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Abstract. Classical network-formation games are played on a directed graph.
Players have reachability objectives, and each player has to select a path satisfy-
ing his objective. Edges are associated with costs, and when several players use
the same edge, they evenly share its cost. The theoretical and practical aspects of
network-formation games have been extensively studied and are well understood.
We introduce and study network-formation games with regular objectives. In our
setting, the edges are labeled by alphabet letters and the objective of each player
is a regular language over the alphabet of labels, given by means of an automaton
or a temporal-logic formula. Thus, beyond reachability properties, a player may
restrict attention to paths that satisfy certain properties, referring, for example,
to the providers of the traversed edges, the actions associated with them, their
quality of service, security, etc.

Unlike the case of network-formation games with reachability objectives, here the
paths selected by the players need not be simple, thus a player may traverse some
transitions several times. Edge costs are shared by the players with the share being
proportional to the number of times the transition is traversed. We study the exis-
tence of a pure Nash equilibrium (NE), convergence of best-response-dynamics,
the complexity of finding the social optimum, and the inefficiency of a NE com-
pared to a social-optimum solution. We examine several classes of networks (for
example, networks with uniform edge costs, or alphabet of size 1) and several
classes of regular objectives. We show that many properties of classical network-
formation games are no longer valid in our game. In particular, a pure NE might
not exist and the Price of Stability equals the number of players (as opposed to
logarithmic in the number of players in the classic setting, where a pure NE al-
ways exists). In light of these results, we also present special cases for which the
resulting game is more stable.

1 Introduction

Network design and formation is a fundamental well-studied problem that involves
many interesting combinatorial optimization problems. In practice, network design is
often conducted by multiple strategic users whose individual costs are affected by the
decisions made by others. Early works on network design focus on analyzing the effi-
ciency and fairness properties associated with different sharing rules (e.g., [23l30]). Fol-
lowing the emergence of the Internet, there has been an explosion of studies employing
game-theoretic analysis to explore Internet applications, such as routing in computer
networks and network formation [17014122]. In network-formation games (for a sur-
vey, see [33]), the network is modeled by a weighted graph. The weight of an edge



indicates the cost of activating the transition it models, which is independent of the
number of times the edge is used. Players have reachability objectives, each given by
sets of possible source and target nodes. Players share the cost of edges used in order
to fulfill their objectives. Since the costs are positive, the runs traversed by the players
are simple. Under the common Shapley cost-sharing mechanism, the cost of an edge is
shared evenly by the players that use it.

The players are selfish agents who attempt to minimize their own costs, rather than
to optimize some global objective. In network-design settings, this would mean that the
players selfishly select a path instead of being assigned one by a central authority. The
focus in game theory is on the stable outcomes of a given setting, or the equilibrium
points. A Nash equilibrium (NE) is a profile of the players’ strategies such that no
player can decrease his cost by an unilateral deviation from his current strategy, that is,
assuming that the strategies of the other players do not changeﬂ

Reachability objectives enable the players to specify possible sources and targets.
Often, however, it is desirable to refer also to other properties of the selected paths.
For example, in a communication setting, edges may belong to different providers,
and a user may like to specify requirements like “all edges are operated by the same
provider” or “no edge operated by AT&T is followed by an edge operated by Verizon”.
Edges may also have different quality or security levels (e.g., “noisy channel”, “high-
bandwidth channel”, or “encrypted channel”), and again, users may like to specify their
preferences with respect to these properties. In planning or in production systems, nodes
of the network correspond to configurations, and edges correspond to the application of
actions. The objectives of the players are sequences of actions that fulfill a certain plan,
which is often more involved than just reachability [21]; for example “once the arm is
up, do not put it down until the block is placed”.

The challenge of reasoning about behaviors has been extensively studied in the con-
text of formal verification. While early research concerned the input-output relations of
terminating programs, current research focuses on on-going behaviors of reactive sys-
tems [22]. The interaction between the components of a reactive system correspond to
a multi-agent game, and indeed in recent years we see an exciting transfer of concepts
and ideas between the areas of game theory and formal verification: logics for speci-
fying multi-agent systems [319], studies of equilibria in games that correspond to the
synthesis problem [8/7/16]], an extension of mechanism design to on-going behaviors
[25], studies of non-zero-sum games in formal methods [10L6]], and more.

In this paper we extend network-formation games to a setting in which the players
can specify regular objectives. This involves two changes of the underlying setting:
First, the edges in the network are labeled by letters from a designated alphabet. Second,
the objective of each player is specified by a language over this alphabet. Each player
should select a path labeled by a word in his objective language. Thus, if we view
the network as a nondeterministic weighted finite automaton (WFA) A, then the set
of strategies for a player with objective L is the set of accepting runs of A on some
word in L. Accordingly, we refer to our extension as automaton-formation games. As
in classical network-formation games, players share the cost of edges they use. Unlike

3 Throughout this paper, we concentrate on pure strategies and pure deviations, as is the case for
the vast literature on cost-sharing games.



the classical game, the runs selected by the players need not be simple, thus a player
may traverse some edges several times. Edge costs are shared by the players, with the
share being proportional to the number of times the edge is traversed. This latter issue
is the main technical difference between automaton-formation and network-formation
games, and as we shall see, it is very significant.

Many variants of cost-sharing games and congestion games have been studied. A
generalization of the network-formation game of [2] in which players are weighted
and a player’s share in an edge cost is proportional to its weight is considered in [11]],
where it is shown that the weighted game does not necessarily have a pure NE. In
a different type of congestion games, players’ payments depend on the resource they
choose to use, the set of players using this resource, or both [29.26/27/19]]. In some of
these variants a NE is guaranteed to exist while in others it is not. All these variants are
different from automaton-formation games, where a player needs to select a multiset of
resources (namely, the edges he is going to traverse) rather than a single one.

We study the theoretical and practical aspects of automaton-formation games. In
addition to the general game, we consider classes of instances that have to do with
the network, the specifications, or to their combination. Recall that the network can be
viewed as a WFA 4. We consider the following classes of WFAs: (1) all-accepting, in
which all the states of .4 are accepting, thus its language is prefix closed (2) uniform
costs, in which all edges have the same cost, and (3) single letter, in which A is over
a single-letter alphabet. We consider the following classes of specifications: (1) single
word, where the language of each player is a single word, (2) symmetric, where all play-
ers have the same objective. We also consider classes of instances that are intersections
of the above classes.

Each of the restricted classes we consider corresponds to a real-life variant of the
general setting. Let us elaborate below on single-letter instances. The language of an
automaton over a single letter {a} induces a subset of IN, namely the numbers & € IN
such that the automaton accepts a*. Accordingly, single-letter instances correspond to
settings in which a player specifies possible lengths of paths. Several communication
protocols are based on the fact that a message must pass a pre-defined length before
reaching its destination. This includes onion routing, where the message is encrypted
in layers [33], or proof-of-work protocols that are used to deter denial of service attacks
and other service abuses such as spam (e.g., [15]).

We provide a complete picture of the following questions for various instances (for
formal definitions, see Section : () Existence of a pure Nash equilibrium. That is,
whether each instance of the game has a profile of pure strategies that constitutes a NE.
As we show, unlike the case of classical network design games, a pure NE might not ex-
ist in general automaton-formation games and even in very restricted instances of it. (1)
The complexity of finding the social optimum (SO). The SO is a profile that minimizes
the total cost of the edges used by all players; thus the one obtained when the players
obey some centralized authority. We show that for some restricted instances finding the
SO can be done efficiently, while for other restricted instances, the complexity agrees
with the NP-completeness of classical network-formation games. (iii) An analysis of
equilibrium inefficiency. It is well known that decentralized decision-making may lead
to solutions that are sub-optimal from the point of view of society as a whole. We quan-



tify the inefficiency incurred due to selfish behavior according to the price of anarchy
(PoA) [24431] and price of stability (PoS) [2] measures. The PoA is the worst-case in-
efficiency of a Nash equilibrium (that is, the ratio between the worst NE and the SO).
The PoS is the best-case inefficiency of a Nash equilibrium (that is, the ratio between
the best NE and the SO). We show that while the PoA in automaton-formation games
agrees with the one in classical network-formation games and is equal to the number
of players, the PoS also equals the number of players, again already in very restricted
instances. This is in contrast with classical network-formation games, where the PoS
tends to log the number of players. Thus, the fact that players may choose to use edges
several times significantly increases the challenge of finding a stable solution as well
as the inefficiency incurred due to selfish behavior. We find this as the most techni-
cally challenging result of this work. We do manage to find structural restrictions on the
network with which the social optimum is a NE.

The technical challenge of our setting is demonstrated in the seemingly easy in-
stance in which all players have the same objective. Such symmetric instances are
known to be the simplest to handle in all cost-sharing and congestion games studied
so far. Specifically, in network-formation games, the social optimum in symmetric in-
stances is also a NE and the PoS is 1. Moreover, in some games [18]], computing a NE is
PLS-complete in general, but solvable in polynomial time for symmetric instances. In-
deed, once all players have the same objective, it is not conceivable that a player would
want to deviate from the social-optimum solution, where each of the k players pays %
of the cost of the optimal solution. We show that, surprisingly, symmetric instances in
AF-games are not simple at all. Specifically, the social optimum might not be a NE, and
the PoS is at least % In particular, for symmetric two-player AF games, we have that
PoS = PoA = 2. We also show that the PoA equals the number of players already
for very restricted instances.

2 Preliminaries

2.1 Automaton-formation games

A nondeterministic finite weighted automaton on finite words (WFA, for short) is a tuple
A=(X.Q,A,qF,c), where X is an alphabet, () is a set of states, A C Q x X' x Q
is a transition relation, gy € @ is an initial state, F' C () is a set of accepting states, and
¢ : A — R is a function that maps each transition to the cost of its formation [28]. A
run of Aonawordw = ws,...,w, € X*isasequence of states 7 = 7%, 7!, ..., "
such that 7° = ¢ and for every 0 < i < n we have A(n?,w; 1, 7). The run 7 is
accepting iff 7 € F. The length of 7 is n, whereas its size, denoted ||, is the number
of different transitions in it. Note that || < n.

An automaton-formation game (AF game, for short) between k selfish players is a
pair (A, O), where A is a WFA over some alphabet X' and O is a k-tuple of regular
languages over Y. Thus, the objective of Player ¢ is a regular language L;, and he needs
to choose a word w; € L, and an accepting run of .4 on w; in a way that minimizes
his payments. The cost of each transition is shared by the players that use it in their
selected runs, where the share of a player in the cost of a transition e is proportional to
the number of times e is used by the player. Formally, The set of strategies for Player ¢



is S; = {m : m is an accepting run of .4 on some word in L;}. We assume that S; is not
empty. We refer to the set S = S; X ... X S, as the set of profiles of the game.

Consider a profile P = (1, o, ..., 7). We refer to 7; as a sequence of transitions.
Letm; =el,..., ef’i, and let np : A — IN be a function that maps each transition in A
to the number of times it is traversed by all the strategies in P, taking into an account
several traversals in a single strategy. Denote by 7);(e) the number of times e is traversed
in 7;, thatis, n;(e) = {1 < j < ¥; : el = e}|. Then,np(e) = >_,_; ni(e). The cost
of player i in the profile P is

cost;(P) = Z

ecT;

ni(e)
r(e) c(e). (D

For example, consider the WFA A depicted in Fig. [T} The label e; : a,1 on the
transition from qg to ¢; indicates that this transition, which we refer to as e;, traverses
the letter a and its cost is 1. We consider a game between two players. Player 1’s ob-
jective is the language is L; = {ab’ : i > 2} and Player 2’s language is {ab,ba}.
Thus, 1 = {{e1,ea2,e2},{e1,e2,€0,e2},...} and So = {{e3,es},{e1,e2}}. Con-
sider the profile P = ({e1,ea,ea},{es,e4}), the strategies in P are disjoint, and
we have cost1(P) = 2+ 2 = 4,cost2(P) = 1+ 3 = 4. For the profile P/ =
({e1,ea,e2},{e1,ea}), it holds that 11 (e1) = n2(e1) and 11 (e2) = 2 - n2(e2). There-
fore, cost1(P') = 4 +2 =21 and costo(P') = 1 + 1 =11,

ey:6,3
eq:0,2 @ es:a,? @ er:a,l @

Fig. 1. An example of a WFA.

We consider the following instances of AF games. Let G = (A, O). We start with
instances obtained by imposing restrictions on the WFA A. In one-letter instances, A
is over a singleton alphabet, i.e., |~| = 1. When depicting such WFAs, we omit the
letters on the transitions. In all-accepting instances, all the states in A are accepting;
i.e., FF = Q. In uniform-costs instances, all the transitions in the WFA have the same
cost, which we normalize to 1. Formally, for every e € A, we have c(e) = 1. We
continue to restrictions on the objectives in O. In single-word instances, each of the
languages in O consists of a single word. In symmetric instances, the languages in O
coicide, thus the players all have the same objective. We also consider combinations on
the restrictions. In particular, we say that (A, O) is weak if it is one-letter, all states are
accepting, costs are uniform, and objectives are single words. Weak instances are simple
indeed — each player only specifies a length of a path he should patrol, ending anywhere
in the WFA, where the cost of all transitions is the same. As we shall see, many of our
hardness results and lower bounds hold already for the class of weak instances.



2.2 Nash equilibrium, social optimum, and equilibrium inefficiency

For a profile P, a strategy m; for Player ¢, and a strategy m, let P[m; + 7] denote the
profile obtained from P by replacing the strategy for Player ¢ by 7. A profile P € S
is a pure Nash equilibrium (NE) if no player ¢ can benefit from unilaterally deviating
from his run in P to another run; i.e., for every player ¢ and every run © € S; it holds
that cost;(P[m; < 7]) > cost;(P). In our example, the profile P is not a NE, since
Player 2 can reduce his payments by deviating to profile P’.

The (social) cost of a profile P, denoted cost(P), is the sum of costs of the players
in P. Thus, cost(P) = Y, cost;(P). Equivalently, if we view P as a set of tran-
sitions, with e € P iff there is 7 € P for which e € , then cost(P) = > . p c(e).
We denote by OPT the cost of an optimal solution; i.e., OPT = minpeg cost(P).
It is well known that decentralized decision-making may lead to sub-optimal solutions
from the point of view of society as a whole. We quantify the inefficiency incurred
due to self-interested behavior according to the price of anarchy (PoA) [24/31] and
price of stability (PoS) [2] measures. The PoA is the worst-case inefficiency of a Nash
equilibrium, while the PoS measures the best-case inefficiency of a Nash equilibrium.
Formally,

Definition 1. Ler G be a family of games, and let G € G be a game in G. Let T(G) be
the set of Nash equilibria of the game G. Assume that T (G) # (.

— The price of anarchy of G is the ratio between the maximal cost of a NE and the
social optimum of G. That is, PoA(G) = maxper(q) cost(P)/OPT(G). The
price of anarchy of the family of games G is PoA(G) = supgegPoA(G).

— The price of stability of G is the ratio between the minimal cost of a NE and the so-
cial optimum of G. That is, PoS(G) = minper () cost(P)/OPT(G). The price
of stability of the family of games G is PoS(G) = supgegPoS(G).

Uniform Sharing rule: A different cost-sharing rule that could be adopted for automaton-
formation games is the uniform sharing rule, according to which the cost of a transition
e is equally shared by the players that traverse e, independent of the number of times
e is traversed by each player. Formally, let kp(e) be the number of runs that use the
transition e at least once in a profile P. Then, the cost of including a transition e at
least once in a run is ¢(e)/k p(e). This sharing rule induces a potential game, where the
potential function is identical to the one used in the analysis of the classical network
design game [2]]. Specifically, let (P) = . c(e) - H(kp(e)), where Hy = 0, and
Hyi =1+1/2+...41/k. Then, $(P) is a potential function whose value reduces with
every improving step of a player, thus a pure NE exists and BRD is guaranteed to con-
verge[ﬂ The similarity with classical network-formation games makes the study of this
setting straightforward. Thus, throughout this paper we only consider the proportional
sharing rule as defined in (T) above.

4 Best-response-dynamics (BRD) is a local-search method where in each step some player is
chosen and plays his best-response strategy, given that the strategies of the other players do
not change.



3 Properties of Automaton-Formation Games

In this section we study the theoretical properties of AF games: existence of NE and
equilibrium inefficiency. We show that AF games need not have a pure Nash equilib-
rium. This holds already in the very restricted class of weak instances, and is in contrast
with network-formation games. There, BRD converges and a pure NE always exists. We
then analyze the PoS in AF games and show that there too, the situation is significantly
less stable than in network-formation games.

Theorem 1. Automaton-formation games need not have a pure NE. This holds already
for the class of weak instances.

Proof. Consider the WFA A depicted in Fig. [2and consider a game with k& = 2 players.
The language of each player consists of a single word. Recall that in one-letter instances
we care only about the lengths of the objective words. Let these be ¢; and {5, with
{1 > {5 > 0 that are multiples of 12. For example, £; = 30000, /> = 300. Let C3
and C} denote the cycles of length 3 and 4 in A, respectively. Let D3 denote the path
of length 3 from ¢ to g1. Every run of A consists of some repetitions of these cycles
possibly with one pass on Ds.

O O O
ol o
Fig. 2. A weak instance of AF games with no NE.

We claim that no pure NE exists in this instance. Since we consider long runs, the
fact that the last cycle might be partial is ignored in the calculations below. We first
show that the only candidate runs for Player 1 that might be part of a NE profile are
T = (C’4)ZT1 and 7} = D3 - (03)%_1. If Player 1 uses both C3 and C4y multiple times,
then, given that /1 > /5, he must almost fully pay for at least one of these cycles, thus,
deviating to the run that repeats this fully-paid cycle is beneficial.

When Player 1 plays 7, Player 2’s best response is mo = (04)%2. In the profile
(m1, ), Player 1 pays almost all the cost of Cy, so the players’ costs are (4 — €, ¢).
This is not a NE. Indeed, since ¢5 > 0, then by deviating to 7}, the share of Player 1
in D3 reduces to almost 0, and the players’ costs in (7], ma), are (3 + £,4 — £). This
profile is not a NE as Player 2’s best response is 75, = Dj - (C’g)%z’l. Indeed, in the
profile (7, 7}), the players’ costs are (4.5 — €, 1.5 + €) as they share the cost of Dj
and Player 1 pays almost all the cost of C's. This is not a NE either, as Player 1 would
deviate to the profile (71, 75), in which the players’ costs are (4 — e, 3+ ¢). The latter is
still not a NE, as Player 2 would head back to (7, 7). We conclude that no NE exists
in this game. O

The fact a pure NE may not exist is a significant difference between standard cost-
sharing games and AF games. The bad news do not end here and extend to equilibrium
inefficiency. We first note that the cost of any NE is at most k times the social optimum



(as otherwise, some player pays more than the cost of the SO and can benefit from
migrating to his strategy in the SO). Thus, it holds that PoS < PoA < k. The following
theorem shows that this is tight already for highly restricted instances.

Theorem 2. The PoS in AF games equals the number of players. This holds already for
the class of weak instances.

Proof. We show that for every k,0 > 0 there exists a simple game with k players
for which the PoS is more than k£ — . Given k and &, let  be an integer such that
r > max{k, % —1}. Consider the WFA A depicted in Fig. Let L = (01,00,...,0k)
for ¢ = ... = {) and ¢; > {5 > r denote the lengths of the objective words. Thus,
Player 1 has an ‘extra-long word’ and the other k£ — 1 players have words of the same,
long, length. Let C'. and C).1 denote, respectively, the cycles of length  and 4 1 to
the right of qg. Let D,. denote the path of length r from gq to q1, and let Dy, denote the
‘lasso’ consisting of the kr-path and the single-edge loop to the left of qq.

(r 4+ 1)-edgecycle r-edgecycle By

Fig. 3. A weak instance of AF games for which PoS = k.

The social optimum of this game is to buy C,.11. Its cost is  + 1. However, as we
show, the profile P in which all players use Dy, is the only NE in this game. We first
show that P is a NE. In this profile, Player 1 pays r + 1 — € and each other player pays
r + ¢/(k — 1). No player will deviate to a run that includes edges from the right side
of A. Next, we show that P is the only NE of this game: Every run on the right side
of A consists of some repetitions of C,1 and C,., possibly with one traversal of D,..
Since we consider long runs, the fact that the last cycle might be partial is ignored in
the calculations below.

In the social optimum profile, Player 1 pays 7 + 1 — ¢ and each of the other players
pays £/(k — 1). The social optimum is not a NE as Player 1 would deviate to D, - C
and will reduce his cost to r +¢’. The other players, in turn, will also deviate to D,.- C.
In the profile in which they are all selecting a run of the form D, - C, Player 1 pays
r+r/k —¢& > r+ 1 and prefers to return to C}, ;. The other players will join him
sequentially, until the non-stable social optimum is reached. Thus, no NE that uses the
right part of A exists. Finally, it is easy to see that no run that involves edges from both
the left and right sides of A or includes both C'. 1 and C,. can be part of a NE.

The cost of the NE profile is kr-+1 and the PoS is therefore £551 = k—2—0 > k—4.
O

4 Computational Complexity Issues in AF Games

In this section we study the computational complexity of two problems: finding the
cost of the social optimum and finding the best-response of a player. Recall that the



social optimum (SO) is a profile that minimizes the total cost the players pay. It is well-
known that finding the social optimum in a network-formation game is NP-complete.
We show that this hardness is carried over to simple instances of AF games. On the
positive side, we identify non-trivial classes of instances, for which it is possible to
compute the SO efficiently. The other issue we consider is the complexity of finding the
best strategy of a single player, given the current profile, namely, the best-response of a
player. In network-formation games, computing the best-response reduces to a shortest-
path problem, which can be solved efficiently. We show that in AF games, the problem
is NP-complete.

The proofs of the following theorems can be found in the appendix. The reductions
we use are from the set-cover problem, where choice of sets are related to choice of
transitions.

Theorem 3. Finding the value of the social optimum in AF games is NP-complete.
Moreover, finding the social optimum is NP-complete already in single-worded in-
stances that are also uniform-cost and are either single-lettered or all-accepting.

The hardness results in Theorem [3] for single-word specification use one of two
properties: either there is more than one letter, or not all states are accepting. We show
that finding the SO in instances that have both properties can be done efficiently, even
for specifications with arbitrary number of words.

For a language L; over ¥ = {a}, let short(i) = min;{a’ € L;} denote the length
of the shortest word in L;. For a set O of languages over X' = {a}, let £,,,,(0) =
max; short(i) denote the length of the longest shortest word in O. Clearly, any solution,
in particular the social optimum, must include a run of length £,,,,..(O). Thus the cost of
the social optimum is at least the cost of the cheapest run of length ¢,,,,..(O). Moreover,
since the WFA is single-letter and all-accepting, the other players can choose runs that
are prefixes of this cheapest run, and no additional transitions should be acquired. We
show that finding the cheapest such run can be done efficiently.

Theorem 4. The cost of the social optimum in a single-letter all-accepting instance
(A, O) is the cost of the cheapest run of length {y,q.(O). Moreover, this cost can be
found in polynomial time.

We turn to prove the hardness of finding the best-response of a player. Our proof is
valid already for a single player that needs to select a strategy on a WFA that is not used
by other players (one-player game).

Theorem 5. Finding the best-response of a player in AF games is NP-complete.

5 Tractable Instances of AF Games

In the example in Theorem([T] Player 1 deviates from a run on the shortest (and cheapest)
possible path to a run that uses a longer path. By doing so, most of the cost of the
original path, which is a prefix of the new path and accounts to most of its cost, goes
to Player 2. We consider semi-weak games in which the WFA is uniform-cost, all-
accepting, and single-letter, but the objectives need not be a single word. We identify a



property of such games that prevents this type of deviation and which guarantees that
the social optimum is a NE. Thus, we identify a family of AF games in which a NE
exists, finding the SO is easy, and the PoS is 1.

Definition 2. Consider a semi-weak game (A, O). A lasso is a path u - v, where u is a
simple path that starts from the initial state and v is a simple cycle. A lasso v is minimal
in A if A does not have shorter lassos. Note that for minimal lassos v - v, we have that
uNuv = (. We say that A is resistant if it has no cycles or there is a minimal lasso
v = u - v such that for every other lasso v' we have |u\ V'| + |v| < |V \ V.

Consider a resistant weak game (A, O). In order to prove that the social optimum
is a NE, we proceed as follows. Let v be the lasso that is the witness for the resistance
of A. We show that the profile S* in which all players choose runs that use only the
lasso v or a prefix of it, is a NE. The proof is technical and we go over all the possible
types of deviations for a player and use the weak properties of the network along with
its resistance. By Theorem[d] the cost of the profile is the SO. Hence the following. The
full proof can be found in Appendix

Theorem 6. For resistent semi-weak games, the social optimum is a NE.
A corollary of Theorem[6]is the following:
Corollary 1. For resistant semi-weak games, we have PoS= 1.

We note that resistance can be defined also in WFAs with non-uniform costs, with
cost(v) replacing |v|. Resistance, however, is not sufficient in the slightly stronger
model where the WFA is single-letter and all-accepting but not uniform-cost. Indeed,
given k, we show a such a game in which the PoS is kx, for a parameter x that can be
arbitrarily close to 1. Consider the WFA A in Fig.[5] Note that A has a single lasso and
is thus a resistant WFA. The parameter ¢; is a function of x, and the players’ objec-
tives are single words of lengths £ > £ > ... > £, > 0. Similar to the proof of
Theorem 2] there is only one NE in the game, which is when all players choose the left
chain. The social optimum is attained when all players use the self-loop, and thus for

k-x

a game in this family, PoS = “*. Since x tends to 1, we have PoS = k for resistant

all-accepting single-letter games. The proof can be found in the full version.

() )

Fig. 4. A resistant all-accepting single-letter game in which the PoS tend to k.

6 Surprises in Symmetric Instances

In this section we consider the class of symmetric instances, where all players share
the same objective, that is, there exists a language L, such that for all 1 < ¢ < k, we

10



have L; = L. In such instances it is tempting to believe that the social optimum is also
a NE, as all players evenly share the cost of the solution that optimizes their common
objective. While this is indeed the case in all known symmetric games, we show that,
surprisingly, this is not the case for AF-games, in fact already for the class of one-letter,
all accepting, unit-cost and single word instances.

To demonstrate the anomaly, let us first consider the two-player game appearing in
Fig.[5] All the states in the WFA A are accepting, and the objectives of both players is a
single long word. The social optimum is when both players traverse the loop qo, g1, qo-
Its cost is 2 + ¢, so each player pays 1 + % This, however, is not a NE, as Player 1 (or,
symmetrically, Player 2) prefers to deviate to the run qo, q1, 41, q1, - - ., Wwhere he pays
the cost of the loop ¢1, ¢1 and his share in the transition from ¢qq to ¢;. We can choose
the length of the objective word and e so that this share is smaller than 3, justifying his
deviation. Note that the new situation is not a NE either, as Player 2, who now pays 2,
is going to join Player 1, resulting in an unfortunate NE in which both players pay 1.5.

2

~(@]__Tapr

€

Fig. 5. The WFA A for which the SO in a symmetric game is not a NE.

Before we continue to the example where the PoS is at least % let us elaborate on

the PoA. It is easy to see that in symmetric AF games, we have PoA = k. This bound
is achieved, as in the classic network-formation game, by a network with two parallel
edges labeled by a and having costs k and 1. The players all have the same specification
L = {a}. The profile in which all players select the expensive path is a NE. We now
show that PoA = k is achieved even for weak symmetric instances.

Theorem 7. The PoA equals the number of players, already for weak symmetric in-
stances.

Proof. We show a lower bound of k. The example is a generalization of the PoA in cost
sharing games [2]]. For k players, consider the weak instance depicted in Fig.[6] where
all players have the length k. Intuitively, the social optimum is attained when all players
use the loop (qo, qo) and thus OPT = 1. The worst NE is when all players use the run
qoq1 - - - g, and its cost is clearly k. Formally, there are two NEs in the game:

— The cheap NE is when all players use the loop (g, o). This is indeed a NE because
if a player deviates, he must buy at least the transition (go, ¢1). Thus, he pays at least
1, which is higher than %, which is what he pays when all players use the loop.

— The expensive NE is when all players use the run qo, q1, . . ., qx. This is a NE be-
cause a player has two options to deviate. Either to the run that uses only the loop,
which costs 1, or to a run that uses the loop and some prefix of qq, q1, . . - , gk, Which
costs at least 1 + % Since he currently pays 1, he has no intention of deviating to
either runs.

Since the cheap NE costs 1 and the expensive one costs k, we get PoA = k. ad
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Fig. 6. The WFA A for which a symmetric game with |L| = 1 achieves PoA = k.

A more surprising result is that PoS > 1. We show a lower bound of % for the
PoS. Thus, for two-player games, we have PoS = PoA = 2.

Theorem 8. In a symmetric k-player game, the PoS is at least %

Proof. For k > 2, we describe a family of symmetric games for which the PoS tends
to % For n > 1, the game G, ,, uses the WFA that is depicted in Figure Note
that this is a one-letter instance in which all states are accepting. The players have an
identical specification, consisting of a single word w of length ¢ > 0. We choose ¢ and

€ =¢€y>...> €y as follows. Let (Y, . .., C, denote, respectively, the cycles with
costs (K™ +¢€g), (k" * +e€1),...,(k+e€n_1),1. Letro, ..., r, be lasso-runs on w that
end in Cy, ..., C,, respectively. For every 1 < 4 < n, consider the profile P; in which

all players choose run r;. Since all the players need to select an accepting run for the
word w, they share the cost of the transitions in r; equally. Thus, the cost of a player
in P; is % . (Zogjgi k"=J + ¢;). Specifically, for the cycle C;, the players each pay

k”*% = k"~ (1 4+ < Let P! be the profile in which Player 1 deviates from P; to
ri+1. In P/, Player 1 pays the same amount for the path leading to C;, but his share of

n—i

the k™~ %-valued transition decreases drastically. He now pays for it only MW

On the other hand, he now pays the full price for C; 1, which is k"~ (+1) 4 €i4+1 O
1if i = n — 1. We choose €;, €;+1, and £ so that cost1(P}) < costi(P;). Also, we
choose these values so that players 2, ...,k — 1, prefer joining Player 1 in r;; rather
than staying with r;.

L k‘"_l kn—Q k‘2 k
€0 €1 €2 €n—2 €n—1

Fig. 7. The network of the identical-specification game G ., in which PoS tends to k%l

We claim that the only NE is when all players use the run r,,. Indeed, it is not hard
to see that every profile in which a player selects a run that is not from rg, . . . , 7, cannot
be a NE. Also, a profile in which two players select runs 7; and 7, for 1 <i < j < n,
cannot be a NE as the player using r; can decreases his payment by joining the other
player in 7;. Finally, by our selection of €y, . .. , €, and ¢, every profile in which all the
players choose the run r;, for 0 < ¢ < n — 1, is not a NE.
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Clearly, the social optimum is attained when all players choose the run rg, and its
cost is k™ + e. Since the cost of the only NE in the game is ) .., k", the PoS in

this family of games tends to % as n grows to infinity and € to 0. a

Finally, we note that our hardness result in Theorem [5] implies that finding the
social optimum in a symmetric AF-game is NP-complete. Indeed, since the social opti-
mum is the cheapest run on some word in L, finding the best-response in a one-player
game is equivalent to finding the social optimum in a symmetric game. This is contrast
with other cost-sharing and congestion game (e.g. [18]], where the social optimum in
symmetric games can be computed using a reduction to max-flow).

7 Conclusions and Future Work

Our results on the stability of AF games are mostly negative. We identified some sta-
ble cases and we believe that additional positive results can be derived for restricted
classes of instances. As we suggest below, these restrictions can be characterized by the
structure of the automaton or by the set of players’ objectives.

Ordinary open problems include the study of approximate-NE, networks with prof-
its, capacitated networks, and coordinated deviation. We highlight below several inter-
esting directions for future work that are specific to the study of AF games.

1. Our lower bounds use WFAs with cycles. We believe that for acyclic all-accepting
one-letter instances, the PoS for can be bounded by a constant. Specifically, for &k
players, we conjecture that PoS = Zle 2%1, which is bounded by 2. In Ap-
pendix [B] we present a lower bound of this value that is valid already for automata
consisting of disjoint paths. Such an analysis will provide a nice distinction between
the classical network-formation game, for which PoS = ©(log k), and our game,
even when all players use a simple path for their run. We note that it is possible to
restrict the class of languages in the objectives so that the players have no incentive
not to use simple paths for their runs. For example, when the languages are closed
under infix disposal (thatis,ifx -y -z € L, forz,y,z € X*, thenx - z € L).

2. Other presumably more stable games are those in which the range of costs or the
ratio between the maximal and the minimal transition costs is bounded, or when
the ratio between the longest and the shortest word in the objective languages is
bounded. Indeed, bounding these ratios also bounds the proportion in which costs
are shared, making the game closer to one with a uniform sharing rule.

3. AF-games are an example of cost-sharing games in which players’ strategies are
multisets of resources. In such games, a player may need multiple uses of the same
resource, and his share in the resource cost is proportional to the number of times
he uses the resource. Our results imply that, in general, such games are less stable
than classical cost-sharing games. It is desirable to study more settings of such
games, and to characterize non-trivial instances that arise in practice and for which
the existence of pure NE can be shown, and its inefficiency can be bounded. In
the context of formal method, an appealing application is that of synthesis from
components, where the resources are functions from a library, and agents need to
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synthesize their objectives using such functions, possibly by a repeated use of some
functions.

4. For symmetric AF games, we leave open the problem of NE existence as well as
the problem of finding an upper-bound for the PoS for & > 2.

Recall that in planning, the WFA models a production system in which transitions
correspond to actions. In such cases, the objectives of the players may be languages of
infinite words, describing desired on-going behaviors. The objectives can be specified
by linear temporal logic or nondeterministic Biichi automata, and each player has to
select a lasso computation or accepting run for a word in his language. The setting
of infinite words involves transitions that are taken infinitely often and calls for new
sharing rules. When the sharing rule refers to the frequency in which transitions are
taken, we obtain a proportional sharing rule that is similar to the one studied here. One
can also follow a sharing rule in which all players that traverse a transition infinitely
often share its cost evenly, perhaps with some favorable proportion towards players that
use it only finitely often. This gives rise to simpler sharing rules, which seem more
stable.

Acknowledgments. We thank Michal Feldman, Noam Nisan, and Michael Schapira for
helpful discussions.
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A Missing Proofs

Proof of Theorem 3} We start with membership in NP. Given a WFA A with objectives
w1, ..., wy and value ¢ € R, we can guess a witness profile P and check whether it
satisfies cost(P) < ¢ in polynomial time. For proving hardness, we show a reduction
from the Set-Cover (SC) problem. Consider an input (U, S, m) to SC. Recall that U is
a set of elements, S = {C1,...,C.} C 2V is a collection of subsets of elements of U,
and m € IN. Then, (U, S, m) is in SC iff there is a subset S” of S of size at most m that
covers U. That s, [S’| <mand Jscq C = U.

Given an input (U, S, m) to SC, we construct a uniform-cost single-letter WFA A
and a vector of k integers, where the ¢-th integer corresponds to the length of the (sin-
gle) word in L;. We fix a value y, such that (U, S, m) in SC iff the SO value of the game
played on A with the objectives in { L; } is y. We construct A = ({a}, Q, qo, A, {qacc}, €)
as follows (see an example in the left of Fig.[8). The set @ includes the initial and ac-
cepting states, a state for every set in .S, and intermediate states required for the disjoint
runs defined below. Without loss of generality, we assume that U = {1,...,k}. Con-
sider an element ¢ € U. For every C' € S such that i € C, there is a disjoint run of
length ¢ from C' to ggcc. Also, for every C' € S, there is a transition (gg, C) in A. The
cost of all transitions in A is 1. For every 1 < ¢ < k, the length of the word in |L;] is
i+ 1. Wedefinew = m+ (1+2+...+ k). The size of A is clearly polynomial in |U|
and |S|.

Fig. 8. The WFAs produced by the reduction for U = {1,2,3} and S = {{1,2},{2,3}}.

The construction for uniform-cost all-accepting instances is very similar (see an
example in the right of Fig.[8). Let z = [log(n)] and X = {0,1}.For C € Sandi € C,
we have a z-length path from C' to ¢, that is labeled with the binary representation of
1 — 1 (padded with preceding zeros if needed). The label on all transitions from ¢q to
the S states is 0. For 1 < 7 < k, the word for Player 7 is a single 0 letter followed by
the binary representation of i — 1. The size of A is clearly polynomial in |U| and |S]|.
The following claim completes the proof.

Claim. There exists a set-cover of size m iff OPT < m + (1 +2+ ... + k) for
the uniform-cost single-letter instance and OPT < m + k - z for the uniform-cost
all-accepting instance.

Proof. We prove the reduction for the uniform-cost single-letter instance. The proof
for the uniform-cost all-accepting instance is very similar. For the first direction, let
S" = {siy,--.,8i,  be a set cover. We show a profile P = {my,..., 7} such that
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cost(P) < m+(1+2+...4+k). Recall that the input length for Player ¢ is 7 + 1. Since
S’ is a set cover, there is a set s € S” with ¢ € s. We define the run 7; to proceed from
qo to s and from there to g4, on a run of length . Clearly, the runs 7, ..., m, are all
legal-accepting runs. Moreover, the runs use m transitions from {go} x S C E. Thus,
cost(P) <m+ (14+2+...+ k), implying OPT <m+ (1+2+...+ k), and we
are done.

For the second direction, assume OPT =m/ + (14+2+...+k) <m+ (1 +2+
...+ k), we prove that there is a set cover of size m’. Let S* = (my,..., 7). Thus,
OPT = cost(S*) =m/.Let S” C Sbesuchthat s € S’ iff the transition (qo, ) is used
in one of the runs in S*. Note that the run of every player consists of a transition (gq, $)
followed by a disjoint run of length ¢ to gqcc. Therefore, OPT = m/+(14+2+...4+ k),
and, |S’| = m’ < m. We claim that S’ is a set cover. For every ¢ € U, the first transition
in the run is a transition (qo, s) for some s € S, as otherwise, player  can not proceed
tO gqcc along a run of length i. By our definition of S’ we have s € S’ thus i € U is
covered.

O

Proof of Theorem EI]: Clearly, any solution, in particular the social optimum, must
include a run of length £,,,,.. (O). Thus the cost of the social optimum is at least the cost
of the cheapest run of length ¢,,,,,.(O). Moreover, since there are no target vertices, the
other players can choose runs that are prefixes of the cheapest run, and no additional
transitions should be acquired.

We claim that finding the cheapest such run can be done efficiently. Recall that ¢
is the initial state in A, and let |Q| = n. We view A as a weighted-directed graph G =
(V, E, c¢), where the vertices V' are the states (), there is an edge e € E between two
vertices if there is a transition between the two corresponding states, and the cost of the
edges is the same as the cost of the transitionin A. For0 < i < n,letd; : VxV — Q*
be the function that, given two vertices u,v € V, returns the value of the cheapest pah
of length ¢ from w to v, and oo if no such path exists. Note that there is no requirement
that the path is simple, and indeed we may traverse cycles in order to accommodate 7
transitions. The function d : V x V' — QT, returns the value of the cheapest path of any
length between two given vertices. Given two vertices u, v € V, computing d(u, v) can
be done using Dijkstra’s algorithm, and, given an index ¢ € IN, it is possible to compute
d;(u,v) by a slight variation of the Bellman-Ford algorithm.

We distinguish between two cases. If £,,,, > 2n — 2, we claim that the value of
the social optimum is min{d(qo,v) + d(v,v) : v € V}. If £0. < 2n — 2, then we
claim that the value of the social optimum is the minimum value of d;(qo, v) +d; (v, v),
where v € V,0 <1 < gz, 0 < J < lpaz — i, and if j = 0, then i = £,45.

We start with the first case. Assume £,,4,, > 2n — 2. Let ALG = min{d(qo,v) +
d(v,v) : v € V'}. Recall that S* is the social optimum profile, and OPT = cost(S™).
For the first direction, we claim that ALG < OPT. Let 7 be arun in S* of length £,,, .,
where we assume 7 is a sequence of transitions. Clearly, OPT > cost(7). Since ALG
takes the minimum over all vertices, it suffices to prove that cost(m) > d(qo, v)+d(v,v)
for some v € V. We view 7 as a path in the graph G, and we claim that 7 contains a
sub-path that starts in go and ends in v and a sub-path that is a cycle from v to itself, for
some v € V. Thus, OPT > cost(w) > cost(x)+cost(y) > d(qo,v)+d(v,v) > ALG.
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We continue to prove the claim. Since ¢,,,,, > n, there is a vertex v that appears twice
in . We split 7 into two paths, at the first appearance of v. That is, 7 = x - 3/, where
x is a path that ends in v and v does not appear in x again. Note that if v = ¢, then
m = . Since 7 is a legal run, it starts in ¢, and we have that z is a path from ¢g to
v. We continue to prove that there is a cycle y from v to itself that is contained in 7/'.
Indeed, since v appears at least twice in 7, and since 3’ is a sequence of transitions that
starts in v, we have that v appears in y’ at least twice, and we are done.

We continue to prove that ALG > OPT. Let v € V be the vertex that attains the
minimum in min{d(q,v) + d(v,v) : v € V}.Let 7 = 71 - 72 be a run such that 7
is a simple path from qg to v with cost(7;) = d(qo,v) and 73 is a simple cycle from
v to itself with cost(r2) = d(v,v). We claim that cost(7) > OPT. Since 71 and 7o
are simple, we have |[71| < n — 1 and |5| < n — 1. Thus, |7| < 2n — 2. We extend
T to a path of length ¢,,,,, by traversing the loop 75 many times. Clearly, 7 is a legal
run of the automaton A on a word of length ¢,,,,. Consider the profile S in which
the players choose runs that are prefixes of 7. Since the only transitions used in S
are those in 7, we have cost(S) = cost(r). Since S* is the social optimum, we have
ALG = cost(S) > cost(S*) = OPT, and we are done.

The case in which ¢,,,, < 2n — 2 is proven in a similar manner. O

Proof of Theorem[5; We start with membership in NP. Given a WFA A with objectives
Lyq,..., L, and value ¢ € R, we can guess a witness profile P and check whether it
satisfies cost(P) < ¢ in polynomial time.

For proving hardness, we show a reduction from the Set-Cover (SC) problem. Con-
sider an input (U, S, m) to SC. Recall that U = {1,...,n} is a set of elements,
S = {Cy,...,C.} C 2Y is a collection of subsets of elements of U, and m € IN.
Then, (U, S, m) is in SC iff there is a subset S” of S of size at most m that covers U.
That is, |S'| <mand Jgcq C =U.

Given an input (U, S, m) to SC, we construct a game (A, O) such that (U, S, m) is
in SC iff the SO in the game is at most [. The game is a one-player game. We start by
describing the specification L of the player. The alphabet of L is SUU and it is given by
the regular expression (C1+...+Cp,)-1-(C1+...+Cp)-2-...-(C1+...+Cp) -n.
The WFA A is over the alphabet S U U. There is a single initial state ¢;,, and a state for
every setin S. For 1 < i < z, there is a C;-labeled transition from g;,, to the state C;,
and for every j € Cj, there is a j-labeled transition from the state C; back to g;,,. The
first type of transitions cost 1 and the second cost 0 (for an example see Fig.[9).

Fig.9. The WFA produced by the reduction for U = {1,2,3} and S = {{1, 2}, {2, 3}}.

We prove the correctness of the reduction: For the first direction, assume there is a
set cover of at most /. Consider the word w in which, for every 1 < j < n, the letter
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that precedes j is C; € S such that C; is in the set cover. Clearly, w € L and since it
uses at most [ letters from .S, the profile in which the player chooses it, costs at most {.
Thus, the SO is also at most [. For the other direction, assume the SO is attained in a
profile with the word w € L. It is not hard to see that the letters from .S that appear in
w form a set cover of size at most [. a

Proof of Theorem |6} Consider a resistant semi-weak game (A, O). Since A is resistant,
it has no cycles or there is a minimal lasso in .4 that satisfies the resistance requirements.
By Theorem |4 the social optimum is attained when all players use prefixes of the
cheapest run of length £,,,,(O). For 1 < i < k, let ¢; be the minimal length of a
word in L;, and assume, without loss of generality, that /1 > ¢ > ... > (. That is,
0y = limaz(0). Let S* = (mq, ..., m), where for 1 < ¢ < k, the run m; is of length ¢;
and 77 uses the lasso that is the witness for resistence, or an acyclic path if the lasso’s
length is larger than /1.

Claim. Forevery 1 < i < k, let 7} be arun of length ¢;. Then, cost;(S*) < cost;(S[i <

mi))-

We show that the claim implies that S* is a NE, and thus it implies the theorem. Indeed,
assume towards contradiction that S* is not a NE. Let 1 < ¢ < k and 7r§, such that the
best response for Player ¢ from S* is to deviate to ;. If the length of ] is ¢;, then we
reach a contradiction to the claim. Otherwise, by deviating to a prefix of 7, of length ¢;,
Player 7 only improves his payment, which is again a contradiction.

We continue to prove the claim. Assume towards contradiction that S* is not a NE.
Thus, there is an index 1 < ¢ < k such that Player ¢ prefers to deviate from 7; to 7,
and 7} is of length ¢;. We denote by S’ the resulting profile, i.e., S" = S*[i < =]. For
1 < j <k, let v; be the set of transitions that are used in 7;. Similarly, let v} be the
transitions used in 7}. We sometimes view v4, ..., v, v/ as paths rather than a sets of
transitions.

We distinguish between four cases. In the first, both v; and v} are simple paths.
Then, every transition in v; N v/} costs the same for Player ¢ in both profiles, and since
A has uniform transition costs, every transition in v/} \ v; costs at least as much as any
transition in v/} \ v;. Morevoer, since the runs are simple, the sizes of v; \ v and v} \ v;
are equal. Thus, cost;(S*) < cost;(S’), and we reach a contradiction to the fact that
Player ¢ deviates.

In the second case, v; is simple and v/} is lasso. Thus, |v}| < |v|. If [V} = |vi], we
return to the previous case. Otherwise, |v}| < |v;|. But since 1| > |v;], we reach a
contradiction to our assumption that 4 is resistent. Indeed, if 71 uses a lasso, then z/l’»
is a shorter lasso, contradicting the minimality of the witness lasso for resistence. If 7y
does not use a lasso, then we reach a contradiction to our assumption that the witness
lasso has length greater than /;.

In the third case, v; is a lasso and v/ is simple. Thus, v; = v4. Consider a transition
e € v;. Let z, and z/, be the number of times Player ¢ uses e in 7; and 7}, respec-
tively. Let y. and y/, be the number of times the other players use e in S* and in 5,
respectively. Thus, 2. > 0 and y. > 0. Also, 2/, < 1 and y/, = y.. Consider transitions
e, e’ € v; having /. = 1 and 2., = 0. That is, Player ¢ reduces his number of uses
of transition e from z. to 1 and does not use €’ at all in 7}. Since the number of times
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Player 4 uses a transition in 7} is at most 1, there are (. — 1) transitions that are not
used by Player ¢ in m; and are used once in 7}. Since v; = vy, these transitions are all
in v} \ v; and Player i pays 1 for each of them. Similarly, there are z., new transitions
in v} \ v; that compensate for the fact that ¢’ is not used in ;.

We calculate cost; (S*) — cost; (S”). Consider a transition e € v;. Let costS (S*) and
cost$(S") be the cost Player ¢ pays for transition e in profiles S* and S’, respectively.
If 2/, = 1, then by the above

T 1
cost$ (S*) — cost§ (') = < - + (e — 1)) =
(87) = costi(§) = 2 — (——g + (@~ 1)
_ Ieyeereerf 7yexg 7933 7ygze <0
(Ye + ze) - (ye+1) N
Similarly, if 2, = 0, then the change in cost incurred by e is:
cost(S*) — cost{(S') = T 2.<0

B Ye + Te

Since cost;(S*) — cost;i(S") = D .c A cost§(S*) — costf(S’), we have cost;(S*) —
cost;(S”) <0, and thus cost;(S*) < cost;(S"), which is a contradiction to the fact that
Player ¢ deviates.

We continue to the final case in which both v; and v/} are lassos. As in the previous
case, v; = v1. Recall that the lasso v is the lasso that is the witness for the resistance
of A. We show that the lasso v/ violates our requirement for »; and thus we reach a
contradiction. Let 1 = u - v, where u is a simple path from the initial state and v is a
simple cycle. Thus,

cost;(S*) = cost;(S*,u) + cost;(S*,v) < costy(S*,unNv)) + |u\ vi| + |v|.
Also,
cost;(S") = cost; (S, unv))+cost; (S, viNv)+|vi\v| > cost;(S*, unv))+ v \vi.
Subtracting both inequalities we get:
costi(S*) — cost;(S") < |u\ V| + |v] — v} \ vil.
Since cost;(S*) — cost;(S’) > 0, we get:
i\l >\ v+ o,

which is a contradiction to the resistance of A, and we are done. O

B Directed Acyclic Automata
When the automaton includes no directed cycles, the runs selected by the players must

be simple. In this case, we get a potential game, where the potential function is identical
to the one used in the analysis of the classical network design game [2]. Specifically, let

20



kp(e) be the number of runs that use the transition e at least once in a profile P, and let
D(P) =3 .cpcle) H(kp(e)), where H(0) = 0,and H(k) =1+ 1/2+...+ 1/k.
Then, ¢(P) is a potential function whose value reduces with any improving step of a
player, thus a pure NE exists and BRD is guaranteed to converge.

Using the analysis of [2], it holds that PoS(DAG) < Hj. We conjecture that
for single-lettered all-accepting instances the price of stability is lower than Hy, and is
bounded by 25:1 21-%1, which tends to 2 for k& — oo. The lower bound follows from
the claim below. Proving the upper bound is an open problem.

Claim 8.1: For any € > 0, the PoS for directed acyclic automata and single-lettered

all-accepting instances is at least Zf:l 2%1 — €

Proof. Consider the automaton given in Fig. Each transition is marked by its cost.
Assume that for 1 < j < k, the language L; is a word of length j. Let €; be a small
constant defined such that €; > 2¢;_1, and € = Zf;ll €;. The automaton consists of k
disjoint runs. Path j for 1 < j < k has length k£ — 5 + 1. The first transition of run j has

cost 57—+ — €;. All other transitions are free.

Fig. 10. The WFA for which the price of stability is 2% | —1+ —e.

i=1 21—1

The social optimum for this instance is achieved by choosing for all words the first
run - of length k and cost 1. We show that the unique NE is the configuration P in which
Player j selects the run of length j. The cost of this NE is Z?=1 T — 2@211 € =
Z‘?:l FT €

It is easy to verify that Py is a NE: for any j, Player j can only deviate to a longer
run. However, every longer run is utilized in P, by a single word and its cost is more
than double the current cost of Player 5. We show that F is the only NE of this instance.
Let P’ be any other configuration. Since Py # P’, there must be a run in P’ whose
prefix is shared by two or more players. Assume that a run of length j is shared by
n > 1 players. The player with the shortest length among these n has length at most
7 —n+ 1. He can deviate to the run of length 5 — n + 1 and pay W — €h—jtn—1
(or less if this run is used by additional players in P’). In P’ the cost of this player
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. 1 €k—j 1 1 €k—j
IS 5= — = However, for any n > 1, ST — €h—jtn—1 < 557 T T

contradicting the assumption that P’ is a NE. a
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