
DOI: 10.1007/s00453-006-0191-8

Algorithmica (2007) 47: 343–364 Algorithmica
© 2007 Springer Science+Business Media, Inc.

Real-Time Scheduling with a Budget1

Joseph (Seffi) Naor,2 Hadas Shachnai,3 and Tami Tamir4

Abstract. Suppose that we are given a set of jobs, where each job has a processing time, a non-negative
weight, and a set of possible time intervals in which it can be processed. In addition, each job has a processing
cost. Our goal is to schedule a feasible subset of the jobs on a single machine, such that the total weight is
maximized, and the cost of the schedule is within a given budget. We refer to this problem as budgeted real-
time scheduling (BRS). Indeed, the special case where the budget is unbounded is the well-known real-time
scheduling problem. The second problem that we consider is budgeted real-time scheduling with overlaps
(BRSO), in which several jobs may be processed simultaneously, and the goal is to maximize the time in
which the machine is utilized. Our two variants of this real-time scheduling problem have important applica-
tions, in vehicle scheduling, linear combinatorial auctions, and Quality-of-Service management for Internet
connections. These problems are the focus of this paper.

Both BRS and BRSO are strongly NP-hard, even with unbounded budget. Our main results are (2 + ε)-
approximation algorithms for these problems. This ratio coincides with the best known approximation factor
for the (unbudgeted) real-time scheduling problem, and is slightly weaker than the best known approximation
factor of e/(e− 1) for the (unbudgeted) real-time scheduling with overlaps, presented in this paper. We show
that better ratios (or simpler approximation algorithms) can be derived for some special cases, including
instances with unit-costs and the budgeted job interval selection problem (JISP). Budgeted JISP is shown to
be APX-hard even when overlaps are allowed and with unbounded budget. Finally, our results can be extended
to instances with multiple machines.

Key Words. Real-time scheduling, Job interval selection, Approximation algorithms.

1. Introduction. In the well-known real-time scheduling problem (also known as the
throughput maximization problem), we are given a set of n jobs; each job Jj has a
processing time pj , a non-negative weight wj , and a set of time intervals in which it can
be processed (given as either a window with release and due dates or as a discrete set of
possible processing intervals). The goal is to schedule a feasible subset of the jobs on a
single machine, such that the overall weight of the scheduled jobs is maximized. In this

1 A preliminary version of this paper appeared in the Proceedings of the 30th International Colloquium on
Automata, Languages, and Programming, Eindhoven, The Netherlands, 2003.
2 Computer Science Department, Technion, Haifa 32000, Israel. naor@cs.technion.ac.il. This research was
supported in part by a foundational and strategical research grant from the Israeli Ministry of Science, and by
US–Israel BSF Grant 2002276.
3 Computer Science Department, Technion, Haifa 32000, Israel. hadas@cs.technion.ac.il. On leave at Bell
Laboratories, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974, USA.
4 School of Computer Science, The Interdisciplinary Center, Herzliya, Israel. tami@idc.ac.il. Work done while
the author was at the University of Washington.

Received September 2005; revised November 2005. Communicated by A. Panconesi.
Online publication March 7, 2007.

344 J. Naor, H. Shachnai, and T. Tamir

paper we consider two variants of this problem:

(i) In the budgeted real-time scheduling (BRS) problem, each job Jj has a processing
cost cj . A budget B is given, and the goal is to find a maximum weight schedule,
among the feasible schedules whose total processing cost is at most B.

(ii) In real-time scheduling with overlaps (RSO), the jobs are scheduled on a single
non-bottleneck machine, which can simultaneously process several jobs. The goal is
to maximize the overall time in which the machine is utilized (i.e., processes at least
one job).5 In the budgeted case (BRSO), each job Jj has a processing cost cj . The
goal is to maximize the time in which the machine is utilized, among the schedules
with total processing cost at most B.

In our study of BRS, RSO, and BRSO we distinguish between discrete and continuous
instances. In the discrete case, each job Jj can be scheduled to run in one of a given set
of nj intervals Ij,� (� = 1, . . . , nj). If each job has at most k possible intervals, that is,
∀ j, nj ≤ k, then this version is called JISPk . In the continuous case, job Jj has release
date rj , due date dj , and a processing time pj . It is possible to schedule Jj in any interval
[sj , ej] such that sj ≥ rj , ej ≤ dj , and ej = sj + pj . We consider also the special case,
denoted JISP1, where each job can be processed only in the single interval Ij,1 = [rj , dj],
and pj = dj − rj .

We consider general (discrete and continuous) instances, where each job has pro-
cessing time pj , a weight wj , and a processing cost cj . For some variants we also study
classes of instances in which (i) jobs have unit-costs (that is, cj = 1, ∀ j), or (ii) for all
the jobs wj = pj .

The BRS and BRSO problems extend the classic real-time scheduling problem to
model the natural goal of gaining the maximum available service for a given budget. In
particular, the following practical scenarios yield instances of our problems.

Multivehicle scheduling on a path. The vehicle scheduling problem arises in many
applications, including robot handling in manufacturing systems and secondary storage
management in computer systems (see, e.g., [KN]). Suppose that a fleet of vehicles
needs to service requests on a path. There is an operation cost to each vehicle, and a
segment on the line in which the vehicle can provide service. Our objective is to assign
the vehicles to service requests on line segments such that the total length of the union of
the line segments, i.e., the part of the line which is covered, is maximized, yet the overall
cost is within some budget constraints. This yields an instance of the continuous BRS
problem.

Transmission of continuous-media data. In multimedia-on-demand applications, as
well in scheduling programs in cable TV, a company that wishes to broadcast a program
needs to rent a channel for the duration of the program. Consider a company that wishes
to assign a set of programs/advertisements in a set of possible time slots from a given
time interval [0, T]. Each program is targeted at a specific audience and has a revenue
associated with each time slot, defined to be the percentage of the viewers (from the

5 Note that job weights have no effect on the objective function.

Real-Time Scheduling with a Budget 345

targeted audience) in this time slot. There is also a cost associated with the assignment
of a program to a certain slot which is non-uniform, e.g., it increases in peak hours.
The company needs to schedule a subset of its programs such that the overall cost for
renting the channel is within a given budget. Since each time slot is assigned to a single
company, this is an instance of BRS.

Crew scheduling. Consider a system that operates in shifts, where each shift requires
the assignment of a crew. Any crew member provides several possible shifts in which
he/she can be assigned. Also, there is an individual payment associated with each crew
member per shift. The system has a certain budget, and the goal is to operate a maximum
number of shifts within the given time interval, under the budget constraints.

Combinatorial auctions. In auctions used in e-commerce, a buyer needs to complete
an order for a given set of goods. There is a collection of sellers, each offers a subset
(or bundle) of the goods at some cost. Each of the goods gi is associated with a weight
wi , which indicates its priority in the order. The buyer needs to satisfy a fraction of the
order of maximum weight, by selecting a subset of the offers, such that the total cost is
bounded by the buyer’s budget, B. In auctions for linear goods (see, e.g., in [T]), we
have an ordered list of m goods g1, . . . , gm , and the offers should refer to bundles of
the form gi , gi+1, . . . , gj−1, gj . Note that while selecting a subset of the offers overlaps
are allowed, i.e., the buyer may acquire more than the necessary amount from some
goods; however, this does not decrease the cost of any of the offers. Thus, this is an
instance of the BRSO problem, where any job Jj can be processed in one possible time
interval.

Recovery from power outage. Suppose that a service line needs to be fixed, following
a power outage, within a given time interval [0, T]. Several companies can send workers
to fix various parts of the line. The team of company i can handle within T time units the
recovery of a path of length li , at the cost ci . The team can work on any segment between
two endpoints si , fi (that depend on the location of the company’s service station). The
electricity company has a certain budget and the goal is to assign parts of the line to
a subset of the companies, such that the overall length that is fixed by the time T is
maximized. In this instance of our problem, two companies whose areas overlap may
be selected, so that the recovery in the area is handled more efficiently; thus, this is an
instance of continuous BRSO.

QoS upgrade in a network. Consider an end-to-end connection between s and t that
uses several Internet Service Providers (ISP). Each ISP provides a basic service (for free)
and to upgrade the service one needs to pay; that is, an ISP can decrease the delay in its
part of the path for a certain cost. (See, e.g., [LORS] and [LO].) The end-to-end delay
is additive (over all ISPs). The limited budget needs to be distributed between the ISPs.
In certain scenarios, an ISP may need to choose to upgrade only a portion of the part of
the s–t path that it controls, however, it has the freedom to choose which portion. In this
problem instance, “jobs” (upgraded segments) are allowed to overlap, therefore this is
an instance of BRSO.

346 J. Naor, H. Shachnai, and T. Tamir

1.1. Our Results. We give hardness results and approximation algorithms for BRS,
RSO, and BRSO.

Hardness results. We show that continuous RSO is strongly NP-hard.6 In the discrete
case, both BRS and BRSO are shown to be APX-hard, already for instances where ∀ j ,
nj ≤ k (JISPk), and where all the intervals corresponding to a job have the same length,
for any k ≥ 3.

Approximating BRS. We present a (2 + ε)-approximation algorithm for BRS (both
discrete and continuous). We build on the framework of Jain and Vazirani [JV], [V] for
using Lagrangian relaxation in developing approximation algorithms. Our algorithm is
based on a novel combination of Lagrangian relaxation with efficient search on the set of
feasible solutions. We show that a simple Greedy algorithm yields a 4-approximation for
discrete BRS with unit costs, where wj = pj for all j ; the same algorithm achieves the
ratio (4+ ε) in the continuous case. We demonstrate the applicability of our techniques
to the budgeted maximum weight matching problem and present a fully polynomial time
approximation scheme for it.

Approximating RSO and BRSO. We give a (2 + ε)-approximation algorithm for con-
tinuous inputs of BRSO, and a (3 + ε)-approximation for discrete inputs, using the
Lagrangian relaxation technique. For RSO we present a Greedy algorithm that achieves
the ratio of 2. An improved ratio of e/(e − 1) is obtained by a randomized algorithm
(where e denotes the base of the natural logarithm). For JISP1, we obtain an optimal
solution for instances of BRSO with unit costs, and a fully polynomial time approxima-
tion scheme (FPTAS) for arbitrary costs. Note that JISP1 is weakly NP-hard. This can
be shown by reduction from knapsack [GJ].

Extensions. Our results are shown to extend to instances of BRS and BRSO in which
the jobs can be scheduled on multiple machines.

The approximation technique that we use for deriving our (2 + ε)-approximation
results for BRS and BRSO (see in Section 2) is shown to apply to a fundamental class
of budgeted maximization problems, including throughput maximization in a system of
dependent jobs, which generalizes the BRS problem. The input is a set of jobs whose
dependencies can be modeled by a general conflict graph; the goal is to schedule a
feasible subset of the jobs of maximum weight, such that the overall processing cost is
within a given budget. The BRS problem is the special case where the conflicts among
the jobs can be modeled as an interval graph. We show that, using the technique, any
problem in the class which has an LP-based ρ-approximation with unbounded budget,
can be approximated within factor ρ + ε in the budgeted case, for any B ≥ 1.

1.2. Related Work. To the best of our knowledge, the budgeted real-time scheduling
problem is studied here for the first time. There has been extensive work on real-time
scheduling, both in the discrete and the continuous models. Garey and Johnson (see [GJ])

6 The continuous real-time scheduling problem (with no overlaps) is known to be strongly NP-hard [GJ].

Real-Time Scheduling with a Budget 347

showed that the continuous case is strongly NP-hard, while the discrete case, JISP,
was shown by Spieksma [S] to be APX-hard, already for instances of JISPk , where
k ≥ 2. Bar-Noy et al. [BG+], [BB+] and independently Berman and DasGupta [BD]
presented 2-approximation algorithms for the discrete case,7 and a (2 + ε) ratio in the
continuous case (also known as the throughput maximization problem). As shown in
[BB+], this ratio holds for an arbitrary number of machines. While none of the existing
techniques has been able to improve upon the 2 and (2+ ε) ratios for general instances
of the real-time scheduling problem, improved bounds were obtained for some special
cases. In particular, Chuzhoy et al. [COR] considered the unweighted version, for which
they gave an (e/(e − 1) + ε)-approximation algorithm, where ε is any constant. For
other special cases, they developed polynomial time approximation schemes. Finally,
some special cases of JISP were shown to be polynomially solvable (see, e.g., in [AS]
and [B]).

We are not aware of previous work on the RSO and BRSO problems. Since overlaps
are allowed, and the goal is to maximize the overall time in which the machine is
utilized, these problems can be viewed as maximum coverage problems. In previous
work on budgeted covering (see, e.g., [KMN]), the covering items are sets; once a
set is selected, the covered elements are uniquely defined. In contrast, in RSO (and
BRSO) the covering items are jobs, and we can choose the time segments (= elements)
that will be covered by a job, by determining the time interval in which this job is
processed.

Recent developments. In a recent paper [L], Levin considered the discrete variants
of BRS and BRSO. The paper shows that by applying a parametric search on the set
of feasible solutions, one can eliminate the additive factor of ε from the approximation
ratios, thus obtaining an improved bound of 2 for discrete BRS, and of 3 for discrete
BRSO.

2. Approximation via Lagrangian Relaxation.

2.1. The Technique. We describe below the general approximation technique that we
use for deriving our results for BRS and BRSO. Our approach builds on the frame-
work developed by Jain and Vazirani [JV], [V, pp. 250–251] (see also [G]), for using
Lagrangian relaxations in approximation algorithms. Our approach applies to the fol-
lowing class of subset selection problems. The input for any problem in the class consists
of a set of elements A = {a1, . . . , an}; each element aj ∈ A is associated with a weight,
wj , and the cost of adding aj to the solution set is cj ≥ 1. We have a budget B ≥ 1.
The goal is to find a subset of the elements A′ ⊆ A satisfying a given set of constraints
C1, . . . ,Cr , together with a budget constraint, such that the total weight is maximized.
We assume that any problem
 in the class satisfies the following property:

(P1) Let A′ be a feasible solution for
; then any subset A′′ ⊆ A′ is also a feasible
solution.

7 A 2-approximation for unweighted JISP is obtained by a Greedy algorithm, as shown in [S].

348 J. Naor, H. Shachnai, and T. Tamir

Denote by xj ∈ {0, 1} the indicator variable for the selection of aj . The integer
program for
 has the following form:

(
) maximize
∑
aj∈A

wj xj

subject to:

constraints: C1, . . . ,Cr ,∑
j

cj xj ≤ B.

In the linear relaxation, xj ∈ [0, 1]. The Lagrangian relaxation of the budget constraint
is

(L-
(λ)) maximize λ · B +
∑
aj∈A

(wj − cjλ)xj

subject to:

constraints: C1, . . . ,Cr .

Assume that Aπ is a ρ-approximation algorithm with respect to the optimal integral
solution for L-
(λ), for any value of λ > 0. Thus, there exist values λ1 < λ2 such that
Aπ finds integral ρ-approximate solutions x1, x2 for L-
(λ1), L-
(λ2), respectively,
and the budgets used in these solutions are B1, B2, where

B2 < B < B1.(1)

Let W1,W2 denote the weights of the solutions x1, x2, then Wi = λi B +∑aj∈A(wj −
cjλi)xi j , i ∈ {1, 2}, 1 ≤ j ≤ n. Without loss of generality, we can assume that W1,W2 ≥
1.

Following the framework in [JV], we require thatAπ satisfies the following property.
Let α = (B − B2)/(B1 − B2), then the convex combination of the solutions x1, x2,
namely, x = αx1 + (1 − α)x2, is a (fractional) ρ-approximate solution that does not
exceed the budget B. This is indeed the case if, for example, the solutions x1, x2 are
obtained from a primal–dual algorithm. In this case a convex combination of the dual
solutions corresponding to x1 and x2 can be used to prove this property. This will be
heavily used in our algorithms for the BRS and BRSO problems.

Our goal is to find a feasible integral solution whose weight is close to the weight of x.
We show that for the class of subset selection problem that we consider here, by finding
“good” values of λ1, λ2, we obtain an integral solution that is within a factor ρ+ ε from
the optimal. The running time of our algorithm is dominated by the complexity of the
search for λ1, λ2 and the running time of Aπ .

We now summarize the steps of the algorithm, AL , which gets as input the set of
elements a1, . . . , an , an accuracy parameter ε > 0, and a budget B ≥ 1:

1. Given ε > 0, let ε′ ∈ (0, ε) (to be determined).
2. Define the modified weight of an element aj to be w′j = wj/cj .

Let ω1 ≤ · · · ≤ ωR be the set of R distinct values of modified weights.
3. Find in (0, ωR) the values of λ1 < λ2

satisfying (1), such that λ2 − λ1 ≤ ε′.
4. Output the (feasible) integral solution found by Aπ for L-
(λ2).

Real-Time Scheduling with a Budget 349

Analysis. The heart of our approximation technique is the following theorem.

THEOREM 2.1. For any ε′ > 0 and λ1, λ2 satisfying (1), if 0 < λ2 − λ1 < ε′, then

PROOF. We note that, for a fixed value of λ, we can omit from the input elements
aj for which w′j = wj/cj ≤ λ. Denote by Si the feasible set of modified weights for
λi , i.e., the set of values ω� satisfying ω� ≥ λi ; then S2 ⊆ S1. Let Ai be the set of
elements selected by Aπ for the solution, for the given value λi , i = 1, 2. Clearly, for
any element aj ∈ Ai , w′j ∈ Si , i = 1, 2. We can write W1 = λ1 B +∑A1

(wj − cjλ1)

and W2 = λ2 B +∑A2
(wj − cjλ2). We handle two cases separately.

(i) The feasible sets for λ1, λ2 are identical, that is, S1 = S2. Note that, for any aj ∈ A1,
w′j = wj/cj ≥ λ2. Assume, without loss of generality, that

W2 ≥ λ2 B +
∑

A1

(wj − cjλ2)

(else, Aπ can select A1 for λ2, without harming the approximation ratio). Since
λ1 < λ2 < λ1 + ε′, it follows that

W2 > λ1 B +
∑

A1

(wj − cj (λ1 + ε′)) = W1 − ε′
∑

A1

cj ≥ W1 − ε′c.

(ii) The feasible set for λ1 contains some modified weights that are not in S2, that
is, S2 ⊂ S1. For simplicity, we assume that S1 = {ω�+1, ω�+2, . . . , ωR}, while
S2 = {ω�+2, . . . , ωR}, i.e., for some 1 ≤ � < R, ω�+1 ∈ S1 and ω�+1 /∈ S2. In
general, several modified weight values may be contained in S1 but not in S2. A
similar argument can be used in this case. Denote by Â1 the subset of elements in
A1 whose modified weights are equal to ω�+1. Then, without loss of generality, we
may assume that

W2 ≥ λ2 B +
∑

A1\ Â1

(wj − cjλ2)

(else, A2 can be replaced by A1\ Â1, without harming the approximation ratio).
Hence, we get that

W2 ≥ λ1 B +
∑

A1\ Â1

(wj − cj (λ1 + ε′))

= λ1 B +
∑

A1

(wj − λ1cj)−
∑

Â1

(wj − λ1cj)− ε′
∑

A1\ Â1

cj

= W1 −
∑

Â1

cj (ω�+1 − λ1)− ε′
∑

A1\ Â1

cj > W1 − ε′
∑

A1

cj ≥ W1 − ε′c.

The first inequality follows from the difference (λ2−λ1) being bounded by ε′; the second
inequality follows from the fact that λ1 < ω�+1 ≤ λ2, i.e., (ω�+1 − λ1) < ε′.

350 J. Naor, H. Shachnai, and T. Tamir

From Theorem 2.1 we get that

W2 ≥ (W1 − ε′c)α +W2(1− α) ≥ (W1α +W2(1− α))− ε′c
≥ (W1α +W2(1− α))(1− ε′c).

The last inequality follows from the fact that W1,W2 ≥ 1.
Let OPT denote the value of an optimal solution. Then, since the value W1α+W2(1−

α) is within factor of ρ from the optimal, we have that

W2 ≥ OPT(1− ε′c)
ρ

.

Hence, given the input parameter ε > 0, by taking ε′ = ε/(c(ρ + ε)), we get our main
result.

THEOREM 2.2. Algorithm AL achieves an approximation factor of (ρ + ε) for
.

2.2. Implementation. A simple way to find the values of λ1, λ2 in step 3 of algorithm
AL is to use a binary search over the range (0, ωR). This requires O(log(maxj (wj/cj) ·
c(ρ + ε)/ρ)) steps, which is polynomial.

Indeed, as the weights and costs in the instance may be arbitrarily large, the search
time may become large as a function of the input size, n. In the following we show that,
by allowing a small increase (of ε) in the approximation ratio, we can implement this
binary search in time that is poly-logarithmic in n and 1/ε, regardless of the weights and
the costs of the elements.

Given an instance I and an accuracy parameter ε̃, (i) we initially guess the weight
of an optimal integral solution, to within factor (1 − ε̃); that is, we find a value W̃
satisfying OPT(1 − ε̃) ≤ W̃ ≤ OPT . This can be done in O(lg(n/ε̃)) steps, since
maxj wj ≤ OPT ≤ n · maxj wj . We then omit from the input any element aj whose
weight is smaller than ε̃W̃/n. We scale the weights of the remaining elements, so that all
the weights are in the range [1, n/ε̃]. (ii) For any element aj with cj < ε̃B/n, we round
up cj to ε̃B/n. We scale the other costs, such that all costs are in [1, n/ε̃]. (iii) We scale
accordingly the size of the interval (0, ωR). Denote the resulting instance by I ′; the cost
(weight) of aj in I ′ is c′j (w′j).

Suppose that an optimal solution for I consists of the subset of elements Ao. We now
show that the overall weight of Ao in I ′, denoted by OPT ′, is at least OPT(1− 2ε̃). For
any j , set cj = c′j · ε̃B/n and wj = w′j · ε̃W̃/n. Then

OPT ′ ≥ λ2 B +
∑

aj∈Ao

(
wj − ε̃W̃

n

)
−
∑

aj∈Ao

(
cj + ε̃B

n

)
λ2

≥ λ2 B(1− ε̃)+
∑

aj∈Ao

(wj − cjλ2)− ε̃W̃

≥ OPT(1− 2ε̃).

Hence, by setting the approximation parameter in the scaling and rounding pro-
cedure to be ε̃ = ε/4(ρ + ε), and in algorithm AL (applied to the instance I ′) to
ε′ = ε/2c(ρ + ε), we get a (ρ + ε)-approximation.

Real-Time Scheduling with a Budget 351

The overall running time of AL , when applying the rounding and scaling procedure,
is O(log(n/ε̃) · log(n/ε̃ε′)) = O((log(n/ε))2) times the running time of algorithm Aπ .

2.3. Example: The Budgeted Maximum Weight Matching Problem. Let G = (V, E)
be an undirected graph and suppose that with each edge e ∈ E we associate a cost, ce,
and a weight, we, which are non-negative integers. We consider the problem of finding
a maximum weight matching in the graph G, such that the total cost of the edges in the
matching does not exceed a given budget B. The problem is NP-hard by a reduction
from knapsack [GJ].

Consider the following integer linear program for the problem. Let xe be an indicator
variable of edge e ∈ E , i.e., xe = 1 if e belongs to the matching and xe = 0 otherwise.

Maximize
∑
e∈E

wexe

subject to:

∀v ∈ V,
∑

e∈N (v) xe ≤ 1,∑
e∈E

cexe ≤ B.

We now observe that the Lagrangian relaxation of this integer program is an instance
of the maximum weight matching problem, meaning that ρ = 1. We can now ap-
ply our algorithm and obtain an FPTAS for the budgeted maximum weight matching
problem.

3. Approximation Algorithms for BRS

3.1. Unit-Cost Jobs. Consider the case where the jobs have unit costs, and wj = pj .
Indeed, in this case the budget B bounds the number of jobs that can be scheduled,
and the goal is to maximize the total processing time, or length, of the scheduled jobs.
Alternatively, our goal is to maximize the total amount of time the machine is utilized.
We show that, for such instances, we can obtain a 4-approximation, using a simple greedy
algorithm.

Assume first that each job, Jj , can be scheduled in one specific interval, [rj , dj], such
that dj − rj = pj (JISP1). Consider algorithmA1, which sorts the jobs in non-increasing
order by their processing times; then A1 scans the sorted list and schedules the next job
Jj if the machine is available in the time interval [rj , dj]. Formally,

1. Sort (and renumber) the jobs by their lengths such that p1 ≥ p2 ≥ · · ·
2. j = 1, c = 0
3. While j ≤ n and c < B

If the interval [rj , dj] is free {schedule Jj , c = c + 1}
j = j + 1

THEOREM 3.1. Algorithm A1 yields a 3-approximation to the optimal utilization in
O(n log n) steps.

352 J. Naor, H. Shachnai, and T. Tamir

Jj

JmJ�Jk

Fig. 1. Possible overlaps of OA jobs with a job Jj ∈ A.

PROOF. Let O and A denote the subsets of jobs (intervals) scheduled by an optimal
algorithm and by A1, respectively. We use the next claims.

CLAIM 3.2. If a job Jj ∈ O does not overlap with any job in A, then pj ≤ pmin(A),
where pmin(A) is the length of the shortest job in A.

PROOF. If Jj does not overlap with any job in A then it was not selected by A1 due to
the budget constraint. Thus, A1 terminates before considering Jj , after having selected
greedily B jobs, each of length at least pj .

CLAIM 3.3. There is a mapping f : O→ A, such that any subset of jobs that is mapped
to Jj ∈ A, satisfies

∑
Jk | f (k)= j pk ≤ 3pj .

PROOF. Consider first the subset of jobs in O that overlap with jobs in A. Denote this
subset by OA. Define the mapping of jobs in OA to jobs in A as follows. Scan the jobs
in A by the order they were selected, and determine f (k) = j for any job k in OA that
is not mapped yet and overlaps with Jj . Then omit these jobs from OA.

At the time Jj ∈ A is examined, Jj can overlap with at most one job, Jk that begins
before rj ; at most one job, Jm , that ends after dj ; and a set of non-overlapping jobs L ,
such that for all � ∈ L , r� ≥ rj and d� ≤ dj (see Figure 1 in which |L| = 1). We bound
the total length of these overlapping jobs.

(i) Suppose that Jk ∈ OA overlaps with Jj , and rk < rj . Since Jk does not overlap
with any other job Jr ∈ A with pr > pj , Jk was considered by A1 after Jj ; thus,
pk ≤ pj .

(ii) Clearly, the total length of jobs in L—that are disjoint and in the interval [rj , dj]—is
at most pj .

(iii) Finally, if Jj overlaps with some job Jm ∈ OA, such that rm ≥ rj and dm > dj ,
then, as in (i), since Jm does not overlap with any Jr with pr > pj , A1 considered
Jm after Jj ; therefore, pk ≤ pj .

So far the jobs of OA were mapped to at most |OA| jobs in A. We now map the
subset of jobs ŌA (that do not overlap with any job in A) to the remaining jobs of A.
Note that if ŌA is non-empty, then A1 schedules exactly B jobs. Let H ⊆ A denote the
subset of jobs from A such that no job in OA is mapped to a job in H . By the above,
|H | ≥ B − |OA| ≥ |O| − |OA| = ŌA. Moreover, by Claim 3.2, any job Jk ∈ ŌA

satisfies pk ≤ pmin(A); in particular any job in ŌA is no longer than any job in H . Thus,
each job Jk ∈ ŌA can be mapped to some job Jj in H , and pk ≤ pj .

The theorem now follows from Claim 3.3. The running time of algorithm A1 is
dominated by the initial sorting step.

Real-Time Scheduling with a Budget 353

Towards obtaining an approximation algorithm for BRS, we now consider instances
of JISPk where each job, Jj , is associated with a set of intervals, Ij , each of length pj ;
Jj can be scheduled in any of the intervals in Ij . Algorithm A2 proceeds similarly to
A1, only that when scanning the sorted list of jobs, A2 schedules the next job, Jj , if the
machine is available in any of the intervals in Ij .

1. Sort (and renumber) the jobs by their lengths such that p1 ≥ p2 ≥ · · ·
2. j = 1, c = 0.
3. While j ≤ n and c < B

If some interval in Ij is free
{schedule Jj in the earliest such interval, c = c + 1}

j = j + 1

We note that the choice to schedule a job in the earliest possible interval is arbitrary.
Any schedule that does not overlap with already-selected intervals can do.

THEOREM 3.4. Algorithm A2 yields a 4-approximation to the optimal utilization, in
O(n log n +∑j n j) steps, where nj = |Ij |.

PROOF. The proof is similar to the proof of Theorem 3.1. Let O and A denote the
subsets of jobs scheduled by an optimal algorithm and by A2, respectively. Denote by
IO and IA the sets of intervals selected in an optimal solution and by A2, respectively.
We consider both the jobs and the intervals: each interval in IO and IA is associated with
a job in O and a job in A, respectively. Claim 3.2 is generalized as follows.

CLAIM 3.5. If Jj ∈ O\A is scheduled in O in an interval that does not overlap with
any interval in IA, then pj ≤ pmin(A), where pmin(A) is the length of the shortest job
in A.

PROOF. If Jj is not selected byA2, and the interval selected for it in the optimal solution
does not overlap with any interval in IA, then it was not selected byA2 due to the budget
constraint. Thus, A2 terminates before considering Jj —after selecting greedily B jobs,
each having length at least pj .

The generalization of Claim 3.3 is valid with ratio 4, that is:

CLAIM 3.6. There is a mapping f : O→ A, such that any subset of jobs that is mapped
to Jj ∈ A satisfies

∑
Jk | f (k)= j pk ≤ 4pj .

PROOF. Consider first the subset of jobs in O whose selected intervals in IO overlap
with intervals in IA, and the jobs in O ∩ A. Note that a job which belongs to O ∩ A may
be scheduled in different (in particular, non-overlapping) intervals in these solutions.
Denote this subset by OA. Define the mapping of jobs in OA to jobs in A as follows.
Scan the intervals in A in the order they were selected. Let Ij ∈ Ij be the next interval
to be considered. Determine f (k) = j for any job Jk in OA that is not mapped yet, and
whose selected interval in IO overlaps with the interval selected for Jj in IA. In addition,

354 J. Naor, H. Shachnai, and T. Tamir

f (j) = j if j ∈ O ∩ A and was not mapped yet. This may occur if the intervals selected
for j in IO and IA are different and do not overlap with each other.

As in the proof of Claim 3.3, it holds that Jj can overlap with jobs of total length
at most 3pj . In addition, if f (j) = j but the corresponding intervals in IO and IA do
not overlap, the total length of jobs from O mapped to j is at most 4pj . Having proved
Claim 3.5, the remainder of the proof (mapping jobs in O\OA) is identical to this part
in the proof of Theorem 3.1.

The statement of the theorem follows from Claim 3.6. The running time of algorithm
A2 consists of the initial sorting step and the linear interval-consideration done for each
job in the sorted list.

Note that, for continuous inputs, we can use the above algorithm A2 with a slight
modification: instead of considering the sets of intervals associated with each job, we
examine the corresponding time window, and, while scanning the sorted list of jobs, we
schedule Jj in the earliest possible time in (rj , dj). The ratio of 4 can be shown using
arguments as in the proof of Theorem 3.4 since, once the jobs are selected for O and
A, we may consider as before the interval associated with each job. As for the running
time, we note that for each job considered by A2, we may need to examine at most n
intervals within its time window, due to the selection of other jobs. Hence, we have

COROLLARY 3.7. AlgorithmA2 yields a 4-approximation for continuous BRS with unit
costs, where wj = pj for all j , in O(n2) steps.

3.2. A (2+ε)-Approximation Algorithm. In the following we derive a (2+ε)-approx-
imation for discrete instances of BRS. A similar result can be obtained for the continuous
case, by discretizing the instance (see in [BB+]). Recall that in the discrete case, any job
Jj can be scheduled in the intervals Ij,1, . . . , Ij,nj . We define a variable x(j, �) for each
interval Ij,�, 1 ≤ j ≤ n, 1 ≤ � ≤ nj . Then the integer program for the problem is

(BRS) maximize
n∑

j=1

nj∑
�=1

wj x(j, �)

subject to:

∀ j,
nj∑
�=1

x(j, �) ≤ 1,

∀t,
∑
t∈Ij,�

x(j, �) ≤ 1,

n∑
j=1

nj∑
�=1

cj x(j, �) ≤ B.

In the linear program xj ∈ [0, 1]. Taking the Lagrangian relaxation, we get an instance
of the throughput maximization problem. As shown in [BB+], an algorithm based on
the local ratio technique yields a 2-approximation for this problem, in O(n2) steps. This
algorithm has a primal–dual interpretation; thus, we can apply the technique in Section 2

Real-Time Scheduling with a Budget 355

to obtain an algorithm, A, which uses the algorithm for throughput maximization as a
procedure.

THEOREM 3.8. Algorithm A is a (2 + ε)-approximation algorithm for both discrete
and continuous BRS. Its running time is O((n log(n/ε))2), in the discrete case, and
O((n log(n/ε))2/ε), in the continuous case.

4. Approximation Algorithms for RSO and BRSO. In this section we present ap-
proximation algorithms for the RSO and BRSO problems. In Section 4.1 we consider
RSO. We give a randomized e/(e−1)-approximation algorithm for discrete inputs; then
we describe a greedy algorithm that achieves a ratio of (2 − ε) for continuous inputs,
and (3 − ε) for discrete inputs. In Section 4.2 we show that the greedy algorithm can
be interpreted equivalently as a primal–dual algorithm. This allows us to apply the La-
grangian relaxation framework (Section 2) and to achieve a (3 + ε)-approximation for
BRSO in the discrete case, where all the intervals corresponding to a job have the same
length. For continuous inputs we obtain a (2+ ε)-approximation algorithm.

4.1. The RSO Problem. In the RSO problem we may select all the jobs, and the problem
reduces to scheduling the jobs optimally so as to maximize the total amount of time in
which the machine is utilized. Clearly, when ∀ j, pj = dj − rj , i.e., each job has only
one possible interval, the schedule in which all the jobs are selected is optimal. When
∀ j, pj ≤ dj − rj , the problem becomes hard to solve.

THEOREM 4.1. The RSO problem is strongly NP-hard.

PROOF. We show a reduction from 3-partition, which is strongly NP-hard [GJ]. An
instance of 3-partition is defined as follows:

Input: A finite set A of 3q elements, a bound B ∈ Z+, and a size s(x) for each x ∈ A,
such that each s(x) satisfies B/4 < s(x) < B/2, and

∑
x∈A s(x) = q B.

Output: Is there a partition of A into q disjoint sets, S1, S2, . . . , Sq , such that, for
1 ≤ i ≤ q,

∑
x∈Si

s(x) = B? (Note that the above constraints on the element sizes
imply that every such Si must contain exactly three elements from A.)

Given an instance of 3-partition, we construct an instance, I , for RSO such that for
some u the maximum utilization is u iff A has a 3-partition.

The instance I consists of 4q−1 jobs. Each element x ∈ A induces one job with pj =
s(x), rj = 0, and dj = q B+q−1. For additional q−1 jobs, pj = 1, rj = j (B+1)−1,
and dj = j (B + 1). That is, each additional job must be scheduled in a specific interval
of length 1. Note that

∑
j∈I pj = q B + q − 1, thus, in any schedule having utilization

q B + q − 1 all the jobs must be scheduled with no overlaps at all. In such a schedule,
the j th additional job is scheduled in the interval [j (B + 1) − 1, j (B + 1)], and the
jobs scheduled in the interval, of length B, between any two additional jobs, induce a
triplet in the partition. Therefore, an optimal schedule induces a 3-partition. For a given
partition, the additional jobs can be scheduled in their unique slots, and the jobs of

356 J. Naor, H. Shachnai, and T. Tamir

each triplet in some idle B-interval. Since the additional slots generate exactly q idle
B-intervals, all the jobs are scheduled and the utilization is q B + q − 1.

4.1.1. A Randomized e/(e− 1)-Approximation Algorithm. We start with a linear pro-
gramming formulation of RSO. Assume that the input is given in a discrete fashion, and
let b0, . . . , bm denote the set of start and end points (in sorted order), called breakpoints,
of the time intervals Ij,�, j = 1, . . . , n, � = 1, . . . , nj . We have a variable x(j, �) for
each interval Ij,�. For any pair of consecutive breakpoints bi−1 and bi , the objective
function gains (bi − bi−1) times the “coverage” of the interval [bi−1, bi]. Note that we
take the minimum between 1 and the total cover, since we gain nothing if some interval
is covered by more than one job.

(L-RSO) Maximize
∑m

i=1 min
(∑n

j=1

∑
Ij,��[bi−1,bi] x(j, �), 1

)
· (bi − bi−1)

subject to:

(2) For all jobs Jj ,

nj∑
�=1

x(j, �) ≤ 1.

(3) For all (j, �), � = 1, . . . , nj , x(j, �) ≥ 0.

We compute an optimal (fractional) solution to (L-RSO). Clearly, the value of this
solution is an upper bound on the value of an optimal integral solution. To obtain an
integral solution, we apply randomized rounding to the optimal fractional solution. That
is, for every job Jj , the probability that Jj is assigned to interval Ij,� is equal to x(j, �).
If
∑nj

�=1 x(j, �) < 1, then with probability 1 −∑nj

�=1 x(j, �) job Jj is not assigned to
any interval.

We now analyze the randomized rounding procedure. Consider two consecutive break-
points b and b′. Define for each job Jj , yj =

∑
Ij,��[b,b′] x(j, �). Clearly,

n∑
j=1

yj =
n∑

j=1

∑
Ij,��[b,b′]

x(j, �).

Without loss of generality, since each job Jj is assigned to a single interval, we can
think of all the intervals of Jj that cover [b, b′] as a single (virtual) interval that is
chosen with probability yj . The probability that none of the virtual intervals is chosen is
P0 =

∏n
j=1(1− yj). Let r = min(

∑n
j=1 yj , 1). Then

P0 ≤
n∏

j=1

(
1−

∑n
i=1 yi

n

)
=
(

1−
∑n

i=1 yi

n

)n

< e−�
n
i=1 yi ≤ e−r .

Hence, the probability that [b, b′] is covered is

1− P0 ≥ 1− e−r ≥
(

1− 1

e

)
· r ≥

(
1− 1

e

)
·min

(
n∑

j=1

yj , 1

)
.

Therefore, the expected contribution to the objective function of any interval [bi−1, bi]
is (1− 1/e) · min(

∑n
j=1 yj , 1) · (bi − bi−1). By linearity of expectation, the expected

Real-Time Scheduling with a Budget 357

value of the objective function after applying randomized rounding is

(
1− 1

e

)
·

m∑
i=1

min


 n∑

j=1

∑
Ij,��[bi−1,bi]

x(j, �), 1


 · (bi − bi−1),

yielding an approximation factor of 1− 1/e ≈ 0.63212.

4.1.2. A Greedy Approximation Algorithm. We now describe a greedy algorithm,
which yields a (2− ε)-approximation for continuous instances of RSO, and a (3− ε)-
approximation for discrete instances. Assume that minj rj = 0, and let T = maxj dj .
Let I be the set of all the jobs in the instance; U is the set of unscheduled jobs. Denote
by sj , ej the start time and completion time of the job Jj in the greedy schedule, respec-
tively. Given a partial schedule, we say that J� is redundant if we can remove J� from the
schedule without decreasing the machine utilization. Algorithm Greedy proceeds in the
interval [0, T]. The variable t denotes the time such that we can still schedule jobs in the
interval [t, T]. When considering time t , the algorithm selects an arbitrary job, among
the jobs Ji with ri < t and di > t . It schedules this job, Jk , such that its contribution to
the utilization beyond time t is maximized. More specifically, the completion time of Jk

is min(t + pj , dj). The following is a pseudocode of the algorithm:

Greedy

1. U = I, t = 0;
2. Let Jj ∈ U be a job having dj > t and rj ≤ t .

Schedule Jj such that its completion time, ej , is min(t + pj , dj).
Remove Jj from U .
For any redundant job J�, omit J� from the schedule and return it to U .

3. Let F ⊆ U be the set of unscheduled jobs, Ji ,
having di > ej .
Let tF = minJi∈F ri , and let t = max(ej , tF).
If F �= ∅ and t < T go to step 2.

In the analysis we use the following properties of the greedy schedule.

PROPERTY 4.2. Once an interval [x1, x2] ∈ [0, T] is covered by Greedy, it remains
covered until the end of the schedule.

PROOF. Follows from the fact that we remove only redundant jobs from the
schedule.

PROPERTY 4.3. When the algorithm considers time t , some job will be selected and
scheduled such that, for some ε > 0, the machine is utilized in the interval [t, t + ε].

PROOF. The proof is by induction on the iteration number. In the first iteration t = 0 =
minj rj , and the selected job will be assigned to the interval [0, pj]. We then determine
(in step 3) the value of t , to be the next time in [0, T] in which the machine is idle, and

358 J. Naor, H. Shachnai, and T. Tamir

some job Jj is available (that is, rj ≤ t and dj > t). Thus, if F �= ∅ and t < T we move
to the next iteration in which at least one job can be scheduled. Finally, by step 2 of
Greedy, the selected job, Jk , completes no later than t + pk , i.e., Jk cannot start after t .
In addition, the minimum completion time of Jk is dk = t + ε for some ε > 0. It follows
that Jk is processed in [t, t + ε].

PROPERTY 4.4. Consider the set U of non-scheduled jobs at the end of the execution of
Greedy. For any Jj ∈ U , the machine is utilized in the time interval [rj , dj).

PROOF. Assume towards contradiction that, for some Jj ∈ U , the machine becomes
idle within the interval [rj , dj). Let t1 ∈ [rj , dj) be the earliest time that this occurs.
Thus, t1 = 0 or some job, Jk , is scheduled with ek = t1. We show that after scheduling
Jk , we have, in step 3, F �= ∅, and we set t = t1 (if t1 = 0 then t = t1 = 0 when the
algorithm starts). We separately handle two cases:

(a) Jj ∈ U when Jk is scheduled; then, in step 3, Jj ∈ F (since dj > ek) and tF ≤ rj ≤
t1 = ek .

(b) Jj �∈ U when Jk is scheduled, but Jj ∈ U at the end of the schedule. This means that
Jj becomes redundant later, after we assign some job, Ji , which is currently in U .
Consider the three events of (i) scheduling Jj , (ii) scheduling Jk , and (iii) scheduling
Ji and returning Jj to U . Note that the events must occur in this order, since Jj �∈ U
when Jk is scheduled, and Jj ∈ U after Ji is scheduled. Since the algorithm proceeds
from left to right in the interval [0, T], and the order of the events is (i), (ii), and
(iii), we have ej < ek < ei . Recall that Jj is scheduled in [sj , ej] and that once Ji is
scheduled Jj becomes redundant. Therefore, si ≤ ej which implies that ri ≤ ej < ek .
In addition, since ek < ei , it follows that ek < di . Thus, in the iteration in which Jk

is scheduled, Ji ∈ F and tF ≤ ri < ek .

We conclude that, in both cases, in step 3 of the iteration in which Jk is scheduled,
max(ek, tF) = ek = t1, therefore we set t = ek . Also, F �= ∅, since it contains at least
Jj or Ji . Thus, the algorithm proceeds to step 2 with t = t1. By Property 4.3, an interval
[t1, t1 + ε] will be covered in the next iteration. By Property 4.2, this interval remains
covered until the end of the schedule, in contradiction to the assumption that t1 is the
leftmost non-covered point in [rj , dj].

THEOREM 4.5. Greedy yields a (2− ε)-approximation for continuous RSO.

PROOF. Let S = I\U denote the set of jobs scheduled by Greedy, and let O ⊆ S
denote the set of scheduled job such that Jj ∈ O iff Jj overlaps with another scheduled
job, Jk , and ej > ek .

(i) By Property 4.4, for any Jj ∈ U , the machine is utilized in the time interval [rj , dj].
(ii) For any Jj ∈ S, if sj > rj then the machine is utilized in the time interval [rj , sj];

otherwise, Greedy would have scheduled it earlier.
(iii) For any Jj ∈ O , the machine is utilized in the time interval [rj , dj]. This follows

from (ii) and from the fact that ej = dj (otherwise, Jj would not overlap with a job
that completes earlier).

Real-Time Scheduling with a Budget 359

Given the schedule of Greedy, we allow OPT to add jobs in U and to shift the jobs
in S in any way that increases the utilization. Consider the three disjoint sets of jobs,
U, O, S\O . By the above discussion, utilization can be increased only by shifting to the
left (i.e., scheduling earlier) the jobs in S\O . Note that, at any time t ∈ [0, T], at most
one job Jk ∈ S\O is processed (if two or more jobs overlap then only the one with the
earliest completion time is in S\O). Assume that Jk overlaps in the Greedy schedule
with another job for a time interval of length (1−εk)pk , for some 0 < εk ≤ 1. Then OPT
may start processing Jk earlier, such that it does not overlap with any other job. Hence,
OPT can increase the amount of time the machine is utilized in the Greedy schedule at
most by a factor of (2− ε), for some ε > 0.

Analysis for discrete inputs. For instances of JISPk , we can apply Greedy with the
following modification. Instead of considering the single release time and due date of a
job, Jj , we consider the next interval, Ij,�, that includes or starts after time t . It is easy to
verify that Properties 4.2–4.4 still hold (in Property 4.4 the machine is utilized in

⋃
� Ij,�,

for any Jj ∈ U). However, the proof of Theorem 4.5 is no longer valid. It may be the case
that for a job Jj that is scheduled with overlaps, there is an interval, Ij,� (starting later
than the interval selected for processing Jj), in which the machine is idle. This means
that OPT can gain by using this “idle” interval for processing Jj . Since redundant jobs
are removed by Greedy, we can only have two overlapping jobs at any point of time. By
selecting alternative processing intervals for each such pair of jobs, and adding to the
schedule another, non-scheduled, job, OPT can now triple the total machine utilization.
Thus, we have shown

THEOREM 4.6. Greedy yields a (3− ε)-approximation for discrete RSO.

4.2. The BRSO Problem. As BRSO generalizes the RSO problem, Theorem 4.1 im-
plies that it is strongly NP-hard. For budgeted JISPk with overlaps allowed (i.e., discrete
inputs) we give an APX-hardness proof. A similar proof can be used for the case where
overlaps are not allowed (BRS).

THEOREM 4.7. The discrete BRSO is already APX-hard, for instances where∀ j, nj ≤ k
(JISPk), for any k ≥ 3.

PROOF. We use an L-reduction from the maximum 3-bounded three-dimensional match-
ing problem (3DM-3), defined as follows:

Input: A set of triplets T ⊆ X × Y × Z , where |X | = |Y | = |Z | = n; the number
of occurrences of any item of X ∪ Y ∪ Z in T is at most 3. The number of triplets is
|T | ≥ n.

Output: A three-dimensional matching in T of maximal cardinality, i.e., a sub-
set T ′ ⊆ T , such that any item in X, Y, Z appears at most once in T ′, and |T ′| is
maximal.

360 J. Naor, H. Shachnai, and T. Tamir

Kann showed in [K] that 3DM-3 is APX-hard, that is, there exists ε0 > 0 such that it
is NP-hard to decide whether an instance has a matching of size n, or if every matching
has size at most (1− ε0)n.

Given an instance of 3DM-3, construct an instance I for BRSO in which each job can
be scheduled in at most three possible intervals: Let t be the cardinality of T . Denote by
e1, . . . , et the triplets in T . All the intervals will be contained in [0, 3t].

There are 3n+ t jobs. The first 3n jobs represent the items in X, Y, Z . The last t jobs
(denoted T -jobs) represent the triplets in T .

• The parameters of the X -jobs are: pi = 1, ci = 0, and the intervals [3h, 3h + 1] for
any h such that xi ∈ eh (at most three), ∀i = 1, . . . , n.
• The parameters of the Y -jobs are: pj = 1, cj = 0, and the intervals [3h + 1, 3h + 2]

for any h such that yj ∈ eh (at most three), ∀ j = 1, . . . , n.
• The parameters of the Z -jobs are: pk = 1, ck = 0, and the intervals [3h + 2, 3h + 3]

for any h such that zk ∈ eh (at most three), ∀k = 1, . . . , n.
• The parameters of the T -jobs are: p� = 3, c� = 1, and the single interval [3�, 3(�+1)],
∀� = 0, . . . , t − 1.

The budget is B = t − n; thus, all the first 3n jobs and additional t − n (out of the
t) T -jobs can be scheduled. The idea is to divide the time interval [0, 3t] into t intervals
of length 3 each. Each such 3-interval represents one triplet in T . In the 3-interval
[3�, 3(�+ 1)] jobs from X, Y, Z that belong to e�+1, or one T -job, are scheduled.

If there is a matching of size n, then the utilization can be 3t : n 3-intervals are covered
by the jobs that form the matching, and (t − n) 3-intervals are covered by T -jobs. If
there is a matching of size (n − n1) then the maximal utilization is at most (3t − n1):
Note that at most (n − n1) 3-intervals are covered by jobs that belong to the matching;
the budget allows covering of additional (t − n) 3-intervals with T -jobs. Each of the n1

remaining 3-intervals can be utilized in at most two slots (by X -, Y -, or Z -jobs). Other
X -, Y -, or Z -jobs must overlap with T -jobs and do not contribute to the utilization. Thus,
the maximal machine utilization is 3(n − n1)+ 3(t − n)+ 2n1 = 3t − n1.

APX-hardness follows from the fact that t = O(n) for 3-bounded instances, so an
ε0-fraction of n is an ε1-fraction of 3t . Taking n1 = 3ε1t , we get that it is NP-hard to
decide whether an instance has utilization 3t , or if every schedule has utilization at most
3t (1− ε1).

4.2.1. A Primal–Dual Algorithm. We first present a primal–dual algorithm for RSO
(with unlimited budget), and show that an execution of the Greedy algorithm given
in Section 4.1.2 can be equivalently interpreted as an execution of the primal–dual al-
gorithm. Thus, the primal–dual algorithm finds a 3-approximate solution to RSO. This
allows us to apply the Lagrangian relaxation technique (presented in Section 2) to achieve
a (3+ ε)-approximation for the BRSO problem. The primal LP is equivalent to L-RSO,
given in Section 4.1.1. There is a variable x(j, �) for each interval Ij,�, and a variable zi ,
i = 1, . . . ,m, for each interval [bi−1, bi] defined by consecutive breakpoints. In the dual
LP there is a variable yj for each job Jj , and two variables, pi and qi , for each interval

Real-Time Scheduling with a Budget 361

[bi−1, bi] defined by consecutive breakpoints:

(L-RSO-Primal) Maximize
∑m

i=1 zi · (bi − bi−1)

subject to:

For all jobs Jj ,

nj∑
�=1

x(j, �) ≤ 1.

For all i = 1, . . . ,m, zi ≤ 1.

For all i = 1, . . . ,m, zi −
∑

Ij,��[bi−1,bi]

x(j, �) ≤ 0.

For all j, �, i, x(j, �), zi ≥ 0.

(L-RSO-Dual) Minimize
n∑

j=1

yj +
m∑

i=1

pi

subject to:

For all (j, �), � = 1, . . . , nj , yj −
∑

Ij,��[bi−1,bi]

qi ≥ 0.

For all i = 1, . . . ,m, pi + qi ≥ (bi − bi−1).

For all j, i, yj , pi , qi ≥ 0.

Given an integral solution for L-RSO-Primal, we say that an interval I belongs to it if
there is a job that is assigned to I . An integral solution for L-RSO-Primal is maximal if
it cannot be extended and if no interval belonging to it is contained in the union of other
intervals belonging to it.

LEMMA 4.8. Any maximal integral solution (x, z) to L-RSO-Primal is a 3-approximate
solution.

PROOF. If [bi−1, bi] is covered by (x, z), then set pi = bi − bi−1, otherwise set qi =
bi − bi−1. Clearly, this defines a feasible dual solution in which

∑m
i=1 pi =

∑m
i=1 zi ·

(bi − bi−1). Thus, it remains to bound
∑n

j=1 yj in this solution.
For each job Jj that is not assigned to any interval in (x, z), i.e., its intervals are con-

tained in intervals of other jobs, we can set yj = 0. Suppose that for job Jj , x(j, �) = 1.
Consider, for example, an interval Ij,�′ , � �= �′, that contains two consecutive breakpoints
bi−1 and bi such that [bi−1, bi] is not covered by any job. In this case qi = bi − bi−1 and
yj ≥ qi . Thus, in order to bound

∑n
j=1 yj , we say that the values of qi s that determine

the yj s “charge” the pi values corresponding to the breakpoints covered by Ij,�. This can
be done since all the intervals in which Jj can be scheduled have the same length. Since
our primal solution is maximal, any point is covered by at most two intervals to which
jobs are assigned, and therefore any variable pi can be “charged” by intervals belonging

362 J. Naor, H. Shachnai, and T. Tamir

to at most two different jobs. Thus,
∑

j yj ≤ 2
∑

i pi , proving that

m∑
i=1

pi =
m∑

i=1

zi · (bi − bi−1) ≤
n∑

j=1

yj +
m∑

i=1

pi ≤ 3 ·
m∑

i=1

pi ,

meaning that (x, z) is a 3-approximate solution.

Continuous input. For continuous instances, time can be discretized such that each
time slot is of size ε. This will incur a (1+ε′) degradation in the objective function where
ε′ = poly(ε, n). We can show that for a discrete input obtained from a discretization of
a continuous input instance, the primal–dual algorithm yields a 2-approximate solution.
Applying the Lagrange relaxation technique (presented in Section 2), for the budgeted
problem we get the following.

THEOREM 4.9. BRSO can be approximated within factor (2 + ε) in the continuous
case, and (3+ ε) in the discrete case, in O((n log(n/ε))2) steps.

4.3. An FPTAS for JISP1. For instances of BRSO where pj = dj − rj (JISP1), we
use a reduction to the budgeted longest path problem in acyclic graphs to obtain an
optimal polynomial time algorithm for unit costs, and an FPTAS for general instances.
In the budgeted longest path problem, we are given an acyclic graph, G(V, E); each
edge e ∈ E has a length �(e), and a cost c(e). Our goal is to find the longest path in
G connecting two given vertices s, t , whose price is bounded by a given budget B. The
problem is polynomially solvable for unit edge costs, and has an FPTAS for arbitrary
costs [H].

Given an instance of BRSO where ∀ j , pj = dj − rj , construct the following graph,
G. Each job j is represented by a vertex; there is an edge e = (i, j) iff di < dj and
ri ≤ rj . The length of the edge is �(e) = min(dj − di , pj), and its cost is cj . Note that
�(e) reflects the machine utilization gained if the deadlines of Ji , Jj are adjacent to each
other in the schedule. In addition, each vertex j is connected to the source, s, where
�(s, j) = pj and c(s, j) = cj , and to a sink t , where �(j, t) = 0 and c(s, j) = 0.

THEOREM 4.10. There is a schedule achieving utilization of u time units and having
cost b ≤ B if and only if G contains a path of length u and price b.

PROOF. For a given schedule, sort the jobs in the schedule such that dj1 ≤ dj2 ≤ · · · ≤
djw . Without loss of generality, the schedule does not include two jobs Ji , Jj such that
rj < ri and di < dj , since in such a schedule we gain nothing from processing Ji . Thus,
we can assume that rji ≤ rji+1 , ∀1 ≤ i ≤ w. This implies that the graph G contains the
path s, j1, j2, . . . , jw, t (the first and last edges in this path exist by the structure of G).
Suppose that the utilization of the schedule is u and its cost is b. We show that the length
of the corresponding path in G is u and its cost is b. Recall that the edge (jw, t) has length
0 and costs nothing, thus, we consider only the first w edges in this path. The utilization
we gain from scheduling ji is pji if i = 1 and min(pji , dji − dji−1) if 1 < i ≤ w. This
is exactly �(ji−1, ji) (or �(s, j1) for the first vertex in the path). Also, the cost of the

Real-Time Scheduling with a Budget 363

schedule is the total processing cost of the scheduled jobs, which is identical to the total
cost of edges in the path.

For a given directed path in G, we schedule all the jobs whose corresponding vertices
appear on the path. Note that the price of the path consists of the price of the participating
vertices, thus, b is also the price of the schedule. Also, as discussed above �(i, j) reflects
the contribution of the corresponding job to the utilization, thus the path induces a
schedule with the correct utilization and cost.

5. Multiple Machines. Suppose that there are m identical machines, and a budget
B, which can be distributed in any way among the machines. It can be shown that this
model is equivalent to the single machine case, by concatenating the schedules on the m
machines to a single schedule in the interval [0,mT], on a single machine. Thus, all of
our results carry over to this model.

When a budget is specified for each machine, we show that any approximation algo-
rithm A for a single machine can be run iteratively on the machines and the remaining
jobs, to obtain a similar approximation ratio. Denote this algorithm by A∗.

THEOREM 5.1. IfA is an r-approximation then the iterative algorithmA∗ is an (r+1)-
approximation.

PROOF. For a given optimal schedule, OPT , let Si denotes the jobs in the i th machine
that were not scheduled by A∗. Let Ai denote the jobs assigned to Mi by A∗. Let
w(j), (w(S)) denote the weight of a job j (a set S of jobs). First note that for all i ,
w(Ai) ≥ (1/r)w(Si). This holds since algorithm A is an r -approximation and Si was
available to A when it considered Mi .

Summing over all the machines we get that w(A∗) =∑i w(Ai) ≥ (1/r)
∑

i w(Si).
There are two cases:

1.
∑

i w(Si) ≥ (r/(r + 1))w(OPT), and then w(A∗) ≥ (1/(r + 1))w(OPT).
2.
∑

i w(Si) < (r/(r + 1))w(OPT), and then, by the definition of Si , all the other jobs
(whose weight is at least 1/(r + 1) of OPT) are scheduled by A∗.

Note that in most cases A∗ performs better. For example, when we iterate Greedy
(Section 4.1.2) for the RSO problem, it can be seen that the proof for a single machine
is valid also for multiple machines, thus Greedy is a (2− ε)-approximation algorithm.

Our results can also be extended to apply for the case where the processing costs of
the jobs are machine dependent, that is, the cost of processing Jj on the kth machine is
cjk , 1 ≤ j ≤ n, 1 ≤ k ≤ m.

Acknowledgments. We thank Shmuel Zaks for encouraging us to work on RSO and its
variants. We thank Magnús Halldórsson and Baruch Schieber for valuable discussions.
We thank David Amzallag for providing us with the budgeted maximum weight matching
example.

364 J. Naor, H. Shachnai, and T. Tamir

References

[AS] E.M. Arkin and E.B. Sliverberg. Scheduling jobs with fixed start and end times. Discrete Applied
Mathematics, 18:1–8, 1987.

[B] P. Baptiste. Polynomial time algorithms for minimizing the weighted number of late jobs on a single
machine with equal processing times. Journal of Scheduling, 2:245–252, 1999.

[BD] P. Berman and B. DasGupta. Multi-phase algorithms for throughput maximization for real-time
scheduling. Journal of Combinatorial Optimization, 4:307–323, 2000.

[BB+] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified approach to approxi-
mating resource allocation and scheduling. Journal of the ACM, 48:1069–1090, 2001.

[BG+] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the throughput of real-time multiple
machine scheduling. SIAM Journal on Computing, 31:331–352, 2001.

[COR] J. Chuzhoy, R. Ostrovsky, and Y. Rabani. Approximation algorithms for the job interval selection
problem and related scheduling problems. In Proceedings of FOCS, 2001.

[G] N. Garg. A 3-approximation for the minimum tree spanning k vertices. Proceedings of FOCS, pages
302–309, 1996.

[GJ] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco, CA, 1979.

[H] R. Hassin. Approximation schemes for the restricted shortest path problem. Mathematics of Oper-
ations Research, 17(1):36–42, 1992.

[JV] K. Jain and V. Vazirani. Approximation algorithms for metric facility location and k-median prob-
lems using the primal–dual schema and Lagrangian relaxation. Journal of the ACM, 48(2):274–269,
2001.

[K] V. Kann. Maximum bounded 3-dimensional matching is max SNP-complete. Information Process-
ing Letters, 37:27–35, 1991.

[KMN] S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage problem. Information Process-
ing Letters, 70(1):39–45, 1999.

[KN] Y. Karuno and H. Nagamochi. 2-Approximation algorithms for the multi-vehicle scheduling on a
path with release and handling times. Discrete Applied Mathematics, 129:433–447, 2003.

[L] A. Levin. Real time scheduling with a budget: parametric-search is better than binary search.
Manuscript, 2005.

[LO] D. H. Lorenz and A. Orda. Optimal partition of QoS requirements on unicast paths and multicast
trees. IEEE/ACM Transactions on Networking, 10(1):102–114, 2002.

[LORS] D. H. Lorenz, A. Orda, D. Raz, and Y. Shavitt. Efficient QoS partition and routing of unicast and
multicast, Proceedings of the Eighth International Workshop on Quality of Service (IWQoS 2000),
Pittsburgh, pages 75–83, June 2000.

[S] F.C.R. Spieksma. On the approximability of an interval scheduling problem. Journal of Scheduling,
2:215–227, 1999.

[T] M. Tennenholtz. Some tractable combinatorial auctions. Proceedings of AAAI/IAAI, pages 98–103,
2000.

[V] V. Vazirani. Approximation Algorithms. Springer-Verlag, New York, 2001.

