An Optimal Decomposition Algorithm for
Tree Edit Distance

Erik D. Demaine, Shay Mozes*, Benjamin Rossman, and Oren Weimann

MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA.
edemaine@mit.edu,shaymozes@gmail.com,brossman@mit.edu,oweimann@mit.edu

Abstract. The edit distance between two ordered rooted trees with ver-
tex labels is the minimum cost of transforming one tree into the other
by a sequence of elementary operations consisting of deleting and re-
labeling existing nodes, as well as inserting new nodes. In this paper,
we present a worst-case O(n3)-time algorithm for this problem, improv-
ing the previous best O(n®logn)-time algorithm [7]. Our result requires
a novel adaptive strategy for deciding how a dynamic program divides
into subproblems, together with a deeper understanding of the previ-
ous algorithms for the problem. We prove the optimality of our algo-
rithm among the family of decomposition strategy algorithms—which
also includes the previous fastest algorithms—by tightening the known
lower bound of 2(n?log®n) [4] to 2(n?®), matching our algorithm’s run-
ning time. Furthermore, we obtain matching upper and lower bounds of
©(nm*(1+log)) when the two trees have sizes m and n where m < n.

1 Introduction

The problem of comparing trees occurs in diverse areas such as structured text
databases like XML, computer vision, compiler optimization, natural language
processing, and computational biology [2,3,8,11,13]. One major application is
the analysis of RNA molecules in computational biology. The secondary structure
of RNA, which plays a significant role in its biological function [9], is naturally
represented as an ordered rooted tree [5,16]. Computing the similarity between
the secondary structure of two RNA molecules therefore helps determine the
functional similarities of these molecules.

The tree edit distance metric is a common similarity measure for rooted or-
dered trees. It was introduced by Tai in the late 1970’s [13] as a generalization
of the well-known string edit distance problem [15]. Let F and G be two rooted
trees with a left-to-right order among siblings and where each vertex is assigned
a label from an alphabet Y. The edit distance between F' and G is the minimum
cost of transforming F into G by a sequence of elementary operations consisting
of deleting and relabeling existing nodes, as well as inserting new nodes (allow-
ing at most one operation to be performed on each node). These operations are

* Work conducted while visiting MIT

illustrated in Fig. 1. The cost of elementary operations is given by two functions,
¢,y and ¢, ., where ¢, (7) is the cost of deleting or inserting a vertex with label
7, and c_,, ., (71,72) is the cost of changing the label of a vertex from 7 to 7o.
Since a deletion in F' is equivalent to an insertion in G and vice versa, we can
focus on finding the minimum cost of a sequence of just deletions and relabels
in both trees that transform F' and G into isomorphic trees.

Relabel node x to y Delete node y
</ <
) Relabel node y to x) Insert node y

Fig. 1. The three editing operations on a tree with vertex labels.

Previous results. To state running times, we need some basic notation. Let n
and m denote the sizes |F'| and |G| of the two input trees, ordered so that n > m.
Let Njeaves and Micaves denote the corresponding number of leaves in each tree,
and let npeight and Myeight denote the corresponding height of each tree, which
can be as large as n and m respectively.

Tai [13] presented the first algorithm for computing tree edit distance, which
requires O(n2, . Mi..estm) time and space, and thus has a worst-case run-
ning time of O(n3m3) = O(n%). Shasha and Zhang [11] improved this result
to an O(min{nneight, Neaves } - MIN{Mncight, Micaves } - #M) time algorithm using
O(nm) space. In the worst case, their algorithm runs in O(n?m?) = O(n*) time.
Klein [7] improved this result to a worst-case O(m?nlogn) = O(n®logn) time
algorithm using O(nm) space. These last two algorithms are based on closely
related dynamic programs, and both present different ways of computing only a
subset of a larger dynamic program table; these entries are referred to as relevant
subproblems. In [4], Dulucq and Touzet introduced the notion of a decomposition
strategy (see Section 2.3) as a general framework for algorithms that use this
type of dynamic program, and proved a lower bound of £2(nmlognlogm) time
for any such strategy. Many other solutions have been developed; see [1, 2, 14] for
surveys. Among all these algorithms, Klein’s is the fastest in terms of worst-case
time complexity, and previous improvements to Klein’s O(n3logn) time bound
were achieved only by constraining the edit operations or the scoring scheme [3,
10,12,17].

Our results. We present a new algorithm for computing the tree edit distance
that falls into the same decomposition strategy framework of [4,7,11]. In the
worst-case, our algorithm requires O(nm?(1+4log 2)) = O(n®) time and O(nm)
space. The corresponding sequence of edit operations can easily be obtained

within the same time and space bounds. We therefore improve upon all known
algorithms in the worst-case time complexity. Furthermore, we prove a worst-
case lower bound of £2(nm?(1+log 2)) time for all decomposition strategy algo-
rithms. This bound improves the previous best lower bound of £2(nm lognlogm)
time [4], and establishes the optimality of our algorithm among all decomposi-
tion strategy algorithms. Our algorithm is simple, making it easy to implement,
but the analysis of the upper and lower bound proofs is quite complicated.

Roadmap. In Section 2 we give a simple and unified presentation of the two
well-known tree edit algorithms, on which our algorithm is based, and on the
class of decomposition strategy algorithms. We present and analyze the time
complexity of our algorithm in Section 3, and prove the matching lower bound
in Section 4. Final conclusions are presented in Section 5. For brevity, some of
the proofs and an explicit O(nm) space complexity version of our algorithm will
only be presented in the full version of this paper.

2 Background and Framework

Both the existing algorithms and ours compute the edit distance of finite ordered
XY-labeled forests, henceforth forests. The unique empty forest/tree is denoted
by (. The vertex set of a forest F' is written simply as F', as when we speak of a
vertex v € F. For a forest F and v € F, o(v) denotes the X-label of v, F,, denotes
the subtree of F' rooted at v, and F' — v denotes the forest F' after deleting v.
The special case of F' — root(F') where F is a tree is denoted F°. The leftmost
and rightmost trees of F' are denoted by Lr and Rp and their roots by ¢ and
rr. We denote by F' — Lp the forest F after deleting the entire leftmost tree
Lp; similarly F — Rp. A forest obtained from F by a sequence of any number
of deletions of the leftmost and rightmost roots is called a subforest of F'.

Given forests F' and G and vertices v € F and w € G, we write ¢,_ (v) instead
of ¢, (c(v)) for the cost of deleting or inserting v, and we write c__,_, (v, w)
instead of ¢__, . (0(v),o(w)) for the cost relabeling v to w. §(F, G) denotes the
edit distance between the forests F' and G.

Because insertion and deletion costs are the same (for a node of a given label),
insertion in one forest is tantamount to deletion in the other forest. Therefore,
the only edit operations we need to consider are relabels and deletions of nodes in
both forests. In the next two sections, we briefly present the algorithms of Shasha
and Zhang, and of Klein. This presentation, inspired by the tree similarity survey
of Bille [2], is somewhat different from the original presentations and is essential
for understanding our algorithm.

2.1 Shasha and Zhang’s Algorithm [11]

Given two forests F' and G of sizes n and m respectively, the following lemma is
easy to verify. Intuitively, the lemma says that in any sequence of edit operations
the two rightmost roots in F' and G must either be matched with each other or
else one of them is deleted.

Lemma 1 ([11]). 6(F,G) can be computed as follows:
5(0,0) =0

S§(F,0)=0(F —rp,0) 4+ c,.,(rF)

5(0,G) =6(0,G —rg) + ¢4 (ra)

6(F —Tr, G) + Cua (TF)7
e §(F,G) =ming 6(F,G —rg) +c,,(ra),
6(Rp, Rg) + 0(F — Rp,G — Rg) + € (TP 7G)

Lemma 1 yields an O(m?n?) dynamic program algorithm. If we index the
vertices of the forests F' and G according to their left-to-right postorder traversal
position, then entries in the dynamic program table correspond to pairs (F’, G")
of subforests F’ of F' and G’ of G where F’ contains vertices {i1,i1 +1,...,J1}
and G’ contains vertices {iz,is + 1,...,j2} for some 1 < i3 < j; < n and
1< <2 <m.

However, as we will presently see, only O(min{nneight, Micaves}
min{Mheight, Micaves} - nm) different relevant subproblems are encountered
by the recursion computing 6(F,G). We calculate the number of relevant
subforests of F and G independently, where a forest F’ (respectively G') is
a relevant subforest of F' (respectively G) if it occurs in the computation of
0(F, Q). Clearly, multiplying the number of relevant subforests of F' and of G is
an upper bound on the total number of relevant subproblems.

We now count the number of relevant subforests of F'; the count for G is
similar. First, notice that for every node v € F, F; is a relevant subproblem.
This is because the recursion allows us to delete the rightmost root of F' repeat-
edly until v becomes the rightmost root; we then match v (i.e., relabel it) and
get the desired relevant subforest. A more general claim is stated and proved
later on in Lemma 3. We define keyroots(F) = {the root of F} U {v € F |
v has a left sibling}. It is easy to see that every relevant subforest of F is a pre-
fix (with respect to the postorder indices) of F; for some node v € keyroots(F).
If we define cdepth(v) to be the number of keyroot ancestors of v, and cdepth(F’)
to be the maximum cdepth(v) over all nodes v € F', we get that the total number
of relevant subforest of F' is at most

> |F,| =) cdepth(v) < > cdepth(F) = |F|cdepth(F).

vEkeyroots(F) vEF vEF

This means that given two trees, F' and G, of sizes n and m we can compute
0(F, Q) in O(cdepth(F)cdepth(G)nm) = O(NheightMheight™m) time. Shasha and
Zhang also proved that for any tree T of size n, cdepth(T") < min{nneight, Nleaves };
hence the result. In the worst case, this algorithm runs in O(m?n?) = O(n?*) time.

2.2 Klein’s Algorithm [7]

Klein’s algorithm is based on a recursion similar to Lemma 1. Again, we consider
forests F' and G of sizes |F| = n > |G| = m. Now, however, instead of recursing

always on the rightmost roots of F' and GG, we recurse on the leftmost roots if
|Lr| < |Rp| and on the rightmost roots otherwise. In other words, the “direc-
tion” of the recursion is determined by the (initially) larger of the two forests.
We assume the number of relevant subforests of G is O(m?); we have already
established that this is an upper bound.

We next show that Klein’s algorithm yields only O(nlogn) relevant sub-
forests of F'. The analysis is based on a technique called heavy path decomposi-
tion introduced by Harel and Tarjan [6]. Briefly: we mark the root of F as light.
For each internal node v € F, we pick one of v’s children with maximal number
of descendants and mark it as heavy, and we mark all the other children of v as
light. We define ldepth(v) to be the number of light nodes that are ancestors of
v in F, and light(F') as the set of all light nodes in F. By [6], for any forest F'
and vertex v € F, ldepth(v) <log |F|+ O(1). Note that every relevant subforest
of F' is obtained by some i < |F,| consecutive deletions from F;, for some light
node v. Therefore, the total number of relevant subforests of F' is at most

D IF| =" ldepth(v) < (log|F| + O(1)) = O(|F|log | F|).

v€Elight(F) veF veEF

Thus, we get an O(m?nlogn) = O(n3logn) algorithm for computing 6 (F, G).

2.3 The Decomposition Strategy Framework

Both Klein’s and Shasha and Zhang’s algorithms are based on Lemma 1. The dif-
ference between them lies in the choice of when to recurse on the rightmost roots
and when on the leftmost roots. The family of decomposition strategy algorithms
based on this lemma was formalized by Dulucq and Touzet in [4].

Definition 1 (Strategy, Decomposition Algorithm). Let F' and G be two
forests. A strategy is a mapping from pairs (F',G') of subforests of F and G to
{left, right}. A decomposition algorithm is an algorithm based on Lemma 1 with
the directions chosen according to a specific strategy.

Each strategy is associated with a specific set of recursive calls (or a dy-
namic program algorithm). The strategy of Shasha and Zhang’s algorithm is
S(F',G") = right for all F’,G’. The strategy of Klein’s algorithm is S(F’,G’") =
left if |Lp/| < |Rp|, and S(F',G’) = right otherwise. Notice that Shasha and
Zhang’s strategy does not depend on the input trees, while Klein’s strategy de-
pends only on the larger input tree. Dulucq and Touzet proved a lower bound
of 2(mnlogmlogn) time for any decomposition strategy algorithm.

3 The Algorithm

In this section we present our algorithm for computing §(F, G) given two trees
F and G of sizes |F| = n > |G| = m. The algorithm recursively uses a decompo-

sition strategy in a divide-and-conquer manner to achieve O(nm?(1+log 1)) =

"

Fig. 2. A tree F' with n nodes. Black nodes belong to the heavy path. White nodes are
in TopLight(F'). The size of each subtree rooted at a white node is at most 3.

O(n?) running time in the worst case. For clarity we describe the algorithm re-
cursively and analyze its time complexity. In the full version of this paper we
prove that the space complexity can be made O(mn) = O(n?).

We begin with the observation that Klein’s strategy always determines the di-
rection of the recursion according to the F-subforest, even in subproblems where
the F-subforest is smaller than the G-subforest. However, it is not straightfor-
ward to change this since even if at some stage we decide to choose the direction
according to the other forest, we must still make sure that all subproblems pre-
viously encountered are entirely solved. At first glance this seems like a real
obstacle since apparently we only add new subproblems to those that are al-
ready computed. Our key observation is that there are certain subproblems for
which it is worthwhile to choose the direction according to the currently larger
forest, while for other subproblems we had better keep choosing the direction
according to the originally larger forest.

For a tree F of size n, define the set TopLight(F') to be the set of roots of the
forest obtained by removing the heavy path of F' (i.e., the unique path starting
from the root along heavy nodes). Note that TopLight(F’) is the set of light nodes
with ldepth 1 in F' (see the definition of ldepth in section 2.2). This definition is
illustrated in Fig. 2. Note that the following two conditions are always satisfied:

(%) Z |F,| < n. Because F, and F,/ are disjoint V v,v" € TopLight(F).
vETopLight(F)
(#x) |Fy] < 5 for every v € TopLight(F). Otherwise v would be a heavy node.

THE ALGORITHM. We compute 6(F, G) recursively as follows:

(1) If |F| < |G|, compute 6(G, F') instead. That is, make F' the larger forest.

(2) Recursively compute 6(F,, Q) for all v € TopLight(F'). Along the way,
0(F, Gy,) is computed and stored for all v' not in the heavy path of F'
and for all w € G.

(3) Compute 6(F,G) using the following decomposition strategy: S(F',G') =
left if F’ is a tree, or if £g: is not the heavy child of its parent. Otherwise,

S(F',G") = right. However, do not recurse into subproblems that were
previously computed in step (2).

The algorithm is evidentally a decomposition strategy algorithm, since for
all subproblems, it either deletes or matches the leftmost or rightmost roots.
The correctness of the algorithm follows from the correctness of decomposition
strategy algorithms in general.

Time Complexity. We show that our algorithm has a worst-case runtime of
O(m?n(1+log 2)) = O(n*). We proceed by counting the number of subproblems
computed in each step of the algorithm. Let R(F,G) denote the number of
relevant subproblems encountered by the algorithm in the course of computing
o(F, Q).

In step (2) we compute 0(F,, G) for all v € TopLight(F'). Hence, the number
of subproblems encountered in this step is ZUGTopLight() R(F,,G). For step
(3), we bound the number of relevant subproblems by multiplying the number of
relevant subforests in F and in G. For G, we count all possible O(|G|?) subforests
obtained by left and right deletions. Note that for any node v’ not in the heavy
path of F, the subproblem obtained by matching v’ with any node w in G was
already computed in step (2). This is because any such v’ is contained in F), for
some v € TopLight(F'), so 6(FS,Gy,) is computed in the course of computing
0(Fy,G) (we prove this formally in Lemma 3). Furthermore, note that in step
(3), a node v on the heavy path of F' cannot be matched or deleted until the
remaining subforest of F' is precisely the tree F,. At this point, both matching
v or deleting v result in the same new relevant subforest F,’. This means that
we do not have to consider matchings of nodes when counting the number of
relevant subproblems in step (3). It suffices to consider only the |F| subforests
obtained by deletions according to our strategy. Thus, the total number of new
subproblems encountered in step (3) is bounded by |G|?|F|.

We have established that if |F'| > |G| then

R(F,G)<|GP|F|+ Y R(F,G)
vETopLight(F)
and if |F| < |G| then
R(F,G) <|FP|G|+ Y R(F,G.)

w€ETopLight(G)

We first show, by a crude estimate, that this leads to an O(n?) runtime.
Later, we analyze the dependency on m and n accurately.

Lemma 2. R(F,G) < 4(|F||G|)*/?.

Proof. We proceed by induction on |F|+|G|. The base of the induction is trivial.
For the inductive step there are two symmetric cases. If |F'| > |G| then R(F,G) <

|G]2|F| + > veTopLight(F) B(Fu, G). Hence, by the inductive assumption,

R(F,G) < |GPIFI+) A(ER[G)2 =|GPIFI+4IGP? Y R

vETopLight(F) vETopLight(F)

<|GPIF|+4|GP? Y |F,| max \/[F,]
vETopLight(F) wveTopLight(F)

F
< |GPIF|+ 4GP Fly % = |GI’|F| + VB(IFIIG*? < (1 FIIG)*?

Here we have used facts () and (xx) and the fact that |F| > |G|. The case where
|F| < |G| is symmetric. O

This crude estimate gives a worst-case runtime of O(n?). We now analyze
the dependence on m and n more accurately. Along the recursion defining the
algorithm, we view step (2) as only making recursive calls, but not producing
any relevant subproblems. Rather, every new relevant subproblem is created in
step (3) for a unique recursive call of the algorithm. So when we count relevant
subproblems, we sum the number of new relevant subproblems encountered in
step (3) over all recursive calls to the algorithm. We define sets A, B C F' as
follows:

A = {a € light(F) : |[F,| > m}
B ={be F—A:bec TopLight(F,) for some a € A}

Note that the root of F' belongs to A. Intuitively, the nodes in both A and B
are exactly those for which recursive calls are made with the entire G tree. The
nodes in B are the last ones, along the recursion, for which such recursive calls
are made. We count separately:

(i) the relevant subproblems created in just step (3) of recursive calls §(Fy, G)
for all a € A, and

(ii) the relevant subproblems encountered in the entire computation of
§(Fy, G) for all b € B (i.e.,) .5 R(Fy, G)).

Together, this counts all relevant subproblems for the original 6(F,G). To see
this, consider the original call §(F, G). Certainly, the root of F' is in A. So all
subproblems generated in step (3) of §(F,G) are counted in (i). Now consider
the recursive calls made in step (2) of §(F,G). These are precisely §(F,, G) for
v € TopLight(F). For each v € TopLight(F'), notice that v is either in A or in
B; it is in A if |F,| > m, and in B otherwise. If v is in B, then all subproblems
arising in the entire computation of §(F,,G) are counted in (ii). On the other
hand, if v is in A, then we are in analogous situation with respect to 6(F,,G) as
we were in when we considered 0(F, G) (i.e., we count separately the subproblems
created in step (3) of 6(F,,G) and the subproblems coming from §(F,,G) for
u € TopLight(F,)).

Earlier in this section, we saw that the number of subproblems created in
step (3) of 6(F,G) is |G|?|F|. In fact, for any a € A, by the same argument, the

number of subproblems created in step (3) of §(F,, G) is |G|?|F,|. Therefore, the
total number of relevant subproblems of type (i) is |G|? Y. c 4 |Fal- For v € F,
define depth 4(v) to be the number of ancestors of v that lie in the set A. We
claim that depth,(v) < 1+ log > for all v € F. To see this, consider any
sequence ag, ..., a in A where a; is a descendent of a;_y for all i € [1,k]. Note
that |Fy,| < 1|F,, | for all i € [1, k] since the a;s are light nodes. Also note that
Fay < n and that |F,, | > m by the definition of A. It follows that k& < log ™,
i.e., A contains no sequence of descendants of length > 1 + log -. So clearly
every v € I has depth4(v) <1+ log 2.
We now have the number of relevant subproblems of type (i) as

G* S [Fal = m? Y depthy(v) < m? 3 (1 +log) = m®n(1 + log).
m m
acA vEF veEF

The relevant subproblems of type (ii) are counted by 3, 5 R(F}, G). Using
Lemma 2, we have

< 3/2 3/2 3/2
> R(F, G) < AGPPY R < 4GPPY IR max / | Fb|

beB beB beB
< 4|G)P?|F|v/m = 4m>n.

Here we have used the facts that [F3] < m and), 5 |Fy| < |F| (since the
trees Fy, are disjoint for different b € B). Therefore, the total number of relevant
subproblems for §(F, G) is at most m?n(1+log) +4m?*n = O(m?*n(1+log 2)).
This implies:

Theorem 1. The runtime of the algorithm is O(m*n(1 + log 2)). O

4 A Tight Lower Bound for Decomposition Algorithms

In this section we present a lower bound on the worst-case runtime of decomposi-
tion strategy algorithms. We first give a simple proof of an £2(m?n) lower bound.
In the case where m = O(n), this gives a lower bound of £2(n?) which shows
that our algorithm is worst-case optimal among all decomposition algorithms.
To prove that our algorithm is worst-case optimal for any m < n, we analyze
a more complicated scenario that gives a lower bound of £2(m?n(1 4 log %)),
matching the running time of our algorithm, and improving the previous best
lower bound of 2(nmlognlogm) time [4].

In analyzing strategies we will use the notion of a computational path, which
corresponds to a specific sequence of recursion calls. Recall that for all subforest-
pairs (F’,G’), the strategy S determines a direction: either right or left. The re-
cursion can either delete from F’ or from G’ or match. A computational path is
the sequence of operations taken according to the strategy in a specific sequence
of recursive calls. For convenience, we sometimes describe a computational path
by the sequence of subproblems it induces, and sometimes by the actual se-
quence of operations: either “delete from the F-subforest”, “delete from the
G-subforest”, or “match”.

The following lemma states that every decomposition algorithm computes
the edit distance between every two root-deleted subtrees of F' and G.

Lemma 3. Given a decomposition algorithm with strategy S, the pair (Fy,G?)
is a relevant subproblem for all v € F' and w € G regardless of the strategy S.

The proofs of Lemmas 3 and 4 are given in the full version of this paper. Lemma 4
establishes an £2(m?n) lower bound on the number of relevant subproblems for
any strategy.

Lemma 4. For any decomposition algorithm, there exists a pair of trees (F,G)
with sizes n,m respectively, s.t. the number of relevant subproblems is £2(m?n).

This lower bound is tight when m = ©(n), since in this case our algorithm
achieves an O(n3) runtime. To establish a tight bound when m is not ©(n),
we use the following technique for counting relevant subproblems. We associate
a subproblem consisting of subforests (F’,G’) with the unique pair of vertices
(v, w) such that F,, G,, are the smallest trees containing F”, G’ respectively. For
example, for nodes v and w with at least two children, the subproblem (F?,G%))
is associated with the pair (v,w). Note that all subproblems encountered in a
computational path starting from (F2,GS)) until the point where either forest
becomes a tree are also associated with (v, w).

Lemma 5. For every decomposition algorithm, there exists a pair of trees (F, Q)
with sizes n > m s.t. the number of relevant subproblems is £2(m?nlog).

Proof. Consider the trees illustrated in Fig. 3. The n-sized tree F' is a complete
balanced binary tree, and G is a “zigzag” tree of size m. Let w be an internal
node of G with a single node w, as its right subtree and w, as a left child.
Denote m’ = |Gy,]|. Let v be a node in F such that F, is a tree of size n’ + 1
where n’ > 4m > 4m’. Denote v’s left and right children v, and v, respectively.
Note that |F,,| = |F,.| = %

Let S be the strategy of the decomposition algorithm. We aim to show that
the total number of relevant subproblems associated with (v, w) or with (v, wy)
is at least "Z/(m’ —2). Let ¢ be the computational path that always deletes from
F (no matter whether S says left or right). We consider two complementary cases.

©)

Fig. 3. The two trees used to prove £2(m*nlog) lower bound.

10

CASE 1: ”Z/ left deletions occur in the computational path ¢, and at the time of

n

the "thh left deletion, there were fewer than Z/ right deletions.

We define a set of new computational paths {c;}, <j<n! where c; deletes from
)=

F up through the jth left deletion, and thereafter deletes from F whenever S
says right and from G whenever S says left. At the time the jth left deletion
occurs, at least %/ > m/ —2 nodes remain in F,, and all m’ — 2 nodes are present
in Gy,. So on the next m’ —2 steps along c;, neither of the subtrees F,, and G,
is totally deleted. Thus, we get m’ — 2 distinct relevant subproblems associated
with (v, w). Notice that in each of these subproblems, the subtree F,, is missing
exactly j nodes. So we see that, for different values of j € [1, %] we get disjoint

sets of m’ — 2 relevant subproblems. Summing over all j, we get %(m’ - 2)
distinct relevant subproblems associated with (v, w).

CASE 2: ”I/ right deletions occur in the computational path c, and at the time
of the "Z/th right deletion, there were fewer than ”Z/ left deletions.

We define a different set of computational paths {v;}, <j<n where ; deletes
from F up through the jth right deletion, and thereafter deletes from F' whenever
S says left and from G whenever S says right (i.e., v; is ¢; with the roles of
left and right exchanged). Similarly as in case 1, for each j € [, %/] we get
m’ — 2 distinct relevant subproblems in which F,,_ is missing exactly j nodes.
All together, this gives ’jl (m' — 2) distinct subproblems. Note that since we
never make left deletions from G, the left child of wy is present in all of these
subproblems. Hence, each subproblem is associated with either (v, w) or (v, wy).

In either case, we get "Z/(m' — 2) distinct relevant subproblems associated
with (v, w) or (v,wy). To get a lower bound on the number of problems we
sum over all pairs (v, w) with G, being a tree whose right subtree is a single
node, and |F,| > 4m. There are 7 choices for w corresponding to tree sizes 4;
for j € [1,7%]. For v, we consider all nodes of F' whose distance from a leaf is
at least log(4m). For each such pair we count the subproblems associated with
(v,w) and (v, wy). So the total number of relevant subproblems counted in this

way is

F, x 1 logn n '% '
Z‘ el =2 = IR W -2 = Y 5> 2)
Jj=1 i=log 4m j=1
n
= 2(m?nlog) O

Theorem 2. For every decomposition algorithm and n > m, there exist trees
F and G of sizes O(n) and ©(m) s.t. the number of relevant subproblems is
2(m?*n(1 + log 1)).

Proof. If m = O(n) then this bound is 2(m?n) as shown in Lemma 4. Otherwise,
this bound is 2(m?nlog) which was shown in Lemma 5. O

11

5

Conclusions

We presented a new O(n?)-time and O(n?)-space algorithm for computing the
tree edit distance between two rooted ordered trees. Our algorithm is both sym-
metric in its two inputs as well as adaptively dependent on them. These features
make it faster than all previous algorithms in the worst case. Furthermore, we
proved that our algorithm is optimal within the broad class of decomposition
strategy algorithms, by improving the previous lower bound for this class. Our
algorithm is simple to describe and implement; our implementation in Python
spans just a few dozen lines of code.

References

1.

2.

3.

10.

11.

12.

13.

14.
15.

16.

17.

A. Apostolico and Z. Galil, editors. Pattern matching algorithms. Oxford Univer-
sity Press, Oxford, UK, 1997.

P. Bille. A survey on tree edit distance and related problems. Theoretical computer
science, 337:217-239, 2005.

S. S. Chawathe. Comparing hierarchical data in external memory. In Proceedings
of the 25th International Conference on Very Large Data Bases, pages 90-101,
Edinburgh, Scotland, U.K., 1999.

S. Dulucq and H. Touzet. Analysis of tree edit distance algorithms. In Proceedings
of the 14th annual symposium on Combinatorial Pattern Matching (CPM), pages
83-95, 2003.

. D. Gustfield. Algorithms on strings, trees and sequences: computer science and

computational biology. Cambridge University Press, 1997.

D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal of Computing, 13(2):338-355, 1984.

P. N. Klein. Computing the edit-distance between unrooted ordered trees. In
Proceedings of the 6th annual FEuropean Symposium on Algorithms (ESA), pages
91-102, 1998.

P. N. Klein, S. Tirthapura, D. Sharvit, and B. B. Kimia. A tree-edit-distance
algorithm for comparing simple, closed shapes. In Proceedings of the 11th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 696704, 2000.

P.B Moore. Structural motifs in RNA. Annual review of biochemistry, 68:287-300,
1999.

S.M. Selkow. The tree-to-tree editing problem. Information Processing Letters,
6(6):184-186, 1977.

D. Shasha and K. Zhang. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing, 18(6):1245-1262, 1989.
D. Shasha and K. Zhang. Fast algorithms for the unit cost editing distance between
trees. Journal of Algorithms, 11(4):581-621, 1990.

K. Tai. The tree-to-tree correction problem. Journal of the Association for Com-
puting Machinery (JACM), 26(3):422-433, 1979.

G. Valiente. Algorithms on Trees and Graphs. Springer-Verlag, 2002.

R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168-173, 1974.

M.S. Waterman. Introduction to computational biology: maps, sequences and
genomes, chapters 13,14. Chapman and Hall, 1995.

K. Zhang. Algorithms for the constrained editing distance between ordered labeled
trees and related problems. Pattern Recognition, 28(3):463-474, 1995.

12

