AT (S′). Since no dedicated machines are used, all
the jobs are represented in S′

last and are scheduled optimally
on �W(S′

last)	 machines. Given that only one machine is
used, it must be that W(S′

last) ≤ 1. Since as long as no ded-
icated machines are allocated, the grouping in S and S′ is
exactly the same, it must be that W(Slast) = 2W(S′

last) ≤ 2.
Therefore, in AT (S), at most �W(Slast)	 ≤ 2 machines are
used to schedule all the jobs of S. �

Proof of Claim 4.4 Assume that for some w, a (w,w)-job
is created in AT (S′). Since the final schedule created by
AT (S′) is on a single machine, all the jobs of S′ are packed
in this (w,w)-job. However, only 2w-jobs are grouped when
creating the (w,w)-job, which implies that before this iter-
ation all jobs have the same 2w-window and AT (S′) should
have packed them greedily without grouping. A contradic-
tion. �

Proof of Claim 4.5 Assume that for some w, a (w,w)-job is
created in AT (S). It was created by grouping a (2w,w)-job,
J1, with a set of 2w-jobs. Since the same grouping is done
in AT (S) and AT (S′), a (w,w/2)-job is created in AT (S′).
In the next iteration of AT (S′), this (w,w/2)-job will be
grouped with other w-jobs to create a (w/2,w/2)-job. By
Claim 4.4, no dedicated machines are allocated in AT (S′),
therefore a (w/2,w/2)-jobs cannot be created. It must be
that wmin(S

′) = w. Since the window values in S and S′
are the same (only the lengths are different), it must be that
wmin(S) = w as well. Thus, a (w,w)-job can be created in
AT (S) only in the last but one iteration—in which all jobs
have the same wmin-window, and are scheduled greedily. �

The cost of dividing the windows by 2 For a power-2 in-
stance J ′, consider the instance J ′′ obtained from J ′ by re-
placing each (w, �)-job by a (w/2, �)-job. In other words,
each job in J ′ contributes to J ′′ a job with the half-size
window and the same length. By definition, J ′′ is also a
power-2 instance. Note that if w = �, then a non-feasible
(w/2,w)-job is created. To avoid this problem, a (w,w)-
job in J ′ contributes to J ′′ one identical (w,w)-job. In fact,
since we look for an upper bound on OPTT (J ′′), we can as-
sume without loss of generality that such jobs do not exist.
In addition, since the only possible 1-jobs are (1,1)-jobs,
the above exception includes also 1-jobs, and therefore J ′′
is well-defined.

Lemma 4.6 OPTT (J ′′) ≤ 2 · OPTT (J ′).

Proof Let J ′′ = {wi, �i} and J ′ = {2wi, �i}. Consider the
instance K = {2wi,2�i}. By Lemma 4.3, OPTT (K) ≤ 2 ·
OPTT (J ′). We show that OPTT (J ′′) ≤ OPTT (K). Given a

J Sched (2012) 15:141–155 151

thrift schedule of K , the idea is to construct a schedule of J ′′
by compressing it by a factor of 2. Assume that time slots are
indexed 1,2, The following property will be used in our
construction:

Claim 4.7 There exists an optimal schedule of K in which
all schedules of all jobs begin in an odd-indexed slots.

Proof Given an optimal schedule of K , scan it from left to
right. Denote by odd-aligned interval consecutive slots in
which all schedules of all jobs begin in an odd-index slot,
and by even-aligned interval consecutive slots in which all
schedules of all jobs begin in an even-index slot. Note that
since all the sizes of windows and lengths in K are even, and
since the schedule is thrift, for each job j , all the schedules
of j are either in odd- or even-aligned intervals. Also, there
must be at least one idle slot before every even-aligned in-
terval. It is therefore possible to shift by one slot to the left
every even-aligned interval. The schedule is still thrift and
valid since for every non-aligned job, all schedules of this
jobs were moved. In the resulting schedule there are only
odd-aligned intervals, in other words, all schedules of all
jobs begin in an odd-indexed slot. �

Given a schedule of K in which all schedules of all jobs
begin in an odd-index slot, for every t ≥ 1, the slots (2t −
1,2t) process the same (even-length) job, or are both idle.
It is therefore possible to compress this schedule, by taking
just the odd slot out of each such pair. The resulting instance
is a schedule of J ′′. �

Analysis of algorithm A We can now summarize the anal-
ysis of algorithms A:

Theorem 4.8 For any instance I , A schedules I on at most
8 · OPT(I) machines.

Proof Recall that for a given instance I , the algorithms con-
structs two instances: J ′—obtained from I by rounding the
lengths down to powers of 2 and rounding the windows up
to powers of 2, and J —obtained from J ′ by replacing each
(w, �)-job by a (w/2,2�)-job. It then runs AT on J . Com-
bine Lemmas 4.3 and 4.6, to get OPTT (J) ≤ 4OPTT (J ′).
An additional factor of 2 is due to the thrift price of power-2
instances (Theorem 2.3). That is, OPTT (J) ≤ 4OPTT (J ′)
≤ 8OPT(J ′), Finally, since J ′ is an easier instance than I

we have OPTT (J) ≤ 8OPT(I). �

5 A practical algorithm

We present a greedy algorithm for the generalized windows
scheduling problem with arbitrary job lengths, the output of

Fig. 2 Tree representation of a 1-machine schedule

which is a perfect, but not necessarily thrift, schedule. For
arbitrary instances, the algorithm is evaluated by compu-
tational experiments, according to which it performs very
close to the optimal (see Sect. 5.3).

In overview, the greedy algorithm is similar to other fit
packing algorithms. The algorithm sorts the jobs accord-
ing to some deterministic rule (breaking ties arbitrarily) and
then jobs are scheduled one after the other according to the
sorted order. Each job is scheduled on one of the already
open machines that can process it, and in the case there is
no such machine, a new machine is added, and the job is
scheduled on it.

The machine selection rule for window scheduling is
more involved than is usually found in solving other prob-
lems (like bin packing) with a similar strategy. In particular,
after the machine is selected, it is determined in which slots
the job will be scheduled. In the following we use directed
trees to represent the state of the machines and describe the
algorithm formally.

5.1 Tree representation of perfect schedules

Each machine is represented by a directed tree. Every node
in the tree is labeled with a window w and a length �, rep-
resenting a periodic (w, �)-schedule on the machine. Each
leaf might be closed or open. A closed (w, �)-leaf is asso-
ciated with a (w′, �′)-job scheduled on this machine. In this
case w ≤ w′ and � ≥ �′. An open (w, �)-leaf is associated
with a (w, �)-periodic idle of the machine (an idle of � slots
repeated with window w). For example, the tree in Fig. 2
represents a schedule of the instance I = {a = (4,1), b =
(8,2), c = (8,1), d = (8,1), e = (16,2), f = (16,2)}.

Initially, the machine is idle. The associated tree has a
single node—a (1,1)-leaf, meaning we can schedule a job
with window 1 and length 1 on this machine. An open
(w, �)-leaf can be split into multiple leaves as follows:

1. Split into k open (wk, �)-leaves. For example, a (4,2)-
leaf can split into three (12,2)-leaves.

152 J Sched (2012) 15:141–155

2. Split into k leaves (w, �1), (w, �2), . . . , (w, �k), such that
∑k

i=1 �i = �. For example, a (12,8)-leaf can split into
(12,5), (12,2) and (12,1).

Also, for any w, a (1,1)-leaf (the root of the tree) can be
replaced by a (w,w)-leaf.

These rules imply a straightforward deterministic map-
ping of trees into a schedule. The schedule is defined re-
cursively. The base case is the (w,w)-root representing an
idle schedule of length w. A (w, �)-node that splits into
k (wk, �)-children represents a round-robin schedule on
the children schedules, each allocated � slots in any win-
dow of wk slots. A (w, �)-node that splits into k nodes
(w, �1), (w, �2), . . . , (w, �k), such that

∑k
i=1 �i = � repre-

sents a round-robin schedule on the children schedules,
where child i is allocated �i slots in every window of w

slots.
The tree in Fig. 2 can be mapped into a schedule of

the instance I as follows: the (1,1)-root is replaced by
a (4,4)-node that splits into a (4,1)-leaf allocated to job
a and a (4,3)-node that is the root if its right child. The
corresponding (intermediate) schedule is [a,∗,∗,∗]. In the
next level, the (4,3)-node splits into two (8,3)-nodes. The
corresponding schedule is [a,∗,∗,∗, a,∗,∗,∗]. Note that
‘∗’ denotes an idle slot, however, this split means that the
two groups of idle slots will be allocated to different jobs.
In the next level, one (8,3)-node splits and allocated to
the jobs b and c, and the other splits into a (8,1)-leaf al-
located to the job d , and into an idle (8,2)-node. That
is, the corresponding schedule is now [a, b, b, c, a, d,∗,∗].
Finally, the idle (8,2)-node splits into two (16,2)-nodes,
allocated to jobs e and f , to get the complete schedule
[a, b, b, c, a, d, e, e, a, b, b, c, a, d, f,f].

5.2 The greedy algorithm

In the first stage of the algorithm the jobs are sorted in
non-decreasing order by their window size, that is, w1 ≤
w2 ≤ · · · ≤ wn. Jobs having the same window and different
lengths are sorted in non-increasing order by their lengths.
That is, the w-jobs are sorted such that �1 ≥ �2 ≥ · · · . In
other words, for every two jobs (w1, �1) and (w2, �2), the
first job comes before the second one if w1 < w2 or w1 = w2

and �1 ≥ �2.
Other sort orders may be used to schedule jobs for the

machines. We term the above sort the original greedy algo-
rithm. Three variations of the sort order were used in exper-
iments, as described below in Sect. 5.3. The demand vari-
ation sorts the jobs by decreasing width �/w. The second
variation, called length, sorts the jobs by decreasing length.
The final variation, online, sorts the jobs randomly. After
sorting, the algorithm schedules the jobs one after the other
according to the sorted order.

Let (w, �) be the next job to be scheduled. A (w, �)-job
can be scheduled on any (w′, x)-leaf such that w′ ≤ w and
x ≥ �. Moreover, if w′′ = kw′ and w′′ ≤ w, a (w′, x)-leaf
can split into k (w′′, x)-leaves, and one of them will be used.
In both cases (split or not), if x > � the (v, x)-leaf on which
(w, �) is scheduled, splits to a closed (v, �)-leaf that is allo-
cated to the job and to an open (v, x − �)-leaf.

Scheduling rule The algorithm schedules the next (w, �)-
job on a leaf (v, x) that minimizes the lost width (given by
�/v − �/w). Since � and w are known, this is equivalent to
maximizing v. Ties are broken in favor of leaves (v, x) with
minimal x ≥ �.

Note that any job can be scheduled on a new tree with no
lost width. Specifically, when a new tree is added, its root is
replaced by a (w,w)-node, which splits into a (w, �) leaf—
allocated to the job, and an open (w,w − �)-leaf. A new
tree must be added whenever the scheduled job cannot fit
to any open leaf. However, to avoid lost width, it might be
more efficient to open a new tree even when it is not com-
pulsory. However, this greedy algorithm only opens a new
tree when there are no sufficient open nodes for scheduling
the next job. A potentially better algorithm could search for
the optimal number of trees prior to scheduling.

5.3 Experimental results

The implementation consists of two parts: the algorithm and
the creation of an instance. The implementation of the algo-
rithm follows directly from the algorithm specification.

Instance generation In order to test the greedy algorithm,
we generated random instances. Let H be the optimal num-
ber of trees for a given instance I . We generated instances
with known H values to allow comparisons to the optimal.1

Each instance is generated from a forest of H separate
(1,1) roots, with each root generating an independent tree.
Given a leaf node in a tree, the implementation randomly se-
lects (with equal probability) one of three cases. In the first
case, the node will split into p (prime number chosen ran-
domly among the first k = 3 primes) children nodes. For ex-
ample, if the original node is (4,2), and the random splitting
factor p is 3, then the original node splits into three (12,2)

nodes. In the second case, the node is marked as frozen, pro-
hibiting future splits. In the third case, the node is split into
two children while conserving the window size of the chil-
dren. For example, if the original node is (12,8) then a new
random length between 1 and 8 is selected to determine the

1A sample of the instances that have been randomly gener-
ated for this experiment, and the schedule created for each of
these instances are available at http://faculty.up.edu/vandegri/WS/
windows_scheduling_experiments.html.

http://faculty.up.edu/vandegri/WS/windows_scheduling_experiments.html
http://faculty.up.edu/vandegri/WS/windows_scheduling_experiments.html

J Sched (2012) 15:141–155 153

window size of one of the two new nodes. If the random
number selected is 3, then the original node splits into the
nodes (12,3) and (12,5). The implementation uses a thresh-
old value to terminate tree creation, and these leaves become
jobs in instance I .

The optimal number of trees for instance I is exactly
the number of trees, H , used to create the instance. We call
these non-perturbed instances since the jobs in I are exactly
those generated in the tree creation process. Non-perturbed
instances have subsets of jobs with the same window size
due to splits from common parent nodes.

To create instances I with less consistent window sizes,
we perturb the window sizes of nodes by increasing them
slightly. We denote these as perturbed instances. In order
to ensure that H does not decrease, we set a limit on the
differences between the original width �/w and the new
width �/w′. Specifically, the new value w′ can be between
w and 1.125w (to keep modifications small) as long as
the total difference in width for all jobs remains under 1.0
(
∑

(w,�)∈I (�/w − �/w′) < 1.0).

Experimental results We ran the greedy algorithm and
three variations of it on 20 non-perturbed instances and
20 perturbed instances for H between 5 and 100 (stepping
by 5), and k = 3 (splitting nodes splits into one of the first 3
primes). The three variations sort the jobs within an instance
in different ways before using the scheduling routine of the
greedy algorithm. The first variation, called Demand, sorts
the jobs according to their widths �/w. The most demand-
ing jobs (larger �/w) are scheduled first. Ties are broken in
favor of small w. The second variation, called length, sorts
jobs by length, with longer jobs scheduled first, and ties are
broken in favor of small w. In the final variation, Online, the
jobs are shuffled randomly and scheduled in the resulting
order.

The top of Fig. 3 shows the results for all four algo-
rithms (Orig, Demand, Length, Online) for non-perturbed
instances. The average differences between the number of
machines scheduled and H are shown. In every experimen-
tal run, the original greedy algorithm used the fewest ma-
chines of all four variations and used H or H + 1 machines.

The results are similar for perturbed instances as shown at
the bottom of Fig. 3, with the original greedy algorithm us-
ing the fewest machines. For the Demand, Length, and On-
line versions, the average difference for each H is roughly
twice the non-perturbed results. The original algorithm used
between H and H + 3 machines in every experimental run.
For H greater than 30 the original greedy is usually optimal.

6 Summary and open problems

In this paper we considered the windows scheduling prob-
lem with variable length jobs. This problem has numerous

Fig. 3 For non-perturbed (top) and perturbed (bottom) instances: the
average difference (20 runs per H) in number of machines used and
the optimal number of machines (H)

applications in production planning and media on-demand
systems. We presented an 8-approximation algorithm for the
problem, and additional algorithms with better approxima-
tion ratios for some special cases. We also considered the
cost of being thrift—that is, allocating to each job its min-
imal processing demand, and showed that surprisingly, this
cost is unbounded. Finally, we presented a greedy algorithm
that performs very close to the optimal according to our ex-
periments. We conclude with the following list of open prob-
lems for further research.

• Can the approximation factor 8 be improved? Alterna-
tively, is there a C > 1 for which a C-approximation is
NP-hard? These questions also apply to the special cases
of thrift schedules and windows scheduling of power-2
instances. The optimal algorithm presented in this paper
for power-2 instances is only for thrift schedules. Is it

154 J Sched (2012) 15:141–155

NP-hard to find a non-thrift optimal schedule for these in-
stances? As shown in the thriftiness paradox, the optimal
schedule is not necessarily thrift.

• The greedy algorithm performs very well in practice. Is
there any theoretical bound on its performance? Are there
better natural algorithms for practical instances?

• All of our solutions and previous solutions to the original
windows scheduling do not use migrations. That is, a par-
ticular job is scheduled only on one machine. It is open
to see what is the power of migrations. One can distin-
guish between two levels of migrations: in the simplest
level, different executions of a job might be on different
machines. In the second level, a job might migrate during
a single execution.

• Thrift schedules and windows scheduling with arbitrary
job lengths are special cases of a general problem in
which jobs may be scheduled with some jitter (Baruah
et al. 1997; Brakerski and Patt-Shamir 2006). That is, job
i is associated with jitter parameters jub

i and j lb
i and the

window between any two consecutive executions of job
i must be no smaller than wi − j lb

i and no larger than
wi + jub

i . In a thrift schedule both jitter parameters equal
0 and in the windows scheduling problem jub

i = 0 and
j lb
i = wi − 1. This generalization is motivated by mainte-

nance problems in which jobs should be served frequently
but cannot get the service too often. Can our algorithms
be extended for this problem? What is the resulting per-
formance?

References

Acharya, S., Franklin, M. J., & Zdonik, S. (1995). Dissemination-based
data delivery using broadcast disks. IEEE Personal Communica-
tions, 2(6), 50–60.

Ammar, H., & Wong, J. W. (1985). The design of teletext broadcast
cycles. Performance Evaluation, 5(4), 235–242.

Anily, S., Glass, C. A., & Hassin, R. (1998). The scheduling of main-
tenance service. Discrete Applied Mathematics (DAM), 82(1–3),
27–42.

Bar-Noy, A., & Ladner, R. E. (2003). Windows scheduling problems
for broadcast systems. SIAM Journal on Computing (SICOMP),
32(4), 1091–1113.

Bar-Noy, A., Bhatia, R., Naor, J., & Schieber, B. (2002). Minimizing
service and operation costs of periodic scheduling. Mathematics
of Operations Research (MOR), 27(3), 518–544.

Bar-Noy, A., Nisgav, A., & Patt-Shamir, B. (2002). Nearly optimal
perfectly-periodic schedules. Distributed Computing, 15(4), 207–
220.

Bar-Noy, A., Ladner, R. E., & Tamir, T. (2003). Scheduling techniques
for media-on-demand. In Proceedings of the 14th ACM-SIAM
symposium on discrete algorithms (SODA) (pp. 791–800).

Bar-Noy, A., Naor, J., & Schieber, B. (2003). Pushing dependent data
in clients-providers-servers systems. Wireless Networks Journal
(WINET), 9(5), 175–186.

Bar-Noy, A., Ladner, R. E., & Tamir, T. (2007). Windows scheduling
as a restricted version of bin packing. ACM Transactions on Al-
gorithms (TALG), 3(3), Article 28.

Baruah, S. K., & Lin, S.-S. (1998). Pfair scheduling of generalized
pinwheel task systems. IEEE Transactions on Computers, 47(7),
812–816.

Baruah, S. K., Cohen, N. K., Plaxton, C. G., & Varvel, D. A. (1996).
Proportionate progress: a notion of fairness in resource allocation.
Algorithmica, 15(6), 600–625.

Baruah, S. K., Chen, D., & Mok, A. K. (1997). Jitter concerns in peri-
odic task systems. In IEEE real-time systems symposium (pp. 68–
77).

Brakerski, Z., & Patt-Shamir, B. (2006). Jitter-approximation tradeoff
for periodic scheduling. Wireless Networks, 12(6), 723–731.

Brakerski, Z., Nisgav, A., & Patt-Shamir, B. (2003). Dispatching
in perfectly-periodic schedules. Journal of Algorithms (JALG),
49(2), 219–239.

Campbell, A., & Hardin, J. (2005). Vehicle minimization for periodic
deliveries. European Journal of Operational Research, 165, 668–
684.

Chan, M. Y., & Chin, F. Y. L. (1993). Schedulers for larger classes of
pinwheel instances. Algorithmica, 9(5), 425–462.

Cherniavsky, N., & Ladner, R. E. (2006) Practical low delay broad-
cast of compressed variable bit rate movies. In Data compression
conference (pp. 362–371).

Coffman, E. G., Garey, M. R., & Johnson, D. S. (1996). Approxi-
mation algorithms for bin packing: a survey. In D. Hochbaum
(Ed.), Approximation algorithms for NP-hard problems (pp. 46–
93). Boston: PWS Publishing.

Engebretsen, L., & Sudan, M. (2006). Harmonic broadcasting is
bandwidth-optimal assuming constant bit rate. Networks, 47(3),
172–177.

Evans, W. S., & Kirkpatrick, D. G. (2004). Optimally scheduling
video-on-demand to minimize delay when server and receiver
bandwidth may differ. In Proceedings of the 15th ACM-SIAM
symposium on discrete algorithms (SODA) (pp. 1041–1049).

Feinberg, E. A., & Curry, M. T. (2005). Generalized pinwheel problem.
Mathematical Methods of Operations Research, 62, 99–122.

Feinberg, E. A., Bender, M., Curry, M. T., Huang, D., Koutsoudis, T.,
& Bernstein, J. (2002). Sensor resource management for an air-
borne early warning radar. In Proceedings of SPIE the interna-
tional society of optical engineering (pp. 145–156).

Fernandez de la Vega, W., & Lueker, G. S. (1981). Bin packing can be
solved within 1 + ε in linear time. Combinatorica, 1, 349–355.

Gao, L., Kurose, J., & Towsley, D. (2002). Efficient schemes for broad-
casting popular videos. Multimedia Systems, 8(4), 284–294.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability:
a guide to the theory of NP-completeness. San Francisco: Free-
man.

Gondhalekar, V., Jain, R., & Werth, J. (1997). Scheduling on airdisks:
efficient access to personalized information services via periodic
wireless data broadcast. IEEE International Conference on Com-
munications (ICC), 3, 1276–1280.

Graham, R. L. (1969). Bounds on multiprocessing timing anomalies.
SIAM Journal on Applied Mathematics, 17, 263–269.

Grigoriev, A., Van De Klundert, J., & Spieksma, F. (2006). Modeling
and solving the periodic maintenance problem. European Journal
of Operational Research, 172, 783–797.

Hadley, G., & Whitin, T. M. (1963). Analysis of inventory systems.
New York: Prentice Hall.

Hassin, R., & Megiddo, N. (1991). Exact computation of optimal in-
ventory policies over an unbounded horizon. Mathematics of Op-
erations Research (MOR), 16(3), 534–546.

Holte, R., Mok, A., Rosier, L., Tulchinsky, I., & Varvel, D. (1989).
The pinwheel: a real-time scheduling problem. In Proceedings
of the 22-nd Hawaii international conference on system sciences
(pp. 693–702).

Holte, R., Rosier, L., Tulchinsky, I., & Varvel, D. (1992). Pinwheel
scheduling with two distinct numbers. Theoretical Computer Sci-
ence (TCS), 100(1), 105–135.

J Sched (2012) 15:141–155 155

Hua, K. A., & Sheu, S. (2000). An efficient periodic broadcast tech-
nique for digital video libraries. Multimedia Tools and Applica-
tions, 10(2/3), 157–177.

Juhn, L., & Tseng, L. (1997). Harmonic broadcasting for video-on-
demand service. IEEE Transactions on Broadcasting, 43(3), 268–
271.

Kenyon, C., & Schabanel, N. (2003). The data broadcast problem with
non-uniform transmission times. Algorithmica, 35(2), 146–175.

Kenyon, C., Schabanel, N., & Young, N. E. (2002). Polynomial-
time approximation scheme for data broadcast. CoRR
arXiv:cs/0205012v1 [cs.DS]. Also, in Proceedings of the
32-nd ACM symposium on theory of computing (STOC)
(pp. 659–666) (2000).

Korst, J., Aarts, E., & Lenstra, J. (1997). Scheduling periodic tasks
with slack. INFORMS Journal on Computing, 9, 351–362.

Liu, C. L., & Laylend, J. W. (1973). Scheduling algorithms for mul-
tiprogramming in a hard real-time environment. Journal of the
ACM (JACM), 20(1), 46–61.

Roundy, R. (1985). 98%-effective integer-ratio lot-sizing for one-
warehouse multi-retailer systems. Management Science, 31,
1416–1460.

Spieksma, F. C. R., & Woeginger, G. J. (2005). The no-wait flow-shop
paradox. Operations Research Letters, 33(6), 603–608.

Szwarc, W. The transportation paradox. Naval Research Logistics
Quarterly 18, 185–202 (1971).

Tijdeman, R. (1980). The chairman assignment problem. Discrete
Mathematics (DM), 32, 323–330.

Viswanathan, S., & Imielinski, T. (1996). Metropolitan area video-on-
demand service using pyramid broadcasting. ACM Multimedia
Systems Journal, 4(3), 197–208.

Wei, W., & Liu, C. L. (1983). On a periodic maintenance problem.
Operations Research Letters (ORL), 2, 90–93.

http://arxiv.org/abs/arXiv:cs/0205012v1

	Windows scheduling of arbitrary-length jobs on multiple machines
	Abstract
	Introduction
	Applications and motivation
	Related work
	Contributions
	Paper organization

	Preliminaries
	Notations and definitions
	Hardness proof
	The thriftiness price
	Identical lengths or identical windows

	Optimal thrift schedule of power-2 instances
	Analysis of AT
	Proof of thriftiness price

	Approximation algorithms for arbitrary instances
	An algorithm that uses 2(1+epsilon)W(I) + logwmax machines
	An 8-approximation algorithm
	The cost of doubling the lengths
	The cost of dividing the windows by 2
	Analysis of algorithm A

	A practical algorithm
	Tree representation of perfect schedules
	The greedy algorithm
	Scheduling rule

	Experimental results
	Instance generation
	Experimental results

	Summary and open problems
	References

