
1.6

A General Buffer Scheme for the Windows
Scheduling Problem

AMOTZ BAR-NOY

Brooklyn College, NY

RICHARD E. LADNER and JACOB CHRISTENSEN

University of Washington

and

TAMI TAMIR

The Interdisciplinary Center, Herzliya

Broadcasting is an efficient alternative to unicast for delivering popular on-demand media requests.
Broadcasting schemes that are based on windows scheduling algorithms provide a way to satisfy
all requests with both low bandwidth and low latency.

Consider a system of n pages that need to be scheduled (transmitted) on identical channels an
infinite number of times. Time is slotted, and it takes one time slot to transmit each page. In the
windows scheduling problem (WS) each page i, 1 ≤ i ≤ n, is associated with a request window wi .
In a feasible schedule for WS, page i must be scheduled at least once in any window of wi time
slots. The objective function is to minimize the number of channels required to schedule all the
pages.

The main contribution of this paper is the design of a general buffer scheme for the windows
scheduling problem such that any algorithm for WS follows this scheme. As a result, this scheme
can serve as a tool to analyze and/or exhaust all possible WS-algorithms.

The buffer scheme is based on modelling the system as a nondeterministic finite state machine
in which any directed cycle corresponds to a legal schedule and vice-versa. Since WS is NP-hard, we
present some heuristics and pruning-rules for cycle detection that ensure reasonable cycle-search
time.

By introducing various rules, the buffer scheme can be transformed into deterministic schedul-
ing algorithms. We show that a simple page-selection rule for the buffer scheme provides an optimal
schedule to WS for the case where all the wi ’s have divisible sizes, and other good schedules for
some other general cases. By using an exhaustive-search, we prove impossibility results for other
important instances.

Authors’ addresses: A Bar-Noy, Computer and Information Science Department, Brooklyn Col-
lege, 2900 Bedford Avenue Brooklyn, NY 11210; email: amotz@sci.brooklyn.cuny.edu; R. E. Ladner
and J. Christensen, Department of Computer Science and Engineering, Box 352350, University
of Washington, Seattle, WA 98195; email: {jacoblc, ladner}@cs.washington.edu; T. Tamir, School
of Computer Science, The Interdisciplinary Center, P.O. Box 167, Herzliya 46150, Israel; email:
tami@idc.ac.il.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1084-6654/2008/11 ART1.6 $5.00 DOI 10.1145/1412228.1412234 http://doi.acm.org
10.1145/1412228.1412234

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

1.6:2 • A. Bar-Noy et al.

We also show how to extend the buffer scheme to more generalized environments in which
(i) pages are arriving and departing on-line, (ii) the window constraint has some jitter, and (iii)
different pages might have different lengths.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and
Problem Complexity; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical
Algorithms and Problems—Sequencing and scheduling; G.2.3 [Mathematics of Computing]: Dis-
crete Mathematics—Applications

General Terms: Algorithms

Additional Key Words and Phrases: Periodic scheduling, media-on-demand

ACM Reference Format:
Bar-Noy, A., Ladner, R. E., Christensen, J., and Tamir, T. 2008. A general buffer scheme for the
windows scheduling problem. ACM J. Exp. Algor. 13, Article 1.6 (November 2008), 17 pages DOI
10.1145/1412228.1412234 http://doi.acm.org/10.1145/1412228.1412234

1. INTRODUCTION

Currently, popular on-demand data on the Internet is provided in a unicast
way, by requesting it from a server. Such systems are called pull systems. A
very high demand over a short period of time may put stress on both server
and network bandwidth. This stress can be alleviated by replicating data in
mirrors or caches. An alternative approach to on-demand for popular data is
a push system where the data is provided by periodic broadcast or multicast.
Those desiring and authorized to receive the data simply wait, hopefully a
short period of time, for the broadcast. Pushing has the advantage over pulling
in that it requires less server and network bandwidth, as long as the demand
is high. This approach to providing popular data has led to a very interesting
problem. What are the best ways to partition the channel in a time multiplexed
way to provide the service in a push system? This general question can be
modelled mathematically in a number of ways. We choose a specific approach
called windows scheduling (WS) [Bar-Noy and Ladner 2003; Bar-Noy, Ladner,
and Tamir 2003]. In this article, we propose a new algorithmic technique called
the buffer scheme that can be used to design algorithms to solve WS problems
and several extensions of WS that cannot be solved using known algorithms.
In addition, the buffer scheme can be used to prove impossibility results.

An instance to WS is a sequence W = 〈w1, . . . , wn〉 of n request windows,
and a set of h identical channels. The window request wi is associated with
a page i. Time is slotted, and it takes one time slot to transmit any page on
any channel. The output is a feasible schedule in which for all i, the page i
must be scheduled (transmitted) on one of the h channels at least once in any
window of wi consecutive time slots. Equivalently, the requirement is that the
gap between any two consecutive appearances of i in the schedule is at most
wi slots. We say that a schedule is perfect if for all i, the gap between any two
consecutive appearances of i in the schedule is a constant w′

i for some w′
i ≤ wi.

The optimization problem associated with WS is to minimize the number
of channels required to schedule all n pages. Define 1/wi as the width of page
i and let h0(W) = �∑i 1/wi�. Then, h0(W) is an obvious lower bound on the
minimum number of channels required for W.

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

A General Buffer Scheme for the Windows Scheduling Problem • 1.6:3

Example I. An interesting example is that of harmonic scheduling, that
is, scheduling sequences Hn = 〈1, 2, . . . n〉 in a minimum number of channels.
Harmonic windows scheduling is the basis of many popular media delivery
schemes (e.g., [Viswanathan and Imielinski 1996; Hua and Sheu 2000; Juhn
and Tseng 1997; Pâris, Carter, and Long 1999]). The following is a nonperfect
schedule of 9 pages on 3 channels for the window sequence H9 = 〈1, 2, . . . , 9〉.⎡

⎢⎣
1 4 1 1 1 1 1 6 1 1 1 1 · · ·
2 1 2 5 2 4 2 5 2 4 2 5 · · ·
3 6 7 3 8 9 3 1 7 3 9 8 · · ·

⎤
⎥⎦

Note that a page may be scheduled on different channels (e.g., 1 is scheduled on
all three channels). Also, the gaps between any two consecutive appearances of i
need not be exactly wi or another fixed number (e.g., the actual window granted
to 5 is 4 and the actual windows of 8 and 9 are sometimes 5 and sometimes 7).
Even though this schedule is not “nicely” structured, it is feasible because it
obeys the requirement that the maximal gap between any two appearances of i
is at most wi for any i. Using our buffer scheme in exhaustive search mode, we
show that there is no schedule for H10 = 〈

1, 2, . . . , 10
〉

on three channels even
though

∑10
i=1 1/i < 3.

Example II. In this article, we demonstrate that for some instances such
“flexible” schedules achieve better performance. Indeed, for the instance in Ex-
ample I , there exists a perfect feasible schedule on three channels. However,
for the following instance this is not the case. Let n = 5 and W = 〈3, 5, 8, 8, 8〉.
We show in this article that there is no feasible perfect schedule of these 5 pages
on a single channel. However,

[3, 5, 8a, 3, 8b, 5, 3, 8c, 8a, 3, 5, 8b, 3, 8c, 5, 3, 8a, 8b, 3, 5, 8c, . . .]

is a feasible nonperfect schedule on a single channel. This schedule was found
by efficiently implementing the buffer scheme. Most previous techniques only
produce perfect schedules, requiring two channels.

1.1 Contributions

The main contribution of this article is the design of a general buffer scheme
for the windows scheduling problem. We show that any algorithm for WS follows
this scheme. Thus, this scheme can serve as a tool to analyze all WS-algorithms.
The buffer scheme is based on presenting the system as a nondeterministic fi-
nite state machine in which any directed cycle corresponds to a legal schedule
and vice-versa. The state space is very large; therefore, we present some heuris-
tics and pruning-rules to ensure reasonable cycle-search time.

By introducing various rules for the buffer scheme, it can be transformed into
deterministic scheduling algorithms. We show that a simple greedy rule for the
buffer scheme provides an optimal schedule to WS for the case where all the wi ’s
have divisible sizes. Our theoretical results are accompanied by experiments.
We implemented the deterministic buffer scheme with various page selection
rules. The experiments show that for many instances the deterministic schemes

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

1.6:4 • A. Bar-Noy et al.

perform better than the known greedy WS algorithm presented in Bar-Noy and
Ladner [2003].

By using an exhaustive-search, we prove impossibility results and find some
best possible schedules. As mentioned earlier, we prove that there is no sched-
ule of H10 = 〈1, 2, . . . , 10〉 on three channels. In addition, we find the best
possible schedules for other important instances. Similar to branch and bound,
the search is done efficiently thanks to heavy pruning of early detected dead-
ends. The results achieved in the exhaustive-search experiments appear not to
be achievable in any other way.

The main advantage of the buffer scheme is its ability to produce nonperfect
schedules. Most of the known algorithms (with or without guaranteed perfor-
mance) produce perfect schedules. However, in the WS problem and its appli-
cations, such a restriction is not required. We demonstrate that the earliest
deadline first (EDF) strategy is not the best for WS even though it is optimal
for similar problems. We develop some understanding that leads us to the de-
sign of the largest backward move (LBM) strategy that performs well in our
simulations.

The basic windows scheduling problem can be generalized in several ways
that cannot be handled by previous techniques that only produce perfect sched-
ules. (1) Dynamic (on-line) environment: pages are arriving and departing on-
line and the set of windows is not known in advance. Here the scheme is ex-
tended naturally emphasizing its advantage as a framework to algorithms as
opposed to other greedy heuristics for the off-line setting that cannot be gen-
eralized with such an ease. (2) Jitter windows: each page is given by a pair of
windows (w′

i, wi), meaning that page i needs to be scheduled at least once in
any window of wi time slots and at most once in any window of w′

i time slots.
In the original definition, w′

i = 1. Here again, the generalization is natural.
(3) Different lengths: pages might have different lengths. The buffer scheme
can be generalized to produce high-quality schedules in these generalizations.

1.2 Prior Results and Related Work

The windows scheduling problem belongs to the class of periodic scheduling
problems in which each page needs to be scheduled an infinite number of times.
However, the optimization goal in the windows scheduling problem is of the
“max” type whereas traditional optimization goals belong to the “average” type.
That is, traditional objectives insist that each page i would receive its required
share (1/wi), even if some of the gaps could be larger than wi. The issue is
usually to optimize some fairness requirements that do not allow the gaps
to be too different than wi. Two examples are periodic scheduling [Liu and
Layland 1973] and the chairman assignment problem [Tijdeman 1980]. For
both problems the Earliest Deadline First strategy was proven to be optimal.
Our article demonstrates that this is not the case for the windows scheduling
problem.

The pinwheel problem is the windows scheduling problem with one channel.
The problem was defined in Holte et al. [1989, 1992] for unit-length pages and
was generalized to arbitrary length pages in Baruah and Lin [1998]; Feinberg

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

A General Buffer Scheme for the Windows Scheduling Problem • 1.6:5

et al. [2002]. In these papers and other papers about the pinwheel problem
the focus was to understand which inputs can be scheduled on one channel. In
particular, the papers [Chan and Chin 1992,1993] optimized the bound on the
value of

∑n
i=1(1/wi) that guarantees a feasible schedule.

The windows scheduling problem was defined in [Bar-Noy and Ladner
2003], where it is shown how to construct perfect schedules that use h0(W) +
O(log h0(W)) channels. This asymptotic result is complemented with a practical
greedy algorithm, but no approximation bound has been proved for it yet. Both
the asymptotic and greedy algorithms produce only perfect schedules.

The general WS problem can be thought of as a scheduling problem for push
broadcast systems (e.g., Broadcast Disks [Acharya, Franklin, and Zdonik 1995]
or TeleText services [Ammar and Wong 1985]) where satellites broadcast popu-
lar information pages to clients. In such a system there are clients and servers.
The server chooses what information to push in order to optimize the qual-
ity of service for the clients (mainly the response time). In a more generalized
model, the servers are not the information providers. They sell their service to
various providers who supply content and request that the content be broad-
cast regularly. The regularity can be defined by a window size. Finally, various
maintenance problems where considered with similar environments and opti-
mization goals (e.g., [Wei and Liu 1983; Anily, Glass, and Hassin 1998]).

WS is known to be NP-hard. In a way, this justifies the efforts of this article.
A proof for the case where i must be granted an exact wi window is given in
[Bar-Noy, Bhatia, Naor, and Schieber 2002]. Another proof that is suitable also
for the flexible case in which the schedule of i need not be perfect is given in
Bar-Noy, Ladner, and Tamir [2007].

Another related problem is periodic scheduling with vacations, in which each
page is associated with a profit, gained each time the page is transmitted, and
the goal is to maximize the average profit per time unit. Pages can not be
transmitted too often, each page there is a vacation parameter w′

i and there
must be a gap of at most w′

i slots between two transmissions of page i. The
paper by Sgall, Shachnai, and Tamir [2005] studies this problem and shows
how the buffer scheme can be combined with an algorithm to find a cycle with
maximal mean weight in a weighed graph to find optimal schedules.

2. THE GENERAL BUFFER SCHEME

In this section, we describe the buffer scheme and prove that for any instance of
windows scheduling, any schedule can be generated by the buffer scheme. We
then discuss how the buffer scheme can be simulated efficiently by early detec-
tion and pruning of dead-end states. Using these pruning rules, we establish an
efficient implementation of the scheme that can exhaust all possible solutions.
For big instances for which exhaustive search is not applicable, we suggest a
greedy rule that produces a single execution of the scheme that “hopefully”
generates a correct infinite schedule.

2.1 Overview of the Scheme

Let W = 〈w1, . . . , wn〉 and number of channels h be an instance of the windows
scheduling problem. Let w∗ = maxi {wi}. We represent the pages state using

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

1.6:6 • A. Bar-Noy et al.

a set of buffers, B1, B2, . . . , Bw∗ . Each page is located in some buffer. A page
located in Bj must be transmitted during the next j slots. Initially, buffer Bj
includes all the pages with wi = j . We denote by bj the number of pages in Bj
and by �i the location of page i (i.e., i ∈ B�i).

In each iteration, the scheme schedules at most h pages on the h channels.
By definition, the pages of B1 must be scheduled. In addition, the scheme se-
lects at most h − b1 additional pages from other buffers to be scheduled in this
iteration. The way these pages are selected is the crucial part of the scheme
and is discussed later. After selecting the pages to be scheduled, the scheme
updates the content of the buffers.

� For all j > 1, all the nonscheduled pages located in Bj are moved to Bj−1.
� Each scheduled page, i, is placed in Bwi —to ensure that the next schedule of

i will be during the next wi slots.

This description implies that the space complexity of the buffer scheme de-
pends on w∗. However, by using a data structure that is “page-oriented,” the
buffer scheme can be implemented in space O(n).

From the pages’ point of view, a page is first located as far as possible (wi slots)
from a deadline (represented by B1), it then gets closer and closer to the deadline
and can be selected to be transmitted in any time during this approachment
toward the deadline. With no specific rule for selecting which of the h − b1

pages should be scheduled, the buffer scheme behaves like a nondeterministic
finite state machine with a very large state space, where a state is simply an
assignment of pages to buffers.

In running the buffer scheme nondeterministically, it fails if in some time
point b1 > h. The scheme is successful if it produces an infinite schedule. Note
that since the number of states is finite (w1 · w2 · . . . · wn), this is equivalent
to having two time slots t1, t2 such that the states at t1 and t2 are identical.
Given these two time slots, the page-selection sequence between t1 and t2 can
be repeated forever to obtain an infinite schedule.

THEOREM 2.1. When it does not fail, the buffer scheme produces a feasible
schedule.

PROOF. In each iteration, the buffer scheme schedules at most h pages; since
there are h channels, this is fine. Consider any page i. Recall that initially and
whenever i is scheduled it is located in Bwi . Since i advances one buffer toward
B1 in each time slot, and since i is selected from B1 or earlier during this
advancement, it is guaranteed that the gap between any two selections of i is
at most wi slots.

THEOREM 2.2. Any feasible schedule for WS can be generated by the buffers
scheme.

PROOF. Given a schedule of W, let St be the set of pages scheduled at time
slot t. Consider the buffer scheme execution that selects at time slot t the pages
of St . We show that this is a possible valid (nondeterministic) execution of the
scheme. First, for any t, |St | ≤ h, thus, the number of selected pages does not

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

A General Buffer Scheme for the Windows Scheduling Problem • 1.6:7

exceed h. Next, we show that all the pages of B1 are selected. Recall that the
initial location of i is Bwi . Let i ∈ B1 at time t. By definition of the buffer scheme,
it must be that the previous schedule of i took place at time t−wi −1 or that this
is the (wi − 1)th slot of the schedule and i has not been scheduled yet. Given
that the schedule we follow is feasible, it must be that i ∈ St , and therefore
there exists one nondeterministic execution that selects the same set of h − b1

or less additional pages to obtain the set St .

Remark. In our simulations and in the page-selection rules we suggest, no
channel is “idle” in the execution; that is, exactly h pages are scheduled in each
time slot. It is important to observe that this no-idle policy is superior over
scheduling policies that allow idles. Informally, if there exists a schedule of
W in which some channels are idle, then a nonidle schedule also exists. This
is true, since we can always fill idle slots by scheduling arbitrary pages. In
buffer scheme terms, by doing this each additional selected page is moved by
the scheme from its current location, �i, to Bwi . Since �i ≤ wi, this only increases
the distance of i from B1.

2.2 Page Selection Criteria and Dead-ends Detection

As mentioned above, the buffer scheme fails if at some time point b1 > h, that
is, more than h pages must be scheduled in the next time slot. However, we
can establish other, more tight, dead-end conditions. Then, by trying to avoid
these dead-ends, we can establish “good” page selection criteria. In this section,
we present a tight dead-end criteria, and describe how to greedily select pages
in each time slot in a way that delays (and hopefully avoids) a dead-end state.
Given a state of the buffers, let c(i, j) denote the number of times i must be
scheduled during the next j slots in any feasible schedule.

CLAIM 2.3. For any i, j ,

c(i, j) ≥
{

0 if j < �i

1 +
⌊

j−�i
wi

⌋
if j ≥ �i

PROOF. If j < �i, that is, if i is located beyond the first j buffers, we do
not need to schedule i at all during the next j slots. If j ≥ �i, then we must
schedule i once during the next � j slots. After this schedule, i will be located in
Bwi . Note that for any t, given that i ∈ Bwi , we must schedule i at least �t/wi

times during the next t slots. In our case, we have t = j − �i, since this is the
minimal number of slots that remains after the first schedule of i.

For example, if �i = 1, wi = 3 and j = 11, then c(i, j) = 4. This implies
that i must be scheduled at least 4 times during the next 11 slots: once in the
next slot, and three more times in the remaining 10 slots. Let c(j) denote the
total number of page schedules the system must provide in the next j slots. By
definition, c(j) = ∑n

i=1 c(i, j). By definition, j h is the number of available page
schedules in the next j slots. Let f (j) = j h − c(j) denote the freedom level
existing in the next j slots.

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

1.6:8 • A. Bar-Noy et al.

If for some j , f (j) < 0 then a dead-end state is reached. If f (j) = 0, then
only pages from the first j buffers must be scheduled in the next j slots. If
f (j) > 0, then some freedom exists in the way the pages are selected. That is,
c(j) pages must be selected from the first j buffers, and the remaining f (j)
pages can come from any buffer. In particular, for j = 1, only the pages in B1

are considered, thus this rule generalizes the obvious condition for B1.
Importantly, it is possible to know how many pages must be selected from the

first j buffers in the next slot. For any j , the system can provide, at most, (j −1)h
page-schedules during any j −1 slots. Thus, at least n(j) = c(j)−(j −1)h pages
from the first j buffers must be selected in the next slot to avoid a dead-end.
Again, this condition generalizes the condition for B1.

2.3 Delaying Dead-ends and Deterministic Rules

We present a greedy way to select the pages to be scheduled based on the
parameters c(j) and n(j) that are calculated during the selection process. Let
s denote the number of pages selected so far in the current iteration. Initially,
j = 1 and s = 0. As long as s < h, continue selecting pages as follows. For each
j , if n(j) > h the selection process fails. If n(j) = s, there are no constraints
due to Bj (since s pages have already been selected from the first j buffers) and
the selection proceeds to j + 1. Otherwise (s < n(j) ≤ h), select from the first j
buffers n(j)−s pages that were not selected yet, and proceed to j +1. Note that
this scheme is still nondeterministic because we have not yet specified exactly
which pages are scheduled. We call this scheme the restricted buffer scheme.

THEOREM 2.4. Any legal schedule for WS can be generated by the restricted
buffer scheme.

PROOF. The proof is identical to the proof of Theorem 2.2. Since we are given
an infinite schedule, it is guaranteed that a page selection which follows this
schedule never leads to a dead-end state.

We now give some deterministic rules for deciding exactly which pages to
schedule in a restricted buffer scheme. In applying the restricted buffer scheme,
it must determine, given a specific k and j , which k pages from the first j buffers
are to be scheduled in the next time slot. Naturally, high priority is given to
pages whose transmission will reduce the most the load on the channels.

This load can be measured by a potential function based on the locations of
the pages. We suggest two greedy selection rules, each of them maximizes a
different potential function. Our first greedy rule is suitable for the potential
function φ1 = ∑

i �i. Our second greedy rule is suitable for the potential function
φ2 = ∑

i �i/wi. These two approaches are realized by the following rules:

1. Select pages for which wi − �i is maximal.
2. Select pages for which (wi − �i)/wi is maximal.

In the first rule, denoted LBM, pages that can increase φ1 the most are se-
lected. In LBM, pages that will move the most are scheduled first. In the second
rule, denoted WLBM (weighted LBM), the pages that increase φ2 the most are
selected. Each of these rules can be applied when ties are broken in favor of

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

A General Buffer Scheme for the Windows Scheduling Problem • 1.6:9

pages associated with smaller windows or larger windows. Our simulations re-
veal that breaking ties in favor of pages with small windows performs better for
almost all inputs. On the other hand, we cannot crown any of these two rules
as the ultimate winner. For the first rule, we show that it is optimal for a large
set of instances, even without the dead-end detection of the restricted buffer
scheme. The second rule performs better on large harmonic instances. For both
rules, the simulations give good results (see Section 3).

In our simulations, a third natural greedy rule is considered, Earliest Dead-
line First, in which the pages with minimal �i are selected. This rule is optimal
for other periodic scheduling problems that care about average gaps (e.g., peri-
odic scheduling [Liu and Layland 1973] and the chairman assignment problem
[Tijdeman 1980]). However, in our problem, this rule performs poorly. This can
be explained by the fact that deadlines are well considered by the dead-end
detection mechanism of the restricted buffer scheme. The role of the additional
page selection is to reduce future load on the channels.

2.4 The LBM Selection Rule

Let LBM be the buffer scheme with the greedy rule that prefers pages with
large (wi −�i) value and breaks ties in favor of pages with smaller windows. We
show that LBM is optimal for a large set of instances even without the dead-
end detection mechanism of the restricted buffer scheme. Without dead-end
detection, LBM runs as follows:

1. Initialization: Place i in buffer Bwi for all 1 ≤ i ≤ n.
2. In each time slot:

a. If b1 > h then terminate with a failure.
b. Otherwise, schedule all the pages from B1.
c. If h > b1, select h − b1 additional pages with the largest (wi − �i) value,

break ties in favor of pages with smaller windows.

2.4.1 Optimality for Divisible-size Instances

Definition 2.1. An instance W of WS is a divisible-size instance, if wi+1

divides wi in the sorted sequence of windows w1 ≥ · · · ≥ wi ≥ wi+1 ≥ · · · ≥ wn
for all 1 ≤ i < n.

For example, an instance in which all the windows are powers of 2 is a
divisible-size instance. The divisible-size constraint is not unreasonable. For
example, pages could be advertising slots which are only offered in windows
that are powers of 2, similar to the way magazines sell space only in certain
fractions, 1/2 page, 1/4 page, and so on. The following theorem proves that LBM
is optimal for divisible-size instances.

THEOREM 2.5. If an instance, W, of WS is a divisible-size instance and h ≥
h0(W), then LBM never fails.

PROOF. Let W = 〈w1, w2, . . . , wn〉 where for all i and j , wi divides wj or
vice versa. We show that LBM never has more than h pages in B1. Assume the
opposite and let t be the first time in which there are more than h pages in B1.

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

1.6:10 • A. Bar-Noy et al.

Let Jk be any page with the largest window request in B1 at time t. Since Jk
reaches B1, it must be that t ≥ wk −1. By combining the following two Lemmas,
we obtain the statement of the Theorem.

LEMMA 2.6. If t is the first time that Jk reaches B1, there are at most h − 1
additional pages in B1.

PROOF. We show that otherwise
∑

i 1/wi > h, that is, h < h0(W), contra-
dicting the theorem conditions. Observe first that all the pages scheduled so
far were granted their exact window. This is true since k was not scheduled yet
even-though it was always preferred by greedy over pages that were already
scheduled (because k was further from its initial location compared to any page
that was already scheduled).

Let I be the set of pages in the instance. Consider S ⊂ I , the set of pages with
w ≤ wk . The page k itself is not in S. We first show that

∑
i∈S 1/wi = h. Recall

that W is divisible, thus, for each page i ∈ S, there exists some integer ni ≥ 1
such that wk = niwi. Recall that we break ties in favor of small windows so no
page from I \ S (having window larger than wk) was already scheduled. Since
k was not scheduled yet, and since its initial location was wk , the next slot is
the wkth slot of the whole schedule. Assume that we are able to schedule all the
pages from B1 \{k} on the next slot. We know that all the pages scheduled so far
were granted their exact window. In particular, during the first wk slots of the
schedule each of the pages i ∈ S is scheduled exactly ni = wk/wi times. Since
there are h channels with no idles, and since all the slots are allocated to pages
from S, the total number of schedules of pages from S during the first wk slots
of the schedule is hwk . Thus,

∑
i∈S ni = hwk , which implies that

∑
i∈S 1/wi = h.

Since at least k �∈ S, we get that for the whole instance
∑

i∈I 1/wi ≥ h+ 1/wk >

h.

LEMMA 2.7. If t is the mth time, m > 1, in which Jk reaches B1, there are at
most h − 1 additional pages in B1.

PROOF. Let P be the set of pages in B1 at time t. Recall that page k has the
widest window request among the pages in B1. Also, since k reaches B1, it must
be that t ≥ wk − 1. Be definition of the second case implies that all the pages of
P were already scheduled at least once.

We show that at time t−wk all the pages of P were scheduled simultaneously,
contradicting the fact that there are only h channels (or contradicting our choice
of t as the earliest time in which B1 includes more than h pages, since this was
already the case at time t − wk − 1).

Since k ∈ B1 at time t, it must be that k was located in Bwk at time t −wk +1,
meaning that it was scheduled at time t−wk as we need. Let j ∈ P be any other
page in P . Since W is divisible, wk = nj wj for some integer nj ≥ 1. Assume
that page j was not scheduled at time t − wk and let t − wk + x (1 ≤ x ≤ wj)
be the first time after t − wk in which page j is scheduled. By the algorithm,
during the wk − x slots preceding t, page k was preferred over page j (since
k is farer from its initial location compared to j). Thus, j is granted an exact
wj -window during this time interval. This means that j was scheduled at times
t −wk +x, t −wk +x +wj , . . . , t −wk +x + (nj −1)wj = t −wj +x. Since 1 ≤ x ≤
ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

A General Buffer Scheme for the Windows Scheduling Problem • 1.6:11

Fig. 1. Simulation results for random instances.

wj , we conclude that page j was scheduled during the interval [t − wj + 1, t]
contradicting the assumption that page j is in B1 at time t.

3. DETERMINISTIC RULES EXPERIMENTS

We simulated the buffer scheme with the deterministic page-selection rules
given in Section 2.3. The performance of the buffer scheme, measured by the
number of channels required to schedule the pages, was compared for each
instance, W, with the lower bound h0(W) and with the number of channels
required by the greedy algorithm, Best-Fit Increasing (BFI), given in Bar-Noy
and Ladner [2003]. The algorithm BFI schedules the pages in nondecreasing
order of their window request. Page i with window request wi is assigned to a
channel that can allocate to it a window w′

i such that wi −w′
i is nonnegative and

minimal. In other words, when scheduling the next page, BFI tries to minimize
the lost width (1/w′

i − 1/wi). Note that BFI produces only perfect schedules.
In our simulations, we considered several classes of instances. The following

two are of special interest.
(i) Random—Sequences generated randomly, wi is chosen randomly in

2, . . . , 500 according to the following distribution. Let S = ∑500
i=2 i then the prob-

ability of choosing wi = i is i/S. The simulation results for random instances
are shown in Figure 1. The same set of randomly chosen pages was scheduled
by the greedy BFI algorithm, by the buffer scheme using the LBM rule and by
the buffer scheme using the weighted LBM rule. It can be seen that the buffer
scheme always performs better, or not worse, than the greedy algorithm. Also,
the buffer scheme is always within one channel from the lower bound (given by
h0(W)).

(ii) Harmonic—Hn = 〈1, 2, . . . , n〉. The simulation results for Harmonic in-
stances is shown in Figure 2. For each number of channels h = 2, . . . , 8 and for

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

1.6:12 • A. Bar-Noy et al.

Fig. 2. Simulation results for harmonic instances.

each rule, the maximal n such that Hn is scheduled successfully is presented.
For these instances, the algorithm BFI performs better than any of the deter-
ministic rules of the buffer scheme. The differences though are not significant.
In particular, for any harmonic sequence, none of the rules failed on h0(W) + 1
channels.

4. THE EXHAUSTIVE BUFFER SCHEME

In this section, we demonstrate the usefulness of the buffer scheme for prac-
tical cases for which it is possible to run an efficient implementation of the
scheme that exhausts all possible solutions. Dead-end detection is integrated
in the search. It enables early pruning of dead-end states and ensures reason-
able cycle-search time. We use the scheme to find the best schedules for some
instances and to prove non-trivial impossibility results for other instances.

To obtain our results, we reduce the problem of finding a schedule based
on the buffer scheme to the problem of detecting a directed cycle in a finite
directed graph. This problem can be solved using standard depth first search
(DFS). Consider the directed graph G in which each vertex represents a possible
state of the buffers, and there is an edge from v1 to v2 if and only if it is possible
to move from the state represented by v1 to the state represented by v2 in one
time slot - that is, by scheduling h pages (including all the pages of B1) and
updating the resulting page locations as needed. Note that G is finite, since
the number of pages is finite and each page has a finite number of potential
locations. Now use a standard DFS to detect if there is a directed cycle. If a
cycle is detected, then this cycle induces an infinite schedule. If no directed
cycle exists, by Theorem 2.2, there is no schedule.

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

A General Buffer Scheme for the Windows Scheduling Problem • 1.6:13

Table I. Some Best Possible Schedules for
Small Number of Segments

of Segments Best Range Delay

5 4..8 4/5 = 0.8
6 5..10 5/6 = 0.833
7 5..11 5/7 = 0.714
8 6..13 6/8 = 0.75

Windows Scheduling for Broadcasting Schemes. The buffer scheme can
find for small values of n the minimal d such that there exists a schedule
of the instance W = 〈d , . . . , d + n − 1〉 on h channels. These instances are
of special interest for the media-on-demand application since a schedule of
W would imply a broadcasting scheme for h channels with delay guaranteed
at most d/n of the media length (using the shifting technique presented in
Bar-Noy, Ladner, and Tamir [2003]). In this scheme, the transmission is parti-
tioned into n segments. The trade-off is between the number of segments and
the delay. Table I summarizes our simulation results for n = 5, 6, 7, 8 segments
and a single channel. For each 5 ≤ n ≤ 8, we performed an efficient exhaustive
search over all possible executions of the buffer scheme. While for some values
of n the optimal schedules are perfect and can be generated by simple greedy
heuristics, for other values of n, the nonperfect schedules produced by the buffer
scheme are the only known schedules. This indicates that for some values of n
and d the best schedule is not perfect. No existing technique can produce such
schedules.

To illustrate that optimal schedules might be non-structured, we present the
optimal one-channel schedule for 〈5, . . . , 11〉. One can verify that this is indeed a
feasible schedule. No specific selection rule was applied to produce this schedule,
it was generated by exhaustive search over the non-deterministic execution of
the buffer scheme:

[10, 9, 7, 5, 8, 6, 9, 11, 5, 7, 10, 6, 8, 5, 11, 9, 7, 6, 5, 8, 10, 6, 7, 5, 9, 11, 6, 8, 5, 7,

10, 9, 6, 5, 7, 8, 11, 5, 6].

Impossibility Results. Using the buffer scheme, we were able to solve an
open problem from Bar-Noy and Ladner [2003] by proving that no sched-
ule exists on three channels for the instance H10 = 〈1, . . . , 10〉 even though∑10

i=1 1/i < 3. Using the early detection of dead-ends we able to reduce the
search proving impossibility from 3,628,800 states to only 60,000 states. Us-
ing similar techniques we determined that there are no one channel schedules
for any of the sequences 〈3..7〉, 〈4..9〉, 〈4..10〉, and 〈5..12〉. This means that the
ranges given in the Table I are optimal.

Arbitrary Instances. Most of the previous algorithms suggested for WS pro-
duce perfect schedules. The buffer scheme removes this constraint. We demon-
strate this by the following, one out of many, example. Consider the instance
W = 〈3, 5, 8, 8, 8〉. We first show that there is no perfect schedule for W on a
single channel.

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

1.6:14 • A. Bar-Noy et al.

CLAIM 4.1. There is no perfect schedule for the instance W = 〈3, 5, 8, 8, 8〉
on a single channel.

PROOF. We denote the pages by their window size. Note that in any perfect
schedule 3 cannot be granted a window of 2, since 1/2 + 1/5 + 3/8 > 1. Thus, 3
must be allocated an exact 3-window. Since gcd(3, 4) = gcd(3, 5) = 1, the page 5
must also be allocated an exact 3-window. We are left with three pages that
require together 3/8 of the width, while only 1/3(< 3/8) of the width is still
available.

The exhaustive search and the deterministic buffer scheme with LBM pro-
duce the following nonperfect schedule for W:

[3, 5, 8a, 3, 8b, 5, 3, 8c, 8a, 3, 5, 8b, 3, 8c, 5, 3, 8a, 8b, 3, 5, 8c, . . .].

We could not find any special pattern or structure in this schedule, suggesting
that the only nonmanual way to produce it is by using the buffer scheme.

5. EXTENSIONS TO OTHER MODELS

We show how the buffer scheme paradigm can be extended to more general envi-
ronments. As opposed to other known heuristics for WS, the first two extensions
are simple and natural. The extension below are suitable to the objective of min-
imizing the number of channels. However, with small modifications the buffer
scheme can be used to other periodic scheduling problems and objectives. For
example, as detailed by Sgall, Shachnai, and Tamir [2005], the buffer scheme
combined with an algorithm for finding a cycle with minimum average edge
weight, can be used to solve the problem of scheduling with vacations, which is
a max-revenue type problem.

Dynamic Window Scheduling. In the dynamic (on-line) version of WS, pages
arrive and depart over time [Chan and Wong 2004]. This can be supported by
the buffer scheme as follows: (1) Any arriving page with window wi is placed
upon arrival in Bwi . (2) Any departing page is removed from its current location.
The number h of active channels can be adjusted according to the current load.
That is, add a new channel whenever the current total width is larger than some
threshold (to be determined by the scheme), and release some active channels
whenever the current total load is smaller than some threshold.

Window Scheduling with Jitter. In this model, each page is associated with
a pair of window sizes (w′

i, wi) meaning that i needs to be scheduled at least once
in any window of wi time slots, and at most once in any window of w′

i time slots.
That is, the gap between consecutive appearances of i in the schedule must be
between w′

i and wi. In the original WS, w′
i = 1 for all 1 ≤ i ≤ n. In another

extreme, in which w′
i = wi, only perfect schedules are feasible and the gap be-

tween any two appearances of i in the schedule is exactly wi. To support such
instances with a buffer scheme, we modify the page-selection rules as follows:
(1) After scheduling i, put it in buffer Bwi . (2) Page i can be selected for schedul-
ing only if it is currently located in one of the buffers B1, B2, . . . , Bwi−w′

i+1. This

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

A General Buffer Scheme for the Windows Scheduling Problem • 1.6:15

ensures that at least w′
i slots have passed since the last time i was scheduled.

The first selection of i can be from any buffer.

Pages with Different Lengths. In this model, each page is associated with a
window wi and with a length pi. Page i needs to be allocated at least pi trans-
mission slots in any window of wi slots. Clearly, pi ≤ wi for all 1 ≤ i ≤ n,
otherwise it is impossible to schedule this page. We consider nonpreemptive
windows scheduling in which for any i, the pi slots allocated to i must be suc-
cessive. In other words, i must be scheduled nonpreemptively on the channels
and the gap between any two beginnings of schedules is at most wi.1 To sup-
port pages with different lengths, each i is represented as a chain of pi page-
segments of length 1. Formally, i is represented by one locomotive i1, and pi − 1
wagons i2, . . . , ipi . We modify the page selection rules in a way that guarantees
that all segments of i will be scheduled one after the other. In general, the
locomotives are scheduled like in the unit-length scheme and a wagon always
follows its locomotive. Specifically,

1. Initially, the pi segments composing i are located in the pi buffers
Bwi , Bwi+1, Bwi+pi−1. This ensures that at most wi time slots can elapse before
the next schedule of the locomotive, and that all the wagons will follow.

2. When transmitted, every segment of i is moved to buffer Bwi .
3. When h > b1 and additional executions can be selected for the next slot, we

can only select locomotives, and only those belonging to pages that are not
currently processed.2 For each selected locomotive, i1, we move all the pi −1
wagons of i into B1, B2, . . . , Bpi−1.

4. The calculation of the load on the channels for dead-end detection is done
as in the unit-length case. We consider the load generated by all the page
segments.

The following theorems extend Theorems 2.1 and 2.2 for instances with ar-
bitrary lengths.

THEOREM 5.1. When it does not fail, the buffers scheme produces a feasible
schedule for windows scheduling of pages with arbitrary lengths.

PROOF. In each iteration, we schedule at most h page segments, since there
are h channels this is fine. Consider any page i. Recall that initially the seg-
ments of i are located in the pi buffers Bwi , Bwi+1, Bwi+pi−1. For any i, in each
time slot in which i1 is not selected, it moves one buffer toward B1. All the
wagons of i also move one buffer toward B1. After at most wi time slots i1

must be selected to be scheduled. By rule 3, the remaining wagons of i are now
moved to B1, . . . , Bpi−1, to guarantee that i is scheduled nonpreemptively on pi

1It is known [Bar-Noy, Ladner, Tamir, and VANDEGRIFT 2005] that preemptive WS is equivalent to
WS of unit-length pages. Thus, we consider here only the more restricted problem of nonpreemptive
scheduling.
2We assume here that the next processing of a page cannot start during its current processing.
When such parallelism is allowed, we can remove this assumption by temporary duplicating the
wagons that still need to be executed.

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

1.6:16 • A. Bar-Noy et al.

consecutive slots. Recall that a scheduled wagon is located in Bwi —exactly one
time slot after the preceding wagon of this page. Thus, all the page-segments
of i advance at the same rate toward B1 and will be selected to run at most wi
slots after their previous schedule.

THEOREM 5.2. Any feasible schedule for windows scheduling of pages with
arbitrary lengths can be generated by the buffer scheme.

PROOF. The proof is identical to the proof of Theorem 2.2. Since we can follow
in each slot the selection of a known legal schedule, it is guaranteed that in the
resulting buffer-scheme each page is scheduled in a nonpreemptive manner.

6. CONCLUSIONS

In this article, we showed how any algorithm for the windows scheduling prob-
lem can be described as an implementation of the buffer scheme with appropri-
ate scheduling rules. Using a mechanism to detect dead-ends it is possible to
efficiently implement the buffer scheme (note that a polynomial time implemen-
tation is impossible since the problem is NP-Hard). As a result, we generated
the best known schedules for practical instances and proved their optimality via
an exhaustive search. We also used the exhaustive search to prove non-trivial
impossibility results.

The main advantage of the buffer scheme is its ability to produce nonperfect
schedules. Most of the known algorithms (with or without guaranteed perfor-
mance) produce perfect schedules. However, in the windows scheduling problem
and its applications such a restriction is not mandatory. Another evident advan-
tage of the buffer scheme is the ease with which we are able to extend it to more
general environments. In particular, the generalization to dynamic instances
is promising since previous solutions suffer from being tailored to a static in-
stance of windows. Finally, one of the most important messages of this paper is
that the earliest deadline first (EDF) strategy is not the best for the “max” type
of periodic scheduling. This is in contrast to its success for the “average” type
problems (see [Liu and Layland 1973; Tijdeman 1980]). We developed some
understanding that led us to the design of the largest backward move (LBM)
strategy.

Some problems remain open, including

� By examining the simulation results of LBM, we strongly believe that better
guaranteed bounds for this assignment rule exist. In particular, based on
our simulations, we believe that the following is true: for any request set W,
LBM never fails on h0(W) + c channels, for some small constant c.

� We plan to further explore the buffer scheme to come up with better schedules
for practical instances. It is interesting to see if there exists a “simple” rule
that would outperform LBM.

REFERENCES

ACHARYA, S., FRANKLIN, M. J., AND ZDONIK S. 1995. Dissemination-based data delivery using broad-
cast disks. IEEE Personal Communications 2, 6, 50–60.

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

A General Buffer Scheme for the Windows Scheduling Problem • 1.6:17

AMMAR, M. H. AND WONG, J. W. 1985. The design of teletext broadcast cycles. Performance Eval-
uation 5, 4, 235–242.

ANILY, S., GLASS, C. A., AND HASSIN, R. 1998. The scheduling of maintenance service. Discrete
Applied Mathematics 82, 27–42.

BAR-NOY, A., BHATIA, R., NAOR, J., AND SCHIEBER, B. 2002. Minimizing service and operation costs
of periodic scheduling. Mathematics of Operations Research 27, 3, 518–544.

BAR-NOY, A. AND LADNER, R. E. 2003. Windows scheduling problems for broadcast systems. SIAM
Journal on Computing (SICOMP) 32, 4, 1091–1113.

BAR-NOY, A., LADNER, R. E., AND TAMIR, T. 2003. Scheduling techniques for media-on-demand. In
Proceedings of the 14th SODA, 791–800.

BAR-NOY, A., LADNER, R. E., AND TAMIR, T. 2007. Windows scheduling as a restricted bin-packing
problem. ACM Trans. Algorithms 3, 3.

BAR-NOY, A., LADNER, R. E. TAMIR, T., AND VANDEGRIFT, T. 2005. Windows scheduling of arbi-
trary length jobs on parallel machines. In Proceedings of the 17th ACM Symposium on Parallel
Algorithms and Architectures (SPAA).

BARUAH, S. K. AND LIN, S.-S. 1998. Pfair scheduling of generalized pinwheel task systems. IEEE
Trans. Comp. 47, 812–816.

CHAN W. T. AND WONG, P. W. H. 2004. On-line windows scheduling of temporary items. In Pro-
ceedings of the 15th ISAAC, 259–270.

CHAN M. Y. AND CHIN, F. 1992. General schedulers for the pinwheel problem based on double-
integer reduction. IEEE Trans. Computers 41, 755–768.

CHAN M. Y. AND CHIN F. 1993. Schedulers for larger classes of pinwheel instances. Algorithmica,
9, 425–462.

FEINBERG, E. A., BENDER, M., CURRY, M., HUANG, D., KOUTSOUDIS, T., AND BERNSTEIN, J. 2002. Sensor
resource management for an airborne early warning radar. In Proceedings of SPIE the Interna-
tional Society of Optical Engineering, 145–156.

HOLTE, R., MOK, A., ROSIER, L., TULCHINSKY, I., AND VARVEL, D. 1989. The pinwheel: A real-time
scheduling problem. In Proceedings of the 22nd Hawaii International Conference on System Sci-
ences, 693–702.

HOLTE, R., ROSIER, L., TULCHINSKY, I., AND VARVEL, D. 1992. Pinwheel scheduling with two distinct
numbers. Theoretical Computer Science 100, 105–135.

HUA K. A. AND SHEU, S. 2000. An efficient periodic broadcast technique for digital video libraries.
Multimedia Tools and Applications 10, 157–177.

JUHN, L. AND TSENG, L. 1997. Harmonic broadcasting for video-on-demand service. IEEE Trans.
on Broadcasting 43, 3, 268–271.

LIU C. L. AND LAYLAND, J. W. 1973. Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM 20, 1, 46–61.

PÂRIS, J. F., CARTER, S. W., AND LONG, D. D. E. 1999. A hybrid broadcasting protocol for video on de-
mand. In Proceedings of the IS&T/SPIE Conference on Multimedia Computing and Networking,
317–326.

PÂRIS, J. F. 2002. A broadcasting protocol for video-on-demand using optional partial preloading.
In Proceedings of the 11th International Conference on Computing I, 319–329.

SGALL, J., SHACHNAI, H., AND TAMIR, T. 2005. Fairness-free periodic scheduling with vacations. In
Proceedings of the 13th Annual European Symposium on Algorithms (ESA), 592–603.

TIJDEMAN, R. 1980. The chairman assignment problem. Discrete Mathematics 32, 323–330.
VISWANATHAN, S. AND IMIELINSKI, T. 1996. Metropolitan area video-on-demand service using pyra-

mid broadcasting. ACM Multimedia Systems Journal 4, 3, 197–208.
WEI W. AND LIU, C. 1983. On a periodic maintenance problem. Operations Res. Letters, 2, 90–93.

Received August 2006; revised April 2008, July 2008; accepted July 2008

ACM Journal of Experimental Algorithmics, Vol. 13, Article No. 1.6, Publication date: November 2008.

