
J Sched (2015) 18:561–573
DOI 10.1007/s10951-014-0411-z

Real-time scheduling to minimize machine busy times

Rohit Khandekar · Baruch Schieber ·
Hadas Shachnai · Tami Tamir

Received: 6 May 2014 / Accepted: 8 December 2014 / Published online: 19 December 2014
© Springer Science+Business Media New York 2014

Abstract Consider the following scheduling problem. We
are given a set of jobs, each having a release time, a due
date, a processing time, and demand for machine capacity.
The goal is to schedule all jobs non-preemptively in their
release-time deadline windows on machines that can process
multiple jobs simultaneously, subject to machine capacity
constraints, with the objective to minimize the total busy
time of the machines. Our problem naturally arises in power-
aware scheduling, optical network design, and customer ser-
vice systems, among others. The problem is APX-hard by
a simple reduction from the subset sum problem. A main
result of this paper is a 5-approximation algorithm for general
instances.While the algorithm is simple, its analysis involves
a non-trivial charging scheme which bounds the total busy
time in terms of work and span lower bounds on the opti-
mum. This improves and extends the results of Flammini

A preliminary version of this paper appeared in the Proceedings of the
30th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), Chennai, December 2010.

R. Khandekar
Knight Capital Group, Jersey City, NJ 07310, USA
e-mail: rkhandekar@gmail.com

B. Schieber
IBM T.J. Watson Research Center, P.O. Box 218,
Yorktown Heights, NY 10598, USA
e-mail: sbar@us.ibm.com

H. Shachnai
Computer Science Department, Technion, 32000 Haifa, Israel
e-mail: hadas@cs.technion.ac.il

T. Tamir (B)
School of Computer Science, The Interdisciplinary Center,
Herzliya, Israel
e-mail: tami@idc.ac.il

et al. (Theor Comput Sci 411(40–42):3553–3562, 2010). We
extend this approximation to the case ofmoldable jobs,where
the algorithm also needs to choose, for each job, one of sev-
eral processing-time versus demand configurations. Better
bounds and exact algorithms are derived for several special
cases, including proper interval graphs, intervals forming a
clique and laminar families of intervals.

Keywords Real-time scheduling · Power-aware ·
Minimum total busy time · Approximation algorithms

1 Introduction

Traditional research interest in cluster systems has been high
performance, such as high throughput, low response time,
or load balancing. In this paper we focus on minimizing
machine busy times, a recent trend in cluster computing
which aims at reducing power consumption (see, e.g., Vasić
et al. 2009 and the references therein).

We are given a set of n jobs J̄ = {J1, . . . , Jn} that need
to be scheduled on a set of identical machines, each having
capacity g, for some g ≥ 1. Each job J has a release time
r(J), a due date d(J), a processing time (or, length) p(J) >

0 (such that d(J) ≥ r(J)+ p(J)), and a demand (or, width)
0 < R(J) ≤ g for machine capacity; this is the amount
of capacity required for processing J on any machine (the
demands need not be integral).

A feasible solution schedules each job J on a machine M
non-preemptively during a time interval [t (J), t (J)+ p(J)),
such that t (J) ≥ r(J) and t (J)+ p(J) ≤ d(J), and the total
demand of jobs running at any given time on each machine
is at most g. We say that a machine M is busy at time t if
there is at least one job J scheduled on M such that t ∈
[t (J), t (J) + p(J)); otherwise, M is idle at time t . We call

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-014-0411-z&domain=pdf

562 J Sched (2015) 18:561–573

the time period in which a machine M is busy its busy period
and denote its length by busy(M). The goal is to find a
feasible schedule of all jobs on a set of machines such that
the total busy time of themachines, given by

∑
M busy(M),

isminimized.We consider the offline version of this problem,
where the entire input is given in advance.

Note that the number of machines to be used is part of
the output (and can take any integral valuem ≥ 1). Indeed, a
solutionwhichminimizes the total busy timemay not be opti-
mal in the number ofmachines used. It is NP-hard to approxi-
mate the problemwithin an approximation ratio better than 3

2
by the following simple reduction from the Partition prob-
lem. Given integers a1, . . . , an ∈ {1, . . . , g} summing to 2g,
the Partition problem is to determine if it is possible to
partition the numbers into two sets, each adding to exactly g.
In the reduction, we define for each i , a job Ji with demand
ai , release time 0, processing time 1, and deadline 1. The yes
instance of Partition results in a busy time of 2, while the
no instance results in the busy time 3.

1.1 Applications

We list below several natural applications of our problem.

Power-aware scheduling The objective of power-aware
scheduling is tominimize the power consumption for running
a cluster of machines, while supporting Service Level Agree-
ments (SLAs). SLAs, which define the negotiated agree-
ments between service providers and consumers, include
quality of service parameters such as demand for a com-
puting resource and a deadline. The power consumption of
a machine is assumed to be proportional to the time the
machine is in on state. While on, a machine can process sev-
eral tasks simultaneously. The number of these tasks hardly
affects the power consumption, but must be below the given
machine’s capacity. Thus, we get an instance of our problem
of minimizing the total busy time of the schedule.

Optical network designHardware costs in optical networks
depend on the usage of switching units such as Optical Add-
Drop Multiplexers (OADMs). Communication is done by
lightpaths, which are simple paths in the network. A light-
path connecting nodes u and v is using one OADM in each
intermediate node. Often, the traffic supported by the net-
work requires transmission rates which are lower than the
full wavelength capacity; thus, the network operator has to
be able to put together (or, groom) low-capacity demands
into the high-capacity fibers. Taking g to be the grooming
factor, for some g ≥ 1, this can be viewed as grouping the
lightpaths with the samewavelength so that at most g of them
can share one edge. In terms of OADMs, if g lightpaths of
the same wavelength (“color”) pass through the same node,
they can share a single OADM.

Given a network with a line topology, a grooming factor
g ≥ 1 and a set of lightpaths {p j = (a j , b j)| j = 1, . . . , n},
we need to color the lightpaths such that the number of
OADMs is minimized. This yields the following instance
of our scheduling problem. The time axis corresponds to
the line network. There are n unit demand jobs (corre-
sponding to lightpaths), and the machine capacity is g. For
j = 1, . . . , n, job J j needs to be executed in the time
interval [a j + 1/2, b j − 1/2] (i.e., p(J j) = b j − a j − 1,
r(J j) = a j + 1/2 and d(J j) = b j − 1/2). Grooming up
to g lightpaths in the optical network implies that the corre-
sponding jobs are scheduled on the same machine and vice
versa. In other words, different colors in the optical network
instance correspond to different machines in the scheduling
problem instance, and an OADM at node i corresponds to
the interval [i −1/2, i +1/2]. Thus, the cost of a coloring of
the lightpaths is equal to the cost of the schedule of the cor-
responding set of jobs. This grooming problem has become
central in optimizing switching costs for optical networks
Gerstel et al. (1998), Flammini et al. (2008), Flammini et al.
(2010).

Unit commitment given future demand The Unit commit-
ment in power systems involves determining the start-up and
shut-down schedule of generation units to meet the required
demand. This is one of the major problems in power gen-
eration (see, e.g., Wood and Wollenberg 1996; Belede et al.
2009 and the references therein). Undercommitment of units
would result in extra cost due to the need to purchase the
missing power in the spot market, while overcommitment
would result in extra operating cost. In a simplified version
of the problem, assume that all generation units have the same
capacity and that the blocks of future demands are given in
advance. This yields an instance of our real-time schedul-
ing problem, where each generation unit corresponds to a
machine, and each block of demand corresponds to a job.

1.2 Related work

Job scheduling on parallel machines has been widely stud-
ied (see, e.g., the surveys in Leung 2004; Brucker 2007).
In particular, much attention was given to interval schedul-
ing Lawler et al. (1993), where jobs are given as intervals
on the real line, each representing the time interval in which
a job should be processed. Each job has to be processed on
some machine, and it is commonly assumed that a machine
can process a single job at any time. Some of the earlier work
on interval scheduling considers the problem of scheduling a
feasible subset of jobs whose total weight is maximized, i.e.,
a maximum weight independent set (see, e.g., Bar-Yehuda et
al. 2000 and the survey in Kovalyov et al. 2007).

There is a wide literature also on real-time scheduling,
where each job has to be processed on some machine dur-

123

J Sched (2015) 18:561–573 563

ing a time interval between its release time and due date.
Also, there are studies of real-time scheduling with demands,
where each machine has some capacity; however, to the best
of our knowledge, all of this prior art refers to objectives
other than minimizing the total busy time of the schedule
(see, e.g., Bar-Yehuda et al. 2000; Phillips et al. 2000; Cali-
nescu et al. 2011; Chen et al. 2002). There has been earlier
work also on the problem of scheduling the jobs on a set of
machines so as to minimize the total cost (see, e.g., Bhatia
et al. 2007), but in these works the cost of scheduling each
job is fixed. In our problem, the cost of scheduling each jobs
depends on the other jobs scheduled on the same machine in
the corresponding time interval; thus, itmay change over time
and among different machines. Scheduling moldable jobs,
where each job can have varying processing times, depend-
ing on the amount of resources allotted to this job, has been
studied using classic measures, such as minimummakespan,
or minimum (weighted) sum of completion times (see, e.g.,
Turek et al. 1992; Ludwig 1995 and a comprehensive survey
in Schwarz 2009). Our study relates also to batch schedul-
ing of conflicting jobs, where the conflicts are given as an
interval graph. In the p-batch scheduling model (see e.g.,
Chapter 8 in Brucker 2007), a set of jobs can be processed
jointly. All the jobs in the batch start simultaneously, and
the completion time of a batch is the last completion time of
any job in the batch. (For known results on batch scheduling,
see e.g., Brucker 2007; Pinedo 2008.) Our scheduling prob-
lem differs from batch scheduling in several aspects. First, as
for real-time scheduling, while common measures in batch
scheduling refer to the maximum completion time of a batch,
or a function of the completion times of the jobs, we con-
sider the total busy times of the machines. In addition, while
job demands imply that each machine can process (at most)
g jobs simultaneously, for some g ≥ 1, the jobs need not
be partitioned to batches, i.e., each job can start at different
time. Finally, while in known batch scheduling problems
the set of machines is given, we assume that any number
of machines can be used for the solution. Other works on
energy minimization consider utilization of machines with
variable capacities, corresponding to their voltage consump-
tion Manzak and Chakrabarti (2003), and scheduling of jobs
with precedence constraints Kang and Ranka (2008), Zhang
et al. (2002).

The complexity of our scheduling problem was studied in
Winkler and Zhang (2003). This paper shows that the prob-
lem is NP-hard already for g = 2, where the jobs are inter-
vals on the line. The paper Flammini et al. (2010) considers
our scheduling problem where jobs are given as intervals
on the line with unit demand. For this version of the prob-
lem the paper gives a 4-approximation algorithm for general
inputs and better bounds for some subclasses of inputs. In
particular, the paper Flammini et al. (2010) presents a 2-
approximation algorithm for instances where no interval is

properly contained in another (i.e., the input forms a proper
interval graph), and a (2 + ε)-approximation for bounded
lengths instances, i.e., the length (or, processing time) of
any job is bounded by some fixed integer d ≥ 1.1 A 2-
approximation algorithmwas given in Flammini et al. (2010)
for instances where any two intervals intersect, i.e., the input
forms a clique (see also Flammini et al. 2008). In this paper
we improve and extend the results of Flammini et al. (2010).

1.3 Our results

Our main result is a 5-approximation algorithm for real-
time scheduling of moldable jobs. Before summarizing our
results, we introduce some notation. Denote by I (J) the
interval [r(J), d(J)) in which J can be processed.

Definition 1.1 An instance J̄ is said to have interval jobs if
d(J) = r(J) + p(J) holds for all jobs J ∈ J̄ . An instance
J̄ with interval jobs is called

• proper if for any two jobs J, J ′ ∈ J̄ , neither I (J) ⊆
I (J ′) nor I (J ′) ⊆ I (J) holds.

• laminar if the intervals I (J) for all jobs J form a laminar
family, i.e., for any two jobs J, J ′ ∈ J̄ , we have I (J) ∩
I (J ′) = ∅ or I (J) ⊂ I (J ′), or I (J ′) ⊂ I (J).

• a clique if intervals I (J) for all jobs J form a clique, i.e.,
for any two jobs J, J ′ ∈ J̄ , we have I (J) ∩ I (J ′)
= ∅.

We first prove the following result for instances with inter-
val jobs.

Theorem 1.1 There exists a 5-approximation algorithm for
real-time scheduling instances with interval jobs. Further-
more, if the instance is proper, there exists a 2-approximation
algorithm.

We use the above algorithm, as a subroutine, to design our
algorithm for the general real-time scheduling problem.

Theorem 1.2 There exists a 5-approximation algorithm for
the real-time scheduling problem.

Next, we consider an extension to real-time scheduling of
moldable jobs. In this generalization, a job does not have a
fixed processing time and demand; rather, it can be scheduled
in one of several possible configurations. More precisely, for
each job J ∈ J̄ , we have q ≥ 1 configurations, where con-
figuration i is given by a pair (pi (J), Ri (J)). The problem
involves deciding which configuration i J is to be used in the

1 A slight modification of the algorithm yields an improved bound of
1 + ε, where ε > 0 is an input parameter.

123

564 J Sched (2015) 18:561–573

schedule for each job J . Once a configuration i J is final-
ized for a job J , its processing time and demand are given
by piJ (J) and RiJ (J), respectively. We extend our real-time
scheduling algorithm to yield the same bound for moldable
instances.

Theorem 1.3 There exists a 5-approximation algorithm for
real-time scheduling of moldable jobs.

We note that even with small fractional demands, the time
complexity of our algorithms is polynomial in n, since at
most n jobs can be processed at any given time. Finally, we
present improved bounds for some cases of instances with
interval jobs.

Theorem 1.4 Consider an instance J̄ consisting of interval
jobs with unit demands. There exist (i) a polynomial time
exact algorithm if J̄ is laminar, and (i i) a PTAS if J̄ is a
clique.

Recent Developments: Following our results in Khandekar
et al. (2010), Mertzios at al. Mertzios et al. (2012) con-
sidered some subclasses of instances of our problem with
interval jobs. They gave a polynomial time algorithm for
proper clique instances and also improved our approxima-
tion ratio for proper instances to 2 − 1/g. Recently, Chang
et al. Chang et al. (2014) obtained improved results for the
unit demand real-time scheduling problem. Similar to our
approach in Sect. 3, they first solve the problem assuming
unbounded machine capacity to have a solution that mini-
mizes the projection of the jobs onto the time axis. Then, the
original instance is mapped to one of interval jobs, forcing
each job to be processed as in the unbounded capacity solu-
tion. This approach is shown in Chang et al. (2014) to yield
a total busy time that is at most 3 times the optimal.
Organization: The rest of the paper is organized as follows.
In Sect. 1.4, we give some preliminary definitions and obser-
vations. Theorems 1.1, 1.2, 1.3, and 1.4 are proved in Sects.
2, 3, 4, and 5, respectively.

1.4 Preliminaries

Throughout the paper, we use properties of the interval rep-
resentation of a given instance.

Definition 1.2 Given a time interval I = [s, t), the length
of I is len(I) = t − s. This extends to a set I of intervals;
namely, the length of I is len(I) = ∑

I∈I len(I). We
define the span of I as span(I) = len(∪I).

Note that span(I) ≤ len(I) and equality holds if and
only if I is a set of pairwise disjoint intervals.

Given an instance J̄ and machine capacity g ≥ 1, we
denote by opt(J̄) the cost of an optimal solution, that is, a

feasible schedule inwhich the total busy time of themachines
is minimized. Also, we denote by opt∞(J̄) the cost of
the optimum solution for the instance J̄ , assuming that the
capacity is g = ∞. For any job J , let w(J) = R(J) · p(J)

denote the total work required by job J , then for a set of jobs
J̄ , w(J̄) = ∑

J∈J̄ w(J) is the total work required by the

jobs in J̄ . The next observation gives two immediate lower
bounds for the cost of any solution.

Observation 1.5 For any instance J̄ and machine capacity
g ≥ 1, the following bounds hold.

• The work bound: opt(J̄) ≥ w(J̄)
g .

• The span bound: opt(J̄) ≥ opt∞(J̄).

The work bound holds since g is the maximum capacity
that can be allocated by a single machine at any time. The
span bound holds since the busy time does not increase by
relaxing the capacity constraint.

While analyzing any schedule S that is clear from the con-
text, we number the machines as M1, M2, . . ., and denote by
J̄i the set of jobs assigned to machine Mi under the schedule
S. W.l.o.g., the busy period of a machine Mi is contiguous;
otherwise, we can divide the busy period to contiguous inter-
vals and assign the jobs of each contiguous interval to a dif-
ferent machine. Obviously, this will not change the total busy
time. Therefore, we say that amachineMi has a busy interval
which starts at the minimum start time of any job scheduled
on Mi and ends at the maximum completion time of any of
these jobs. It follows that the cost of Mi is the length of its
busy interval, i.e., busy(Mi) = span(J̄i) for all i ≥ 1.

2 Interval scheduling: Theorem 1.1

2.1 General instances with interval jobs

In this section we present an algorithm for instances with
interval jobs (i.e., d(J) = r(J)+ p(J) for all J ∈ J̄), where
each job J may have an arbitrary processing time and any
demand 1 ≤ R(J) ≤ g. AlgorithmFirst_Fit_with_Demands
(FFD) divides the jobs into two groups, narrow andwide,
as given below. It schedules narrow and wide jobs on dis-
tinct sets of machines. Thewide jobs are scheduled arbitrar-
ily, while narrow jobs are scheduled greedily by consider-
ing them one after the other, from longest to shortest. Each
job is scheduled on the first machine it can fit. Let α ∈ [0, 1]
be a parameter to be fixed later.

Definition 2.1 For a subset J̄ ′ ⊆ J̄ of jobs, let
narrow(J̄ ′) = {J ∈ J̄ ′ | R(J) ≤ α · g} and wide(J̄ ′) =
{J ∈ J̄ ′ | R(J) > α · g}.

123

J Sched (2015) 18:561–573 565

Algorithm (FFD):

(i) Schedule jobs in wide(J̄) arbitrarily on some
machines. Do not use these machines for scheduling
any other jobs.

(ii) Sort the jobs in narrow(J̄) in non-increasing order
of length, i.e., p(J1) ≥ . . . ≥ p(Jn′).

(iii) For j = 1, . . . , n′ do:

(a) Letm denote the number of machines used for the
jobs {J1, . . . , J j−1}.

(b) Assign J j to the first machine that can process it,
i.e., find the minimum value of i : 1 ≤ i ≤ m
such that, at any time t ∈ I (J j), the total capacity
allocated on Mi is at most g − R(J j).

(c) If no such machine exists open (m+1)th machine
and schedule J j on it.

Theorem 2.1 Ifα = 1/4 then, for any instance J̄ with inter-
val jobs, we have

FFD(J̄) ≤ opt∞(J̄) + 4 · w(J̄)

g
≤ 5 · opt(J̄).

To prove the theorem we bound the costs of the wide and
narrow jobs. It is easy to bound the contribution of wide
jobs to the overall cost. The next result follows directly from
the definition of wide jobs.

Observation 2.2 The cost incurred by jobs inwide(J̄) is at

most
∑

J∈wide(J̄) p(J) ≤ w(wide(J̄))
α·g .

The rest of the section is devoted to bounding the cost of
the narrow jobs. The next observation follows from the fact
that the first-fit algorithm FFD assigns a job J to machine
Mi with i ≥ 2 only when it could not have been assigned to
machines Mk with k < i , due to capacity constraints.

Observation 2.3 Let J be a job assigned to machine Mi

by FFD, for some i ≥ 2. For any machine Mk, (k < i),
there is at least one time ti,k(J) ∈ I (J) and a set Si,k(J)

of jobs assigned to Mk such that, for every J ′ ∈ Si,k(J),
(a) ti,k(J) ∈ I (J ′), and (b) p(J ′) ≥ p(J). In addition,
R(J) + ∑

J ′∈Si,k (J) R(J ′) > g.

Proof Assume by contradiction that for any t ∈ J the total
capacity allocated to Mk is at most g − R(J). Since the
algorithm assigns jobs to machines incrementally (i.e., it
never unassigns jobs), this property was true also when FFD
scheduled job J . Thus, J should have been assigned toMk by
FFD, if it was not already assigned to amachinewith smaller
index. This is a contradiction to the fact that J is assigned to
Mi .Hence, there exists a time ti,k(J) ∈ I (J), such that the set
Si,k(J) of jobs containing ti,k(J), among those assigned to

machine Mk , satisfies R(J) + ∑
J ′∈Si,k (J) R(J ′) > g. Prop-

erty (b) follows since the jobs are considered by the algorithm
in a non-increasing order of their length.
�

In the subsequent analysis, we assume that each job J ∈
J̄i , for i ≥ 2, fixes a unique time ti,i−1(J) and a unique
set of jobs Si,i−1(J) ⊆ J̄i−1. We say that J blames jobs in
Si,i−1(J).

Lemma 2.4 For any 1 ≤ i ≤ m−1, we havespan(J̄i+1) ≤
3·w(J̄i)
(1−α)·g .

Proof Following Observation 2.3, for a job J ∈ J̄i , denote
by b(J) the set of jobs in J̄i+1 which blame J , i.e., b(J) =
{J ′ ∈ J̄i+1 | J ∈ Si+1,i (J ′)}. Let JL (resp. JR) be the job
with earliest start time (resp. latest completion time) in b(J).
Since each job in b(J) overlaps J , we have span(b(J)) ≤
p(J) + p(JL) + p(JR) ≤ 3 · p(J) = 3 · w(J)

R(J)
. Thus,

∑

J∈J̄i

R(J)span(b(J)) ≤ 3 · w(J̄i). (1)

Now, we observe that
∑

J∈J̄i

R(J)span(b(J))

=
∫

t∈span(J̄i+1)

∑

J∈J̄i :t∈span(b(J))

R(J)dt.

We bound the right-hand side as follows. For any t ∈
span(J̄i+1), there exists a job J ′ ∈ J̄i+1 with t ∈
[r(J ′), d(J ′)). For all jobs J ∈ Si+1,i (J ′), since J ′ ∈ b(J),
wehave t ∈span(b(J)).Hence,

∑
J∈J̄i :t∈span(b(J)) R(J) ≥∑

J∈Si+1,i (J ′) R(J). Also,
∑

J∈Si+1,i (J ′) R(J) > g−R(J ′) ≥
(1 − α) · g follows by Observation 2.3. We thus conclude

∑

J∈J̄i

R(J)span(b(J)) > span(J̄i+1) · (1 − α) · g. (2)

From (1) and (2) we get the lemma.
�
We show that if α = 1/4, the FFD is a 5-approximation

algorithm. The following is an overview of the analysis. The
proof combines the span bound and the work bound given
in Observation 1.5 with the following analysis. For wide
jobs we use the work bound. Let m denote the total number
of machines used for narrow jobs, let Mi be the i th such
machine in the order considered by FFD, and J̄i be the set
of narrow jobs scheduled on Mi . Using Observation 2.3,
we relate the cost incurred for the jobs in J̄i+1 to span(J̄i).
This relates the overall cost for the jobs in J̄ \ J̄1 to opt(J̄),
using the work bound. Then we relate the cost incurred for
the jobs in J̄1 to opt(J̄), using the span bound.

123

566 J Sched (2015) 18:561–573

Proof of Theorem 2.1: The overall cost of the schedule com-
puted by FFD is the contribution ofwide jobs and narrow
jobs. Recall that m is the number of machines used for nar-
row jobs in the current iteration. Then the busy time of Mi ,
for 1 ≤ i ≤ m, is exactly busy(Mi) = span(J̄i). Now,
from Observation 2.2 and Lemma 2.4, we have that the total
cost of FFD is at most

w(wide(J̄))

α · g +
m∑

i=1

span(J̄i)

≤ w(wide(J̄))

α · g + span(J̄1) +
m−1∑

i=1

3 · w(J̄i)

(1 − α) · g

≤ w(wide(J̄))

α · g + opt∞(J̄) + 3 · w(narrow(J̄))

(1 − α) · g
≤ opt∞(J̄) + max

{
1

α
,

3

1 − α

}

· w(J̄)

g

≤ opt∞(J̄) + 4 · w(J̄)

g
.

The second inequality follows from the fact thatspan(J̄i) ≤
opt∞(J̄), for all i ≥ 1. The last inequality holds since α =
1/4. The proof now follows from Observation 1.5.
�

2.2 Proper instances with interval jobs

In this section we consider instances in which no job inter-
val is contained in another. The intersection graphs for such
instances are known as proper interval graphs. The simple
greedy algorithm consists of two steps. In the first step, the
jobs are sorted by their starting times (note that, in a proper
interval graph, this is also the order of the jobs by completion
times). In the second step the jobs are assigned to machines
greedily in a NextFit manner; that is, each job is added to
the currently filled machine, unless its addition is invalid, in
which case a new machine is opened.

Greedy Algorithm for Proper Interval Graphs

(i) Sort the jobs in non-decreasing order of release
times, i.e., r(J1) ≤ · · · ≤ r(Jn).

(ii) For j = 1, . . . , n do: Assign J j to the currently
filledmachine if this satisfies the capacity constraint
g; otherwise, assign J j to a new machine and mark
it as being currently filled.

Theorem 2.5 Greedy is a 2-approximation algorithm for
proper interval graphs.

Proof Let Dt be the total demand of jobs active at time
t . Also, let MO

t denote the number of machines active at
time t in an optimal schedule, and let MA

t be the number

of machines active at time t in the schedule output by the
algorithm.
�

Claim 2.6 For any t, we have Dt > g
⌊
MA

t −1
2

⌋
.

Proof If MA
t ≤ 2 then the claim trivially holds. For a given

t > 0, let m = MA
t ≥ 3. The first machine processes at least

one job, J , with a positive demand at time t . Similarly, the
last machine processes at least one job, J ′, with a positive
demand at time t . Since the graph is a proper interval graph,
any job J ′′ assigned to machines 2, . . . ,m − 2 starts after
J and before J ′, and ends after J and before J ′, thus, J ′′ is
active at time t . Also, all these machines were active at the
time the m-th machine is opened, and thus the total demand
of jobs on any two consequent machines starting from the
second machine and ending at machine m − 1 is more than
g. If m − 2 is even, Dt > g m−2

2 = g
⌊m−1

2

⌋
. If m − 2 is

odd, the total demand on the (m − 1)-th machine and the job
causing the opening of the m-th machine is more than g and
Dt > g m−3

2 + g = g m−1
2 .
�

Claim 2.7 For any t, we have MO
t ≥ MA

t /2.

Proof Clearly, for any t ≥ 0, MO
t ≥ �Dt/g�. Using Claim

2.6, we get that

MO
t ≥ �Dt/g� >

⌊
MA

t − 1

2

⌋

.

Since MO
t is integral, we get MO

t ≥ ⌊
(MA

t − 1)/2
⌋ + 1 =⌊

(MA
t + 1)/2

⌋ ≥ MA
t /2.
�

Therefore, the cost of the output solution is
∫
t∈span(J̄)

MA
t dt ≤ ∫

t∈span(J̄)
2 · MO

t dt = 2 · opt(J̄), as claimed.

3 Real-time scheduling: Theorem 1.2

In this sectionwe showhow the results of Sect. 2 can extended
to scheduling general instances J̄ where each job J can be
processed in the time window [r(J), d(J)).

Lemma 3.1 If there exists a β-approximation algorithm
for the real-time scheduling with g = ∞, there exists an
algorithm that computes a feasible solution to the real-
time scheduling problem instance, J̄ , with cost at most

β·opt∞(J̄)+4·w(J̄)
g , thus yieldinga (β+4)-approximation.

Proof We first compute a schedule, called S∞, with busy
time atmostβ ·opt∞(J̄), for the given instancewith g = ∞.
Let [t∞(J), t∞(J) + p(J)) ⊆ [r(J), d(J)) be the interval
during which job J is scheduled in S∞. We next create a new
instance J̄ ′ obtained from J̄ by replacing r(J) and d(J)

with t∞(J) and t∞(J) + p(J), respectively, for each job J .
Note that opt∞(J̄ ′) ≤ β ·opt∞(J̄) ≤ β ·opt(J̄). We then

123

J Sched (2015) 18:561–573 567

run algorithm FFD on instance J̄ ′. Theorem2.1 implies that
the resulting solution has busy time at most opt∞(J̄ ′) + 4 ·
w(J̄ ′)

g ≤ β · opt∞(J̄) + 4 · w(J̄)
g ≤ (β + 4) · opt(J̄) as

claimed.
�
The following theorem with the above lemma implies a

5-approximation algorithm for the real-time scheduling.

Theorem 3.2 If g = ∞, the real-time scheduling problem
is polynomially solvable.

The rest of this section is devoted to the proof of the above
theorem. To describe our dynamic programming (DP)-based
algorithm,wefirst identify some useful properties of the opti-
mum schedule. Recall that we can assume, w.l.o.g., that the
busy period of each machine is a contiguous interval. Next,
we show that we can limit the possible start time of the jobs
in the optimal schedule and thus in turn limit the possible
start and end times of the busy periods.

Lemma 3.3 W.l.o.g., we may assume that the busy period of
any machine in the optimum schedule starts at a time given
by d(J) − p(J) for some job J and ends at a time given by
either r(J ′)+ p(J ′), for some job J ′, or d(J)− p(J)+ p(J ′)
for some jobs J and J ′. Furthermore, we can assume that
the start time of any job J is either its release time r(J) or
the start time of the busy period of some machine.

Proof We start with an optimum schedule S and modify it
without increasing its busy time so that it satisfies the given
properties. Consider amachineM with a busy period starting
at time s, and ending at time t . We gradually increase s, if
possible, by moving jobs that start at s to the right without
violating any constraints (i.e., job due dates). Note that while
such amovemay increase t , it does not increase the busy time
of machine M . We perform the move till we cannot increase
s further. Thus, we have that s = d(J) − p(J) for some job
J . Similarly, we decrease t , as much as possible, by moving
jobs to the left without violating any constraints, but now also
without decreasing s. Then, some job J ′ cannot be moved to
the left either due to its release time r(J ′) or since it starts at
time s. In such cases, either we have t = r(J ′) + p(J ′) for
this job J ′ or t = s + p(J ′) = d(J) − p(J) + p(J ′) for the
jobs J and J ′. In addition, we set the start time of each job J
scheduled on M to be max{r(J), s} by moving J to the left,
if needed. This completes the proof.
�

Motivated by Lemma 3.3, we consider the following def-
inition.

Definition 3.1 A time t is called interesting if t = r(J) or
t = d(J) − p(J), for some job J , or t = r(J) + p(J) or
t = d(J) − p(J) + p(J ′), for some jobs J and J ′. Let T
denote the set of interesting times.

Thus, w.l.o.g., we may assume that the busy periods of all
machines and placements of all jobs start and end at inter-
esting times. Let the intervals of all the jobs be contained
in [0, T). W.l.o.g., we may assume that both 0 and T are
interesting times. Note that the number of interesting times
is polynomial.

Now we describe our dynamic program. Informally, the
algorithm processes the jobs J ∈ J̄ in the order of non-
increasing processing times p(J). It first guesses the place-
ment [t, t + p(J1)) ∈ [r(J1), d(J1)) of job J1 with the
largest processing time. Once this is done, the remainder of
the problem splits into two independent sub-problems: the
“left” problem [0, t) and the “right” problem [t + p(J1), T).
This is so because any job J whose interval [r(J), d(J))

has an intersection with [t, t + p(J1)) of size at least p(J)

can be scheduled inside the interval [t, t + p(J1)) without
any extra cost. The “left” sub-problem then estimates the
minimum busy time in the interval [0, t) for scheduling jobs
whose placement must intersect [0, t); similarly the “right”
sub-problem estimates the minimum busy time in the inter-
val [t+ p(J1), T) for scheduling jobs whose placement must
intersect [t + p(J1), T). More formally,

Definition 3.2 Let t1, t2 ∈ T with t2 > t1 and � = p(J)

for some job J . Let jobs(t1, t2, �) denote the set of jobs in
J̄ whose processing time is at most � and whose placement
must intersect the interval [t1, t2), i.e.,
jobs(t1, t2, �) = {

J ∈ J̄ | p(J) ≤ �, t1 − r(J)

< p(J), d(J) − t2 < p(J)} .

Let cost([t1, t2), �) be the minimum busy time inside the
interval [t1, t2) for scheduling jobs in jobs(t1, t2, �) in a
feasible manner.

Note that cost([t1, t2), �) counts the busy time only
inside the interval [t1, t2) assuming that the busy time out-
side this interval is already “paid for”. For convenience, we
define jobs(t1, t2, �) = ∅ and cost([t1, t2), �) = 0, when-
ever t2 ≤ t1.

Lemma 3.4 If jobs(t1, t2, �) = ∅ then cost([t1, t2), �) =
0. Otherwise, let J ∈ jobs(t1, t2, �) be a jobwith the longest
processing time among the jobs in jobs(t1, t2, �). Then,

cost([t1, t2), �) = mint∈[r(J),d(J)−p(J))∩T
(

min{p(J), t + p(J) − t1, t2 − t, t2 − t1}

+ cost([t1, t), p(J)) + cost([t + p(J), t2), p(J))

)

.

(3)

Proof The proof is by induction on the cardinality of
the set jobs(t1, t2, �). The base case of cardinality 0,
i.e., jobs(t1, t2, �) = ∅, is trivial since in this case

123

568 J Sched (2015) 18:561–573

cost([t1, t2), �) = 0. Assume that |jobs(t1, t2, �)| > 0
and that the claim is true for all sets of lower cardinality. We
first show that cost([t1, t2), �) is at most the expression (3),
by constructing a feasible schedule of jobs in jobs(t1, t2, �)
with total busy time in [t1, t2) equal to (3). Given a job J , con-
sider the time t that achieves the minimum in (3). Schedule J
in [t, t + p(J)). This job contributes min{p(J), t + p(J) −
t1, t2 − t, t2 − t1} to the busy time inside [t1, t2), depend-
ing on whether both t, t + pJ (J) ∈ [t1, t2), t /∈ [t1, t2) and
t + pJ (J) ∈ [t1, t2), t ∈ [t1, t2) and t + pJ (J) /∈ [t1, t2), or
both t, t+pJ (J) /∈ [t1, t2). Since p(J) ≥ p(J ′) for any other
job J ′ ∈ jobs(t1, t2, �), we get that jobs(t1, t, p(J)) ∩
jobs(t + p(J), t2, p(J)) = ∅. We use the solution of
costcost([t1, t), p(J)) (resp.,cost([t+ p(J), t2), p(J)))
to schedule jobs in jobs(t1, t, p(J)) (resp., jobs(t +
p(J), t2, p(J))) in the interval [t1, t) (resp., [t + p(J), t2)).
The jobs in jobs(t1, t2, �) \ {{J } ∪ jobs(t1, t, p(J)) ∪
jobs(t+ p(J), t2, p(J))} can be scheduled inside the inter-
val [t, t + p(J)) without paying extra cost. Thus, the overall
cost of the solution is the expression (3). From the definition
of cost([t1, t2), �), we get that cost([t1, t2), �) is at most
the expression (3), as claimed.

Now we show that cost([t1, t2), �) is at least the expres-
sion (3). Consider the schedule S of cost cost([t1, t2), �),
and let J ∈ jobs(t1, t2, �) be a job with the largest process-
ing time. Let t be the start time of J in S. Then S pays
the cost min{p(J), t + p(J) − t1, t2 − t, t2 − t1} inside
[t1, t2), depending on whether both t, t + p(J) ∈ [t1, t2),
t /∈ [t1, t2), or t + p(J) /∈ [t1, t2). W.l.o.g., we may
assume that S schedules the jobs in jobs(t1, t2, �) \ ({J } ∪
jobs(t1, t, p(J)) ∪ jobs(t + p(J), t2, p(J))) inside the
interval [t, t + p(J)). The cost of S for scheduling jobs
jobs(t1, t, p(J)) (respectively, jobs(t + p(J), t2, p(J)))
in the interval [t1, t) (respectively, [t + p(J), t2)) is, by defi-
nition, at least cost([t1, t), p(J)) (respectively, cost([t +
p(J), t2), p(J))). Thus, cost([t1, t2), �) is at least the
expression (3), as claimed.

This completes the proof.
�

Note that the number of interesting times and the num-
ber of distinct processing lengths are polynomial. Thus, the
quantities cost([t1, t2), �) for t1, t2 ∈ T and � = p(J)

for some J ∈ J̄ and their corresponding schedules can
be computed, using the relation in Lemma 3.4, in polyno-
mial time. We finally output the schedule corresponding to
cost([0, T),maxJ∈J̄ p(J)). By definition, this gives the
optimum solution.

4 Real-time scheduling for moldable jobs: Theorem 1.3

A job J in an instance J̄ of the real-time scheduling
problem with moldable jobs is described by a release

time r(J), a due date d(J), and a set of configurations
{(pi (J), Ri (J))}i=1,...,q . We assume, w.l.o.g., that pi (J) ≤
d(J) − r(J) for all 1 ≤ i ≤ q. The goal is to pick a configu-
ration 1 ≤ i J ≤ q for each job J and schedule these jobs on
machines with a capacity g such that the total busy time is
minimized while satisfying the capacity constraints. Given
configurations i = {i J }J∈J̄ , let J̄ (i) denote the instance of
real-time scheduling problem derived from J̄ by fixing con-
figuration i J for each job J . Let opt(J̄) denote the cost of
the optimum schedule, and let i∗ = {i∗J }J∈J̄ denote the con-
figurations used in this schedule. From Observation 1.5, we
have

opt∞(J̄ (i∗)) + 4 · w(J̄ (i∗))
g

≤ 5 · opt(J̄). (4)

In this section, we prove the following main lemma.

Lemma 4.1 Given an instance J̄ of the real-time scheduling
with moldable jobs, we can find in polynomial time configu-

rations i = {i J }J∈J̄ , such that opt∞(J̄ (i)) + 4 · w(J̄ (i))
g is

minimized.

Proof Motivated byLemma3.3 andDefinition 3.1,we define
the set of interesting times as follows.
�
Definition 4.1 A time t is called interesting if t = r(J) or
t = d(J) − pi (J), for some job J and configuration i , or
t = r(J) + pi (J) or t = d(J) − pi (J) + pi ′(J ′), for some
jobs J and J ′ and their respective configurations i and i ′. Let
T denote the set of interesting times.

Note that the size of T is polynomial and we can assume,
w.l.o.g., that the busy periods of all machines and placements
of all jobs start and end at interesting times. Let the intervals
of all the jobs be contained in [0, T). W.l.o.g. we can assume
that both 0 and T are interesting times. For a job J ∈ J̄ and
a configuration 1 ≤ i J ≤ q, let wi J (J) = piJ (J) · RiJ (J).

Definition 4.2 Let t1, t2 ∈ T with t2 > t1 and � ≥ 0. Let

jobs(t1, t2, �) = {J ∈ J̄ | r(J) > t1 − �, d(J) < t2 + �}.
For a choice of configurations i = {i J }J∈jobs(t1,t2,�), let
cost([t1, t2), �, i) denote the minimum busy time inside
interval [t1, t2) for scheduling jobs in jobs(t1, t2, �)(i) in
a feasible manner. Let ub([t1, t2), �) be the minimum value
of

cost([t1, t2), �, i) + 4 · w(jobs(t1, t2, �)(i))
g

,

where the minimum is taken over all configurations i that
satisfy piJ (J) ≤ �, for all jobs J ∈ jobs(t1, t2, �).

As before, cost([t1, t2), �, i) counts the busy time only
inside the interval [t1, t2), assuming that the busy timeoutside

123

J Sched (2015) 18:561–573 569

this interval is already “paid for”. We define the minA = ∞,
if A = ∅.
Lemma 4.2 Ifjobs(t1, t2, �) = ∅wehaveub([t1, t2), �) =
0. If t2 ≤ t1 then

ub([t1, t2), �) =
∑

J∈jobs(t1,t2,�)

min
i J :piJ (J)≤�

4 · wi J (J)

g
.

Otherwise, let IL = [t1,min{t, t2}) and IR = [max{t
+ piJ (J), t1}, t2), then we have

ub([t1, t2), �) = min
J∈jobs(t1,t2,�)

min
i J :piJ (J)≤�

min
t∈[r(J),d(J)−piJ (J))∩T

(

min

{

piJ (J),max{0, t + piJ (J) − t1},max{0, t2 − t}
}

+
∑

J ′∈jobs(t1,t2,�)\
(jobs(IL ,piJ (J))∪jobs(IR ,piJ (J)))

min
i J ′ :piJ ′ (J ′)≤piJ (J)

4 · wi J ′ (J ′)
g

+ub(IL , piJ (J)) + ub(IR, piJ (J))

)

. (5)

Note that the number of interesting times and the num-
ber of distinct processing lengths are polynomial. Thus, the
quantities ub([t1, t2), �) for t1, t2 ∈ T and � = pi (J),
for some J ∈ J̄ , 1 ≤ i ≤ q and their corresponding
job configurations and schedules can be computed, using
the relation in Lemma 4.2, in polynomial time. The algo-
rithm finally outputs the job configurations corresponding to
ub([0, T),maxJ∈J̄ ,1≤i≤q pi (J)). By definition, this proves
Lemma 4.1.
�
Proof of Lemma 4.2: By definition, it follows that if
jobs(t1, t2, �) = ∅, we have ub([t1, t2), �) = 0. If t2 ≤ t1,
the jobs in jobs(t1, t2, �) can be scheduled in the interval
[t1 − �, t2 + �) without paying any additional busy time.
Therefore, cost([t1, t2), �, i) = 0, for all i, and

ub([t1, t2), �) =
∑

J∈jobs(t1,t2,�)

min
i J :piJ (J)≤�

4 · wi J (J)

g

follows from the definition.
The rest of the proof is by induction on the cardinality of

jobs(t1, t2, �) similar to the proof of Lemma 3.4.
We first show that ub([t1, t2), �) is at most the expres-

sion (5), by constructing a feasible schedule of jobs in
jobs(t1, t2, �) with total busy time in [t1, t2) equal to (5).
Consider the job J , its configuration i J , and time t that
achieve theminimum in (5). Schedule J , fixing its configura-
tion i J , in [t, t + piJ (J)). This job contributes
min

{
piJ (J),max{0, t + piJ (J) − t1},max{0, t2 − t}} to

the busy time inside [t1, t2) depending on whether both
t, t + piJ (J) ∈ [t1, t2), t /∈ [t1, t2) and t + piJ (J) ∈ [t1, t2),
t ∈ [t1, t2) and t + piJ (J) /∈ [t1, t2), or both t, t + piJ (J) /∈
[t1, t2). All jobs J ′ ∈ jobs(t1, t2, �)\ (jobs(IL , piJ (J))∪

jobs(IR, piJ (J))) can either be scheduled inside [t, t +
piJ (J)) or outside [t1, t2), provided we chose configura-
tion i J ′ satisfying piJ ′ (J ′) ≤ piJ (J) for each such job
J ′. Thus, these jobs do not contribute anything additional
to the busy time inside [t1, t2). However such jobs J ′ con-
tribute mini J ′ :piJ ′ (J ′)≤piJ (J) 4 · wi J ′ (J ′)

g to ub([t1, t2), �). We
next use the solution of cost ub(IL , piJ (J)) (respectively,
ub(IR, piJ (J)])) to schedule jobs in jobs(IL , piJ (J))

(respectively, jobs(IR, piJ (J))) in the interval IL (respec-
tively, IR). Thus, the overall cost of the solution is the expres-
sion (5). From the definition of ub([t1, t2), �), we get that
ub([t1, t2), �) is at most the expression (5), as claimed.

Now, we show that ub([t1, t2), �) is at least the expres-
sion (5). Consider the schedule S and configurations
{i J }J∈jobs(t1,t2,�) corresponding to ub([t1, t2), �), and let
J ∈ jobs(t1, t2, �) and its configuration i J be the job
with the largest processing time piJ (J). Let t be the
start time of J in S. Thus, the cost upper bound pays
min

{
piJ (J),max{0, t+ piJ (J)− t1},max{0, t2− t}} inside

[t1, t2). W.l.o.g., we can assume that S schedules the jobs in

jobs(t1, t2, �) \ (jobs(IL , piJ (J)) ∪ jobs(IR, piJ (J)))

inside the interval [t, t + piJ (J)), or outside the interval
[t1, t2). These jobs J ′,w.l.o.g., contributemini J ′ :piJ ′ (J ′)≤piJ (J)

4 · wi J ′ (J ′)
g to the cost upper bound. The cost upper bound for

scheduling jobsjobs(IL , piJ (J)) (resp.,jobs(IR, piJ (J)))
in the interval IL (resp., IR) is, by definition, at least
ub(IL , piJ (J)) (resp.,ub(IR, piJ (J))). Thus,ub([t1, t2), �)
is at least the expression (5), as claimed.

This completes the proof.
�

Now, recall that Lemma 3.1 and Theorem 3.2 together
imply that given an instance J̄ (i) of the real-time schedul-
ing problem, we can compute in polynomial time a feasible

schedule with busy time at most opt∞(J̄ (i)) + 4 · w(J̄ (i))
g .

Thus, Eq. (4), Lemmas 4.1, 3.1, and Theorem 3.2 together
imply that we can find a schedule with cost at most

opt∞(J̄ (i)) + 4 · w(J̄ (i))
g

≤ opt∞(J̄ (i∗))

+ 4 · w(J̄ (i∗))
g

≤ 5 · opt(J̄),

thus yielding a 5-approximation.

5 Interval scheduling with unit demands: Theorem 1.4

In this section, we consider instances with interval jobs,
where all jobs have unit demands, i.e., p(J) = d(J) − r(J)

and R(J) = 1.

123

570 J Sched (2015) 18:561–573

5.1 Laminar instances

We show a polynomial time exact algorithm for the case in
which job intervals I (J), for all jobs J , forma laminar family,
i.e., for any two jobs J, J ′ ∈ J̄ , it holds that I (J)∩I (J ′) = ∅
or I (J) ⊂ I (J ′), or I (J ′) ⊂ I (J).

Since the job intervals are laminar, the jobs can be rep-
resented by a forest F of rooted trees, where each vertex in
a tree T ∈ F corresponds to a job, and a vertex v(J) is an
ancestor of a vertex v(J ′) if and only if I (J ′) ⊂ I (J). Let
the level of a vertex be defined as follows. Any root of a tree
in the forest is at level 1. For all other vertices v, the level
of v is 1 plus the level of its parent. Consider an algorithm
which assigns jobs in level � to machine M��/g�.

Theorem 5.1 The algorithm yields an optimal solution for
laminar instances.

Proof Clearly, the algorithm outputs a feasible solution,
since at most g jobs are scheduled on any machine at any
time. Let Mt (resp., Nt) be the number of active machines
(resp., jobs) at time t . Then Mt = �Nt/g�. This proves the
claim, by exploiting the work bound in Observation 1.5.
�

5.2 Instances that form a clique

In the following we show that if all jobs have unit demands,
and the corresponding graph is a clique, then the problem can
be approximated within factor 1 + ε, for any ε > 0. Recall
that for general instances of job intervals with unit demands
the problem is NP-hard already for g = 2Winkler and Zhang
(2003).We show that for inputs that forma clique the problem
with g = 2 is solvable in polynomial time. Finally, we show
that themaximum revenue problem is solvable for any g ≥ 1.
In this variant, each job is associated with a profit, the busy
intervals of the machines are given, and the goal is to find a
feasible schedule of maximum profit.

5.2.1 A PTAS for cliques

Since the instance J̄ forms a clique, there is a time t0 such
that t0 ∈ I (J) for all J ∈ J . Thus, the busy period of
each machine is a contiguous interval. The PTAS consists of
two main phases. First, it extends the interval lengths, then it
finds (using dynamic programming) an optimal schedule of
the resulting instance on m = �n/g� machines, where n is
the number of jobs. We give the pseudocode of the scheme
below.

Theorem 5.2 For any ε ∈ (0, 1], the schemewith c = �1/ε�
is a PTAS for any clique.

Approximation Scheme for a Clique:

1. Let c > 1 be a constant.
2. Let t0 be such that t0 ∈ I (J) for all J ∈ J̄ . Let

left(J) = t0 − r(J), right(J) = d(J) − t0.
Also, let sh(J) = min{left(J),right(J)} and
lo(J) = max{left(J),right(J)} be the length
of the short (resp. long) segment of J w.r.t. t0. If
sh(J)/lo(J) ∈ ((k − 1)/c, k/c] for some 1 ≤
k ≤ c, stretch the short segment to round the ratio
to k/c.

3. Partition the jobs into 2c − 1 classes. For � ∈
{1, . . . , c}, the �-th class consists of all jobs for
which sh(J)/lo(J) = �/c and left(J) ≥
right(J). For � ∈ {c + 1, . . . , 2c − 1}, the �-th
class consists of all jobs for which sh(J)/lo(J) =
(� − c)/c and left(J) < right(J). Let n� be
the number of jobs in class �, 1 ≤ � ≤ 2c − 1.

4. For i ≥ 1, let Ci (n′
1, . . . , n

′
2c−1) be the minimum

cost of scheduling the longest n′
� jobs of class �,

for all �, on i machines. Let m = �n/g�. Use
dynamic programming to find a schedule achiev-
ing Cm(n1, . . . , n2c−1).

We prove Theorem 5.2 using the following results.

Observation 5.3 Given a clique, for any c ≥ 1 stretching
the short segment of any interval in step 2 of the scheme may
increase the busy time of the schedule at most by a factor of
1 + 1/c.

Proof Given a schedule of the input jobs, consider the sub-
set of jobs assigned to Mi , for some i ≥ 1. Clearly, there
exist two jobs, J� and Jr on Mi , such that busy(Mi) =
left(J�) + right(Jr). Stretching the short segments in
step 2 may extend some left segment of an interval, causing
it to start earlier, extending left(J�) by at most a factor of
1 + 1/c. Similarly, a stretch of a short right segment may
cause it to exceed the length right(Jr) by at most factor
1 + 1/c.
�

The DP in step 4 schedules the jobs in m = �n/g�
machines. This is justified by the following lemma.

Lemma 5.4 If the instance is a clique then any optimal
schedule uses exactly m = �n/g� machines.
Proof Clearly, at least m machines are active at time t0.
Assume that m′ > �n/g� machines are used in some sched-
ule. We show that the number of machines can be reduced
while decreasing the total busy time. We say that a machine
is full if it processes g jobs. Assume that there are k non-full
machines, M1, M2, . . . , Mk . Let the busy intervals of these
non-full machines be [s1, e1], [s2, e2], . . . , [sk, ek] such that

123

J Sched (2015) 18:561–573 571

s1 ≤ . . . ≤ sk . W.l.o.g., these intervals form a proper interval
graph, that is, e1 ≤ · · · ≤ ek , or else, if for some i, j , [si , ei]
is contained in [s j , e j] then it is possible to move jobs from
Mi to Mj , until either j is full or i is empty.

Since m′ > �n/g�, it holds that m′ ≥ (n + g)/g and
n ≤ g(m′ − 1). The full machines hold exactly (m′ − k)g
jobs. Thus, n − (m′ − k)g ≤ g(k − 1) jobs are scheduled
on the k non-full machines. Given that s1 ≤ · · · ≤ sk and
e1 ≤ · · · ≤ ek and that all k machines together hold at most
(k − 1)g jobs, we show how to reassign the jobs scheduled
on the non-full machines, on at most k − 1 machines while
decreasing the total busy time.

First,move the rightmost jobs (thosewith the largest d(J))
from M2 to M1, until either M1 holds g jobs or M2 is empty.
The busy time of M1 is increased by e2 − e1. If M2 becomes
empty we are done (the busy time of M2 is 0 and we have
one less active machine as needed). Next, if M2 still has jobs
on it, move jobs from M3 to M2. By the same argument, the
busy time of M2 is increased by e3 − e2. Continue ‘filling
machines’ until some machine becomes empty. Since the
total number of jobs on non-full machines is at most (k−1)g,
this must happen in Mk at the latest. Let Mj be the machine
that becomes empty. The total increase in the busy time of all
involvedmachines is atmost (e2−e1)+(e3−e2)+(e4−e3)+
· · ·+ (e j − e j−1) = e j − e1. On the other hand, machine Mj

is not active anymore, so its busy time of e j − s j > e j − e1
is saved. It holds that e1 > s j since the instance is a clique.
We conclude that the total busy time saved is larger than the
total added busy time.
�

As stated in step 4, the DP only considers schedules in
which the jobs from each class are assigned to machines
from longest to shortest. That is, when scheduling n̂� jobs
from class � on machine i , the DP selects the n̂� longest
unscheduled jobs in this class. Note that since the jobs of a
class share the same sh(J)/lo(J) ratio and the same long
side, then the intervals from each class, when sorted accord-
ing to length, are nested in each other. The following Lemma
assures that there exists an optimal schedule of the extended
intervals in which the jobs are assigned to machines accord-
ing to the nesting order.

Lemma 5.5 (Nesting property) Given a clique of intervals,
there exists an optimal schedule in which the machines can
be ordered such that for any class 1 ≤ � ≤ 2c − 1 and
1 ≤ i < m, every job of class � assigned to machine i is
longer than every job of class � assigned to any machine i ′,
for i < i ′ ≤ m.

Proof We show that if the nesting property does not hold
in some schedule, then it is possible to achieve it without
increasing the total cost of the schedule. Note that the nesting
property is implied by the following two properties:

P1 : The jobs of class � assigned to one machine form a con-
tiguous subset in the nested order of class �.

P2 : For all 1 ≤ i < m, the set of jobs of class � assigned to
machine i precedes the set of jobs of class � assigned to
any machine i ′, for i < i ′ ≤ m, in the nested order of
class �.

Consider a given schedule. First, we show how to convert
the schedule into one in which property 1 holds: assume that
for some �, machine i is assigned the k-th and the (k + δ)-th
job from class � (for some δ > 1) but not the (k + 1)-st job.
It is possible to exchange the assignments of the (k + 1)-st
and the (k + δ)-th jobs without increasing the schedule cost
(recall that the (k + δ)-th job is contained in the (k + 1)-
st, which is contained in the k-th job). By performing such
inner-class exchanges for each class according to the nesting
order, we get a schedule in which a contiguous subset of jobs
from each class is scheduled on each machine.

Next we show that it is possible to convert a schedule
fulfilling P1 into a one fulfilling P2. We say that the pair of
machinesM ′ andM ′′ have inversion if there exist two classes,
j and k, such that M ′ contains a set of short jobs from j , A′

j ,
and a set of long jobs from k, A′

k , and M ′′ contains a set of
long jobs from j, A′′

j , and a set of short jobs from k, A′′
k . By

‘short’ and ‘long’ we refer to the containment relation that
we defined on the jobs in each class, i.e., all the jobs in A′

j
are contained in the shortest job in A′′

j (and similarly for A′′
k

and A′
k).

Let h = min(|A′
j |, |A′′

k |), namely, h is the smaller between
the sets of short jobs.W.l.o.g., suppose that the smaller is A′

j .
We move the jobs in A′

j to M ′′ and move the h longest jobs
in A′′

k to M ′. This does not affect the total busy time, since we
add to each machine a set of jobs that are contained in some
job scheduled on this machine, which belongs to the long job
sets A′′

j and A′
k , respectively. In the resulting schedule, all of

the above jobs of class j are scheduled on M ′, and we have
decreased the number of inversions. If, as a result of the new
assignment, the jobs of classes j, k assigned to M ′ or M ′′
do not form a contiguous subset in the nested order of their
class, i.e., P1 is violated, then apply inner-class exchanges
to close the gap and to keep the relative order of jobs from
each class across the machines. These shifts guarantee that
P1 holds and also that no new inversions are created when
one inversion is removed.

We continue decreasing the number of inversions for pairs
of machines and for pairs of classes, until no inversions exist.
At this point, it is possible to order the machines in a way
that fulfills the nesting property.
�

To complete the proof of Theorem 5.2 we describe the
dynamic programming that is based on Observation 5.3, and
Lemmas 5.4 and 5.5. For simplicity we modify the number
of jobs so that it is a multiple of g, this is done without

123

572 J Sched (2015) 18:561–573

impacting the approximation ratio, by addingmg−n dummy
jobs of length ε → 0 into the c-th class (around t0). After
this addition all machines are full.

The dynamic programming proceeds as follows: For 1 ≤
� ≤ 2c−1, for any n′ ≤ n�, and h ≤ n�−n′, let J�(n′) be the
n′ longest job in class �, and let J�(n′, h) = J�(n′+h)\J�(n′)
be the set of h jobs at rank n′ + 1, . . . , n′ + h in class
�. In particular, if h = 0 then J�(n′, h) = ∅. For any
(n′

1, . . . , n
′
2c−1) such that n′

� ≤ n� for � = 1, . . . , 2c − 1,
and any (h1, . . . , h2c−1) such that

∑
� h� = g and 0

≤ h� ≤ n� − n′
�, let f (n′

1, . . . , n
′
2c−1; h1, . . . , h2c−1) =

span(J1(n′
1, h1) ∪ · · · ∪ J�(n′

2c−1, h2c−1)). Note that
f (n′

1, . . . , n
′
2c−1; h1, . . . , h2c−1) is the busy time of the

machine that is assigned h� jobs from class � starting after
the n′

� longest job, for � = 1, . . . , 2c − 1. Recall that
Ci (n′

1, . . . , n
′
2c−1) denotes the minimum cost of scheduling

the longest n′
� jobs of each class � on i machines. Since all

machines are full, we need to compute Ci (n′
1, . . . , n

′
2c−1),

for 1 ≤ i ≤ m, only for (n′
1, . . . , n

′
2c−1) such that

∑
� n

′
� =

i · g. Obviously, for (h1, . . . , h2c−1) such that
∑

� h� = g,
C1(h1, . . . , h2c−1) = f (0, . . . , 0; h1, . . . , h2c−1). For 1 <

i ≤ m, and (n′
1, . . . , n

′
2c−1) such that

∑
� n

′
� = i · g, let

Ci (n
′
1, . . . , n

′
2c−1) = min

(h1,...,h2c−1)s.t
∑

� h�=g

{Ci−1(n
′
1 − h1, . . . , n

′
2c−1 − h2c−1)

+ f (n′
1 − h1, . . . , n

′
2c−1 − h2c−1; h1, . . . , h2c−1)}.

Since c is a constant, the number of entries in the dynamic
programming table (i.e., the table containing the partial solu-
tion values used for computing Ci (n′

1, . . . , n
′
2c−1)) is poly-

nomial in n and g, and the time required to calculate each
entry is nO(c). The optimal schedule of the extended instance
for m machines is given by Cm(n1, . . . , n2c−1).

5.2.2 Polynomially solvable instances

The case g = 2: It is possible to solve the problem optimally
for cliques by reducing it to minimum-weight perfect match-
ing in a complete graph. Given J̄ , let t0 be the intersection
point for all intervals, i.e., t0 ∈ [r(J), d(J)) for all J ∈ J . If
n is odd add a dummy job of length ε → 0 around t0. Con-
struct a complete graph in which each job corresponds to a
vertex and for every pair i, j , the edge (Ji , J j) has weight
span(Ji ∪ J j). Use Edmond’s algorithm Edmonds (1965)
to find a minimum-weight perfect matching in the graph. It
is easy to verify that an optimal schedule corresponds to a
partition of the jobs into n/2 pairs. The busy time for each
pair is the weight of the corresponding edge in the complete
graph.
The max revenue problem: Consider the following variant
of our problem on cliques. As before, we have interval jobs
of unit demands. Each job J is associated with a processing

time, as well as a profitw(J), that is gained if J is completed.
Also, the busy intervals of themachines are given. The goal is
to find a feasible schedule of a maximal-profit subset of jobs.
It is possible to solve this max revenue problem, for any g ≥
1, by reducing it to the followingmin-costmax-flowproblem.
Given the set I of busy intervals, and the set of jobs J̄ ,
construct a network flow in which V = {s, t}∪J ∪I. There
is an edge (s, J j) of cost 0 and capacity 1 connecting the
source to every job J j , an edge (J j , Ik) of cost −w(J j) and
capacity 1 connecting job j and interval k if J j is contained
in Ik (that is, job j can be processed by machine k), and an
edge (Ik, t) of cost 0 and capacity g connecting every busy
interval with the target. It is easy to verify that any feasible
flow in this network corresponds to a feasible schedule on
the given set of busy intervals. In particular, the min-cost
max-flow corresponds to an optimal schedule.

Acknowledgments We thank Dor Arad for helpful discussions on
an earlier version of the paper. We are also grateful to the two anony-
mous referees for valuable comments and suggestions. Work partially
supported by funding for DIMACS visitors.

References

Bar-Yehuda, R., Bar-Noy, A., Freund, A., Naor, J., & Schieber, B.
(2000). A unified approach to approximating resource allocation
and scheduling. Journal of the ACM, 1–23.

Belede, L., Jain, A., & Reddy Gaddam, R. (2009). Unit commit-
ment with nature and biologically inspired computing. In World
congress on nature and biologically inspired computing (NABIC)
(pp. 824–829).

Bhatia, S., Chuzhoy, J., Freund, A., & Naor, J. (2007). Algorithmic
aspects of bandwidth trading. ACM Transactions on Algorithms,
3(1).

Brucker, P. (2007). Scheduling algorithms (5th ed.). Berlin: Springer.
Calinescu, G., Chakrabarti, A., Karloff, H., & Rabani, Y. (2011). An

improved approximation algorithms for resource allocation. ACM
Transactions on Algorithms, 7(4), 1–7.

Chang, J., Khuller, S., & Mukherjee, K. (2014). LP rounding and com-
binatorial algorithms for minimizing active and busy time. In 26th
ACM symposium on parallelism in algorithms and architectures
(SPAA).

Chen, B., Hassin, R., & Tzur, M. (2002). Allocation of bandwidth and
storage. IIE Transactions, 34, 501–507.

Edmonds, J. (1965). Paths, trees and flowers. Canadian Journal of
Mathematics, 17, 449–467.

Flammini, M., Monaco, G., Moscardelli, L., Shachnai, H., Shalom,
M., Tamir, T., et al. (2010). Minimizing total busy time in par-
allel scheduling with application to optical networks. Theoretical
Computer Science, 411(40–42), 3553–3562.

Flammini, M., Monaco, G., Moscardelli, L., Shalom, M., & Zaks, S.
(2008). Approximating the traffic grooming problem with respect
to ADMs and OADMs. In 14th Euro-Par.

Gerstel, O., Ramaswami, R., & Sasaki, G. (1998). In INFOCOM:
Sasaki. Cost effective traffic grooming in wdm rings.

Kang, J., Ranka, S. (2008). Energy-efficient dynamic scheduling on
parallel machines. In High performance computing (HiPC) (pp.
208–219).

Khandekar, R., Schieber, B., Shachnai, H., Tamir, T. (2010) Minimiz-
ing busy time in multiple machine real-time scheduling. In Foun-

123

J Sched (2015) 18:561–573 573

dations of software technology and theoretical computer science
(FSTTCS) (pp. 169–180).

Kovalyov, M. Y., Ng, C. T., & Cheng, T. C. E. (2007). Fixed interval
scheduling: Models, applications, computational complexity and
algorithms. European Journal of Operational Research, 178(2),
331–342.

Lawler, E., Lenstra, J. K., RinnooyKan, A. H. G., & Shmoys, D. (1993).
Sequencing and scheduling: Algorithms and complexity. In: S. C.
Graves, A. H. G. Rinnooy Kan, P. Zipkin (Eds.). Handbooks in
operations research and management science (Vol. 4).

Leung, J.Y.-T. (Ed.). (2004).Handbookof scheduling: algorithms,mod-
els, and performance analysis. Boca Raton, FL: CRC Press.

Ludwig, W. T. (1995). Algorithms for scheduling malleable and non-
malleable parallel tasks. PhD thesis, Dept. of Computer Science,
Univ. of Wisconsin - Madison.

Manzak, A., & Chakrabarti, C. (2003). Variable voltage task schedul-
ing algorithms for minimizing energy/power. IEEE Transaction
on VLSI Systems, 11(2), 501–507.

Mertzios, G. B., Shalom, M., Voloshin, A., Wong, P. W. H., & Zaks, S.
(2012). Optimizing busy time on parallel machines. In IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS)
(pp. 238–248).

Phillips, C. A., Uma, R. N., & Wein, J. (2000). Off-line admission
control for general scheduling problems. Journal of Scheduling, 3,
365–381.

Pinedo, M. (2008). Scheduling: Theory, algorithms, and systems.
Berlin: Springer.

Schwarz, U. M. (2009). Tightness results for malleable task scheduling
algorithms. In Parallel processing and applied mathematics.

Turek, J., Wolf, J. L., & Yu, P. S. (1992) Approximate algorithms for
scheduling parallelizable tasks. In 4th ACM symposium on parallel
algorithms and architectures (SPAA).

Vasić, N., Barisits, M., Salzgeber, V., Kostić, D. (2009). Making cluster
applications energy-aware. In 1st workshop on automated control
for datacenters and clouds (ACDC).

Winkler, P., Zhang, L. (2003). Wavelength assignment and generalized
interval graph coloring. In 14th ACM-SIAM symposium on discrete
algorithms (SODA) (pp. 830–831).

Wood, A. J., &Wollenberg, B. (1996). Power generation operation and
control (2nd ed.). New York: Wiley.

Zhang, Y., Hu, X., Chen, D. Z. (2002). Task scheduling and voltage
selection for energy minimization. In Design automation confer-
ence (DAC) (pp. 183–188).

123

	Real-time scheduling to minimize machine busy times
	Abstract
	1 Introduction
	1.1 Applications
	1.2 Related work
	1.3 Our results
	1.4 Preliminaries

	2 Interval scheduling: Theorem 1.1
	2.1 General instances with interval jobs
	2.2 Proper instances with interval jobs

	3 Real-time scheduling: Theorem 1.2
	4 Real-time scheduling for moldable jobs: Theorem 1.3
	5 Interval scheduling with unit demands: Theorem 1.4
	5.1 Laminar instances
	5.2 Instances that form a clique
	5.2.1 A PTAS for cliques
	5.2.2 Polynomially solvable instances

	Acknowledgments
	References

