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Abstract

We consider exact distance oracles for directed weighted

planar graphs in the presence of failing vertices. Given a

source vertex u, a target vertex v and a set X of k failed

vertices, such an oracle returns the length of a shortest u-to-

v path that avoids all vertices in X. We propose oracles that

can handle any number k of failures. More specifically, for a

directed weighted planar graph with n vertices, any constant

k, and for any q ∈ [1,
√
n], we propose an oracle of size

Õ(nk+3/2

q2k+1 ) that answers queries in Õ(q) time.1 In particular,

we show an Õ(n)-size, Õ(
√
n)-query-time oracle for any

constant k. This matches, up to polylogarithmic factors, the

fastest failure-free distance oracles with nearly linear space.

For single vertex failures (k = 1), our Õ(n5/2

q3
)-size, Õ(q)-

query-time oracle improves over the previously best known

tradeoff of Baswana et al. [SODA 2012] by polynomial

factors for q = Ω(nt), t ∈ (1/4, 1/2]. For multiple failures,

no planarity exploiting results were previously known.

1 Introduction

Computing shortest paths is one of the most well-
studied algorithmic problems. In the data structure
version of the problem, the aim is to compactly store
information about a graph such that the distance (or
the shortest path) between any queried pair of vertices
can be retrieved efficiently. Data structures supporting
distance queries are called distance oracles. The two
main measures of efficiency of a distance oracle are the
space it occupies and the time it requires to answer a
distance query. Another quantity of interest is the time
it takes to construct the oracle.

In recent decades researchers have investigated the
shortest path problem in graphs subject to failures,
or more broadly, to changes. One such variant is the
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replacement paths problem. In this problem we are given
a graph G and vertices u and v. The goal is to report the
u-to-v distance in G for each possible failure of a single
edge along the shortest u-to-v path. Another variant is
that of constructing a distance oracle that answers u-to-
v distance queries subject to edge or vertex failures (u, v
and the set of failures are given at query time). Perhaps
the most general of these variants is the fully-dynamic
distance oracle; a data structure that supports distance
queries as well as updates to the graph such as changes
to edge lengths, edge insertions or deletions and vertex
insertions or deletions.

One obvious but important application of handling
failures is in geographical routing. Further motivation
for studying this problem originates from Vickrey pric-
ing in networks [31, 21]; see [10] for a concise discussion
on the relation between the problems. A long-studied
generalization of the shortest path problem is the the
k-shortest path, in which not one but but several short-
est paths must be produced between a pair of vertices.
This problem reduces to running k executions of a re-
placement paths algorithm, and has many applications
itself [14].

In this paper we focus on these problems, and in
particular on handling vertex failures in planar graphs.
Observe that edge failures easily reduce to vertex fail-
ures. Indeed, by replacing each edge (a, c) of G with a
new dummy vertex b and appropriately weighted edges
(a, b) and (b, c); the failure of edge (a, c) in G corre-
sponds to the failure of vertex b in the new graph. Note
that this transformation does not depend on planarity.
In sparse graphs, such as planar graphs, this transforma-
tion only increases the number of vertices by a constant
factor. Also note that there is no such obvious reduc-
tion in the other direction that preserves planarity. In
general graphs, one can replace each vertex v by two
vertices vin and vout, assign to vin (resp. vout) all the
edges incoming to v (resp. outgoing from v) and add a
0-length directed edge e from vin to vout. The failure of
vertex v in the original graph corresponds to the failure
of edge e in the new graph. However, this transforma-
tion does not preserve planarity.
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1.1 Related Work
General Graphs. Demetrescu et al. presented an

O(n2 log n)-size oracle answering single failure distance
queries in constant time [10]. Bernstein and Karger,
improved the construction time in [5]. Interestingly,
Duan and Pettie, building upon this work, showed
an O(n2 log3 n)-size oracle that can report distances
subject to two failures, in time O(log n) [12]. Based
on this oracle, they then easily obtain an Õ(nk)-space
oracle answering distance queries in Õ(1) time for any
k ≥ 2. Oracles that require less space for more
than 2 failures have been proposed, such as the one
presented in [32], but at the expense of Ω(n) query time.
Such oracles are unsatisfactory for planar graphs, where
single source shortest paths can be computed in linear
or nearly linear time.

Planar Graphs. Exact (failure-free) distance or-
acles for planar graphs have been studied extensively
over the past three decades [11, 3, 8, 16, 29, 6, 9, 20].
The known space to query-time tradeoffs have been sig-
nificantly improved very recently [20, 9]. The currently
best known tradeoff is an oracle of size Õ(n3/2/q), that
answers queries in time Õ(q) for any q ∈ [1, n1/2] [20].
Note that all known oracles with nearly linear (i.e.
Õ(n)) space require Ω(

√
n) query time.

As for handling failures, the replacement paths
problem (i.e. when both the source and destination
are fixed in advance) can be solved in nearly linear
time [13, 26, 33]. For the single source, single failure
version of the problem (i.e. when the source vertex
is fixed at construction time, and the query specifies
just the target and a single failed vertex), Baswana et
al. [4] presented an oracle with size and construction
time O(n log4 n) that answers queries in O(log3 n) time.
They then showed an oracle of size Õ(n2/q) for the
general single failure problem (i.e. when the source,
destination, and failed vertex are all specified at query
time), that answers queries in time Õ(q) for any q ∈
[1, n1/2]. They conclude the paper by asking whether
it is possible to design a compact distance oracle for
a planar digraph which can handle multiple vertex
failures. We answer this question in the affirmative.

Fakcharoenphol and Rao, in their seminal pa-
per [16], presented distance oracles that require

O(n2/3 log7/3 n) and O(n4/5 log13/5 n) amortized time
per update and query for non-negative and arbitrary
edge-weight updates respectively.2 The space required
by these oracles is O(n log n). Klein presented a similar
data structure in [24] for the case where edge-weight up-

dates are non-negative, requiring time O(n2/3 log5/3 n).

2Though this is not mentioned in [16], the query time can be
made worst case rather than amortized by standard techniques.

Klein’s result was extended in [22], where, assum-
ing non-negativity of edge-weight updates, the authors
showed how to handle edge deletions and insertions (not
violating the planarity of the embedding), and in [23],
where the authors showed how to handle negative edge-
weight updates, all within the same time complexity. In
fact, these results can all be combined, and along with
a recent slight improvement on the running time of FR-
Dijkstra [19], they yield a dynamic distance oracle that
can handle any of the aforementioned edge updates and

queries within time O(n2/3 log5/3 n
log4/3 logn

). We further ex-

tend these results by showing that vertex deletions and
insertions can also be handled within the same time
complexity. The main challenge lies in handling ver-
tices of high degree.

For the case where one is willing to settle for approx-
imate distances, Abraham et al. [2] gave a (1+ε) labeling
scheme for undirected planar graphs with polylogarith-
mic size labels, such that a (1 + ε)-approximation of the
distance between vertices u and v in the presence of |F |
vertex or edge failures can be recovered from the labels
of u, v and the labels of the failed vertices in Õ(|F |2)
time. They then use this labeling scheme to devise a
fully dynamic (1+ ε)-distance oracle with size Õ(n) and
Õ(
√
n) query and update time.3

On the lower bounds side, it is known that an ex-
act dynamic oracle requiring amortized time O(n1/2−δ),
for any constant δ > 0, for both edge-weight updates
and distance queries, would refute the APSP conjec-
ture, i.e. that there is no truly subcubic combinatorial
algorithm for solving the all-pairs shortest path prob-
lems in weighted (general) graphs [1].

1.2 Our Results and Techniques In this work
we focus on distance queries subject to vertex failures
in planar graphs. Our results can be summarized as
follows.

1. We show how to preprocess a directed weighted
planar graph G in Õ(n) time into an oracle of size
Õ(n) that, given a source vertex u, a target vertex
v, and a set X of k failing vertices, reports the
length of a shortest u-to-v path in G\X in Õ(

√
kn)

time. See Lemma 3.2.

2. For k allowed failures, and for any r ∈ [1, n],

we show how to construct an Õ(n
k+1

rk+1

√
nr)-size

oracle that answers queries in time Õ(k
√
r). See

Theorem 4.1. For k = 1, this improves over the
previously best known tradeoff of Baswana et al. [4]
by polynomial factors for r = Ω(nt), t ∈ (1/2, 1].

3A fully dynamic distance oracle supports arbitrary edge and
vertex insertions and deletions, and length updates.
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Figure 1: Left: Tradeoff of the Space (S) vs. the Query time (Q) for exact distance oracles for a single failed
vertex (i.e. k = 1) on a doubly logarithmic scale, ignoring constant and logarithmic factors. The previous tradeoff
is indicated by a solid line, while the new tradeoff is indicated by a dashed line. Right: the same tradeoff for
k = 1, . . . , 5, shown with different colours. The points on the x-axis correspond to the result of [12], while the
new tradeoffs are indicated by dashed lines.

To the best of our knowledge, this is the first
tradeoff for k > 1. See Fig. 1.

3. We extend the exact dynamic distance oracles
mentioned in the previous section to also handle
vertex insertions and deletions without changing
their space and time bounds.

Our nearly-linear space oracle that reports dis-
tances in the presence of k failures in Õ(

√
kn) time

is obtained by adapting a technique of Fakcharoenphol
and Rao [16]. In a nutshell, a planar graph can be re-
cursively decomposed using small cycle separators, such
that the boundary of each piece in the decomposition
(i.e. the vertices of a piece that also belong to other
pieces in the decomposition) is a cycle with relatively
few vertices. Instead of working with the given pla-
nar graph, one computes distances over its dense dis-
tance graph (DDG); a non-planar graph on the bound-
ary vertices of the pieces which captures the distances
between boundary vertices within each of the underlying
pieces. Fakcharoenphol and Rao developed an efficient
implementation of Dijkstra’s algorithm on the DDG.
This algorithm, nicknamed FR-Dijkstra, runs in time
roughly proportional to the number of vertices of the
DDG (i.e. boundary vertices), rather than in time pro-
portional to the number of vertices in the planar graph.
Roughly speaking, Fakcharoenphol and Rao show that
to obtain distances from u to v with k edge failures,
it (roughly) suffices to consider just the boundary ver-
tices of the pieces in the recursive decomposition that
contain failed edges. Since pieces at the same level of
the recursive decomposition are edge-disjoint, the total
number of boundary vertices in all the required pieces
is only O(

√
kn). This Õ(n)-size, Õ(

√
kn)-query-time

oracle, supporting distance queries subject to a batch

of k edge cost updates, leads to their dynamic distance
oracle.

The difficulty in handling vertex failures is that a
high degree vertex x may be a boundary vertex of many
(possibly Ω(n)) pieces in the recursive decomposition.
Then, if x fails, one would have to consider too many
pieces and too many boundary vertices. Standard tech-
niques such as degree reduction by vertex splitting are
inappropriate because when a vertex fails all its copies
fail. To overcome this difficulty we define a variant
of the dense distance graph which, instead of captur-
ing shortest path distances between boundary vertices
within a piece, only captures distances of paths that are
internally disjoint from the boundary. We show that
such distances can be computed efficiently, and that it
then suffices to include in the FR-Dijkstra computa-
tion (roughly) only pieces that contain x, but not as a
boundary vertex. This leads to our nearly-linear-space
oracle reporting distances in the presence of k failures in
Õ(
√
kn) time (item 1 above). See Section 3. Plugging

the same technique into the existing dynamic distance
oracles extends them to support vertex deletions (item
3 above). See Section 6.

Our main result, the space vs. query-time tradeoff
(item 2 above), is obtained by a non-trivial combina-
tion of this technique with ideas from the recent static
distance oracle presented in [20]. Namely, by a combi-
nation of FR-Dijkstra on our variant of the DDG with
r-divisions, external DDGs, and efficient point location
in Voronoi diagrams. See Sections 4 and 5.

2 Preliminaries

In this section we review the main techniques re-
quired for describing our result. Throughout the pa-
per we consider a weighted directed planar graph G =
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(V (G), E(G)), embedded in the plane. (We use the
terms weight and length for edges and paths inter-
changeably throughout the paper.) We use |G| to de-
note the number of vertices in G. Since planar graphs
are sparse, |E(G)| = O(|G|) as well. For an edge (u, v),
we say that u is its tail and v is its head. dG(u, v) de-
notes the distance from u to v in G. We denote by
dG(u, v,X) the distance from u to v in G \ X, where
X ∈ V (G) or X ⊂ V (G). If the reference graph is clear
from the context we may omit the subscript. We assume
that the input graph has no negative length cycles. If it

does, we can detect this in O(n log2 n
log logn ) time by comput-

ing single source shortest paths from any vertex [30]. In
the same time complexity, we can transform the graph in
a standard way so that all edge weights are non-negative
and shortest paths are preserved. We further assume
that shortest paths are unique as required for a result
from [18] that we use; this can be ensured in O(n) time
by a deterministic perturbation of the edge weights [15].
Each original distance can be recovered from the corre-
sponding distance in the transformed graph in constant
time.

Separators and recursive decompositions in pla-
nar graphs. Miller [27] showed how to compute a Jor-
dan curve that intersects the graph at O(

√
n) nodes and

separates it into two pieces with at most 2n/3 vertices
each. Jordan curve separators can be used to recursively
separate a planar graph until pieces have constant size.
The authors of [25] show how to obtain a complete re-
cursive decomposition tree T of G in O(n) time. T is
a binary tree whose nodes correspond to subgraphs of
G (pieces), with the root being all of G and the leaves
being pieces of constant size. We identify each piece P
with the node representing it in T . We can thus abuse
notation and write P ∈ T . An r-division [17] of a planar
graph, for r ∈ [1, n], is a decomposition of the graph into
O(n/r) pieces, each of size O(r), such that each piece
has O(

√
r) boundary vertices, i.e. vertices incident to

edges in other pieces. Another usually desired prop-
erty of an r-division is that the boundary vertices lie
on a constant number of faces of the piece (holes). For
every r larger than some constant, an r-division with
this property (i.e. few holes per piece) is represented in
the decomposition tree T of [25]. Throughout the pa-
per, to avoid confusion, we use “nodes” when referring
to T and “vertices” when referring to G. We denote
the boundary vertices of a piece P by ∂P . We refer to
non-boundary vertices as internal.

Lemma 2.1. ([20]) Each node in T corresponds to a
piece such that (i) each piece has O(1) holes, (ii) the
number of vertices in a piece at depth ` in T is O(n/c`1),

for some constant c1 > 1, (iii) the number of boundary
vertices in a piece at depth ` in T is O(

√
n/c`2), for

some constant c2 > 1.

We use the following well-known bounds (see
e.g., [20]).

Proposition 2.1.
∑
P∈T |P | = O(n log n),∑

P∈T |∂P | = O(n) and
∑
P∈T |∂P |2 = O(n log n).

We show the following bound that will be used in
future proofs.

Proposition 2.2.
∑
P∈T
|P ||∂P |2 = O(n2).

Proof. Let P `1 , P
`
2 , . . . , P

`
j be the pieces at the `-th level

of the decomposition.
∑
i |P `i | = O(n) since the pieces

are edge-disjoint. We know by Lemma 2.1 that |∂P `j | ≤√
n/c`2 for all j and hence |∂P `j |2 ≤ n/c2`2 for all j. It

follows that
∑
i |P `i ||∂P `i |2 = O(n2/c2`2 ) and the claimed

bound follows by summing over all levels of T . �

Dense distance graphs and FR-Dijkstra. The
dense distance graph of a piece P , denoted DDGP is
a complete directed graph on the boundary vertices of
P . Each edge (u, v) has weight dP (u, v), equal to the
length of the shortest u-to-v path in P . DDGP can be
computed in time O(|∂P |2 + |P | log |P |) using the mul-
tiple source shortest paths (MSSP) algorithm [24, 7].
Over all pieces of the recursive decomposition this takes
time O(n log2 n) in total and requires space O(n log n)
by Proposition 2.1. We next give a —convenient for our
purposes— interface for FR-Dijkstra [16], which is an
efficient implementation of Dijkstra’s algorithm on any
union of DDGs. The algorithm exploits the fact that,
due to planarity, certain submatrices of the adjacency
matrix of DDGP satisfy the Monge property. (A ma-
trix M satisfies the Monge property if, for all i < i′ and
j < j′, Mi,j +Mi′,j′ ≤Mi′,j +Mi,j′ [28].) The interface
is specified in the following theorem, which was essen-
tially proved in [16], with some additional components
and details from [23, 30].

Theorem 2.1. ([16, 23, 30]) A set of DDGs with
O(M) vertices in total (with multiplicities), each hav-
ing at most m vertices, can be preprocessed in time and
space O(M logm) in total. After this preprocessing, Di-
jkstra’s algorithm can be run on the union of any sub-
set of these DDGs with O(N) vertices in total (with
multiplicities) in time O(N log2m), by relaxing edges
in batches. Each such batch consists of edges that have
the same tail.
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Voronoi diagrams with point location. Let P be
a directed planar graph with real edge-lengths, and no
negative-length cycles. Let S be a set of vertices that
lie on a single face of P ; we call the elements of S sites.
Each site u ∈ S has a weight ω(s) ≥ 0 associated with it.
The additively weighted distance between a site s ∈ S
and a vertex v ∈ V , denoted by dωP (s, v) is defined as
ω(s) plus the length of the s-to-v shortest path in P .

Definition 2.1. The additively weighted Voronoi dia-
gram of (S, ω) (V D(S, ω)) within P is a partition of
V (P ) into pairwise disjoint sets, one set Vor(s) for each
site s ∈ S. The set Vor(s) which is called the Voronoi
cell of s, contains all vertices in V (P ) that are closer
(w.r.t. dωP (. , .)) to s than to any other site in S
(assuming that the distances are unique). There is a
dual representation V D∗(S, ω) of a Voronoi diagram
V D(S, ω) as a planar graph with O(|S|) vertices and
edges.

Theorem 2.2. ([20, 18]) Given subsets S′1, . . . , S
′
m of

S, and additive weights ωi(u) for each u ∈ S′i, we
can construct a data structure of size O(|P | log |P | +∑
i |S′i|) that supports the following (point location)

queries. Given i, and a vertex v of P , report in
O(log2 |P |) time the site s in the additively weighted
Voronoi diagram V D(Si, ωi) such that v belongs to
Vor(s) and the distance dωi

P (s, v). The time and space

required to construct this data structure are Õ(|P ||S|2 +∑
i |S′i|).

Remark. Part of Theorem 2.2 is proved in [20], though
not stated there explicitly as a theorem. It is a tradeoff
to Theorem 1.1 of [20], requiring less space, and hence
more applicable to our problem.

3 Near linear space data structure for any
number of failures

In this section we show how to adapt the approach
of [16] for dynamic distance oracles supporting cumula-
tive edge changes to support distance queries with failed
vertices. The main technical challenge is in dealing with
failures of high-degree vertices, since such vertices may
belong to many pieces at each level of the decompo-
sition. For example, think of a failure of the central
vertex in a wheel graph, which belongs to all the pieces
in the recursive decomposition. Note that standard de-
gree reduction techniques such as vertex splitting are
not useful because when a vertex fails all its copies fail.
This is in contrast with the situation when dealing only
with edge-weight updates, since each edge can be in at
most one piece per level. We circumvent this by defin-
ing and employing the strictly internal dense distance
graph.

Definition 3.1. The strictly internal dense distance
graph of a piece P , denoted DDG◦P , is a complete
directed graph on the boundary vertices of P . An edge
(u, v) has weight d◦P (u, v) equal to the length of the
shortest u-to-v path in P that is internally disjoint from
∂P .

The sole difference to the standard Definition is
that in our case paths are not allowed to go through
∂P . Observe that the shortest path in P between
two vertices of ∂P is still represented in DDG◦P , just
not necessarily by a single edge as in DDGP . This
establishes the following lemma.

Lemma 3.1. For any piece P and any two boundary
vertices u, v ∈ ∂P , the u-to-v distance in DDG◦P equals
the u-to-v distance in DDGP .

We now discuss how to efficiently compute DDG◦P .

We construct a planar graph P̂ , by creating a copy
of P and incrementing the weight of each edge uv,
such that u ∈ ∂P , by C = 2

∑
e∈E(G) |w(e)|. DDGP̂

can be computed in O(|∂P |2 + |P | log |P |) time using
MSSP [24, 7]. Observe that any u-to-v path in P̂
that starts at ∂P̂ and is internally disjoint from ∂P̂
has exactly one edge uw with u ∈ ∂P , so its length
is at least C and less than 2C, while any u-to-v path
that has an internal vertex in ∂P is of length at least
2C. Therefore, the u-to-v distance in P̂ is equal to C
plus the length of the shortest u-to-v path in P that is
internally disjoint from ∂P if the latter one is not ∞.
We thus set d◦P (u, v) = dP̂ (u, v)−C. This completes the
description of the computation of DDG◦P . Note that
since C is defined in terms of G rather than P , edge
weights greater than C in DDG◦P effectively represent
infinite length in the sense that such edges will never be
used by any shortest path (in P nor in G). Also note
that it follows directly from the Definition of the Monge
property that subtracting C from each entry of a Monge
matrix preserves the Monge property. Therefore, we can
use

⋃
P DDG

◦
P in FR-Dijkstra (Theorem 2.1) instead of⋃

P DDGP .

Preprocessing. We compute a complete recursive de-
composition tree T of G in time O(n) as discussed
in Section 2. We compute DDG◦P for each non-leaf piece
P ∈ T and preprocess it as in FR-Dijkstra. By Proposi-
tion 2.1, Theorem 2.1 and the above discussion, the time
and space complexities are O(n log2 n) and O(n log n)
respectively.

Query. Upon query (u, v,X), for each i ∈ {u, v} ∪ X
we arbitrarily choose a leaf-piece Pi containing i, and
run FR-Dijkstra on the union of the following DDG◦s,
which we denote byD (inspect Fig. 2 for an illustration):
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1. For each w ∈ {u, v}, DDG◦Pw
of Pw \ X with

w regarded as a boundary vertex. This can be
computed on the fly in constant time since the size
of the leaf piece Pw is constant.

2. For each w ∈ {u, v}, for each strict ancestor piece
P of Pw in T , DDG◦P if P does not contain an
internal (i.e. non-boundary) vertex of X.

3. For each x ∈ X, DDG◦Px
of Px \ X. This can be

computed on the fly in constant time since the size
of the leaf piece Px is constant.

4. For each x ∈ X, for each ancestor P of Px
(including Px), DDG◦Q of the sibling Q of P if Q
does not contain an internal vertex of X.

We can identify these DDG◦s in O(k log n) time by
traversing the parent pointers from each Pi, for i ∈ X,
and marking all the nodes that have an internal failed
vertex. We make one small but crucial change to FR-
Dijkstra. When running FR-Dijkstra, we do not relax
edges whose tail is a failed vertex. This guarantees that,
although failed vertices might appear in the graph on
which FR-Dijkstra is invoked, the u-to-v shortest path
computed by FR-Dijkstra does not contain any failed
vertices. We therefore obtain the following lemma.

Lemma 3.2. There exists a data structure of size
O(n log n), which can be constructed in O(n log2 n)
time, and answer the following queries in O(

√
kn log2 n)

time. Given vertices u and v, and a set X of k failing
vertices, report the length of a shortest u-to-v path in
that avoids the vertices of X.

Proof. We have already discussed the space occupied by
the oracle and the time required to build it. It remains
to analyze the query algorithm.

Correctness. First, it is easy to see that no edge
(y, z) of any of the DDG◦s in D represents a path
containing a vertex x ∈ X, unless {y, z} ∩ X 6= ∅.
The latter case does not affect the correctness of the
algorithm, since in FR-Dijkstra we do not relax edges
whose tail is a failed vertex. Hence, the algorithm never
computes a distance corresponding to a path going
through a failed vertex.

It remains to show that the shortest path in G \X
is represented in D. For this, it suffices to prove that
for each ancestor A of Pu (and similarly of Pv), either
DDG◦A for A \ X belongs to D, or D contains enough
information to reconstruct DDG◦A for A\X (i.e. subject
to the failures) during FR-Dijkstra. In the latter case we
say that DDG◦A is represented in D. Note that, for any
piece P , DDG◦P is represented in D if the DDG◦s of its
two children in T are represented in D. If A contains no

internal failed vertex then DDG◦A is in D by point 1 or
2 above. We next consider the case that A does contain
some failed vertex x ∈ X as an internal vertex. Thus
A is an ancestor of Px. To show that A is represented
in D, we prove that for any failed vertex y ∈ X, the
DDG◦ of any ancestor of Py in T is represented in D.

We proceed by the minimal counterexample
method. For any x ∈ X, DDG◦Px

of the leaf piece
Px ∈ X is in D since it is computed on the fly in point
3. Let F be the deepest node in T that contains a failed
vertex and whose DDG◦ subject to the failures is not
represented in D. Since F contains some failed vertex
y, at least one of F ’s children in T contains a failed ver-
tex. If both children of F in T contain failed vertices,
then by the choice of the deepest such F , the DDG◦s of
both children of F are represented in D, and therefore,
so does DDG◦F , a contradiction. If, on the other hand,
one of child of F , say K, contains a failed vertex and
the other, say J , does not, we have DDG◦K represented
in D by the choice of F as deepest, and DDG◦J in D
by point 4 (J is a sibling of K with no internal failed
vertices). Thus, DDG◦F is represented in D, which is
again a contradiction.

Time complexity. Let r = n/k and consider an
r-division of G in T . The pieces of this r-division
have O( n√

r
) = O(

√
kn) boundary vertices in total and

this is known to also be an upper bound on the total
number of boundary vertices (with multiplicities) of
ancestors of pieces in this r-division (cf. the discussion
after Corollary 5.1 in [20]).

Recall that we have chosen a leaf-piece Pi for each
vertex i ∈ {u, v} ∪ X. It is easy to see that all the
pieces whose DDG◦s belong to D are either ancestors
of some Pi or siblings of such a node. This implies
that each i ∈ {u, v} ∪ X contributes the DDG◦s of at
most two pieces per level of the decomposition. Let the
ancestor of Pi that is in the r-division be Ri. For each
Pi, we only need to bound the total size of pieces it
contributes that are descendants of Ri, since we have
already bounded the total size of the rest. We do so
by applying Lemma 2.1 for the subtree of T rooted at
each Ri. (The extra O(

√
r) boundary vertices we start

with do not alter the analysis of this lemma as these
many are anyway introduced by the first separation of

Ri.) It yields 2
∑
`

√
r
c`2

, where c2 > 1, which is O(
√
r).

Summing over all k + 2 pieces Pi we obtain the upper
bound O(k

√
r) = O(

√
kn).

FR-Dijkstra runs in time proportional to the total
number of vertices of the DDG◦s in D up to a log2 n
multiplicative factor and hence the time complexity
follows. �

Remark. By using existing techniques (cf. [23, Sec-
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tion 5.4]), we can report the actual shortest path ρ in
time O(|ρ| log log ∆ρ), where ∆ρ is the maximum degree
of a vertex of ρ in G.4

4 Tradeoffs

In this section we describe a tradeoff between the size of
the oracle and the query-time. We first define another
useful modification of dense distance graphs.

Definition 4.1. The strictly external dense distance
graph of G for pieces P1, . . . , Pi (DDG

◦
ext(P1, . . . , Pi))

is a complete directed graph on the boundary vertices of
P1, . . . , Pi. The edge (u, v) has weight equal to the length

of the shortest u-to-v path in G \
(( i⋃

j=1

Pj
)
\ {u, v}

)
.

DDG◦exts can be preprocessed using Theorem 2.1
together with DDG◦s so that we can perform efficient
Dijkstra computations in any union of DDG◦exts and
DDG◦s.

The number of pieces in an r-division is at most
cn/r for some constant c. For convenience, we define

g(n, r, k) =

(
cn/r

k

)
≤ (cn)k

rkk!
≤ nk

rkk
,

where the last inequality holds for sufficiently large
k. We use g(n, r, k) throughout to encapsulate the
dependency on k.

4.1 The case of a single failure For ease of presen-
tation we first describe an oracle that can handle just a
single failure. We prove the following lemma, which is
a restricted version of our main result, Theorem 4.1.

Lemma 4.1. For any r ∈ [1, n], there exists a data

structure of size O(n
5/2

r3/2
+ n log2 n), which can be con-

structed in time Õ(n
5/2

r3/2
+ n2), and can answer the fol-

lowing queries in O(
√
r log2 n) time. Given vertices

u, v, x, report the length of a shortest u-to-v path that
avoids x.

We first perform the precomputations of Section 3.
We also obtain an r-division of G from T in O(n) time.
Let us denote the pieces of this r-division by R1, . . . , Rq.

4This remark also applies to the dynamic distance oracle

presented in Section 6. However, it does not apply to the oracles
presented in Section 4, where we use a different modification
of DDGs for which we can not afford to store the MSSP data

structures that would allow us to return the actual shortest paths
efficiently.

Warm up. We first show how to get an O(n
3

r2 )-space

oracle with Õ(
√
r) query time for a single failure using

the approach of Section 3. For each triplet Ri, Rj , Rk
of pieces in the r-division we store DDG◦ext(Ri, Rj , Rk);

these require space O(g(n, r, 3)(
√
r)2) = O(n

3

r2 ) in total.
Given u, v, x in Ru, Rv and Rx, respectively, we consider
the required DDG◦s that allow us to represent DDG◦Rj

subject to the failures for each j as in Section 3 (i.e. the
DDG◦s in items 2 and 4 in Section 3 are only taken for
ancestors of Pi that are descendants ofRj). We then run
FR-Dijkstra on these along with DDG◦ext(Ru, Rv, Rx),
not relaxing edges whose tail is x if encountered. This
takes time O(

√
r log2 n).

Main Idea for reducing the space complexity.
Instead of storing information for triplets of pieces, we
will store more information, but just for pairs. Given
u, v, x we show how to compute d(u, v, x) relying on
the information stored for the pair of pieces Ru and
Rx. We first compute the distances from u to each
w ∈ ∂Ru ∪ ∂Rx in G \ {x} using FR-Dijkstra with
DDG◦ext(Ru, Rx) as in the warm up above. We then
identify an appropriate piece Q in T that contains v,
and does not contain u nor x. Exploiting the fact that
distances within Q remain unchanged when x fails, we
employ Voronoi Diagrams with point location for the
piece Q, adapting ideas from [20].

Additional Preprocessing. For each pair of pieces
(Ri, Rj) of the r-division we compute and store the
following:

1. DDG◦ext(Ri, Rj).

2. Let S be a separator in the recursive decomposi-
tion, separating a piece into two subpieces Q and
R, such that Ri ⊆ R and Rj 6⊂ Q. For each
y ∈ ∂Ri ∪ ∂Rj , for each hole h of Q, we compute
and store a Voronoi diagram with the point loca-
tion data structure for Q, with sites the boundary
vertices of Q that lie on h, and additive weights the
distances from y to these sites inG\((Ri∪Rj)\{y}).

We now show that the space required is O(n
5/2

r3/2
+

n log2 n). The space required for the preprocessed
internal and external dense distance graphs isO(n log n)

and O(n
2

r ), respectively, by Theorem 2.1. We next
analyze the space required for storing the Voronoi

diagrams. We consider O(g(n, r, 2)) = O(n
2

r2 ) pairs of
pieces (Ri, Rj), and for each of the O(

√
r) boundary

vertices of each such pair we store, in the worst case,
a Voronoi diagram for each of the O(1) holes of each
sibling of the nodes in the root-to-Ri and root-to-Rj
paths in T . The total number of sites of all Voronoi
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Figure 2: On top: The view of a recursive decomposition tree T . With blue the pieces whose DDG◦s are
considered by points 1 and 3, with green the ones by point 2 and with red the ones by point 4. Note that a DDG◦

can be added for multiple reasons, e.g. the right child of the root must be included by both points 2 and 4. On
the bottom: A grid graph. The vertices of each cell correspond to a leaf-piece in T ; the number in each cell is
the rank of the leaf it corresponds to in a left-to-right ordering of the leaves. The separator of G is shown in red,
the separators of each of children in blue, and the ones at the lowest level in green.

diagrams we store for a pair of pieces can be upper
bounded by O(

√
n) by noting that the number of

sites at level ` of TG has O(
√
n/c`2) boundary vertices

by Lemma 2.1. By Theorem 2.2, the space required to
store a representation of a set of Voronoi diagrams with
the functionality allowing for efficient point location
queries for a piece P , with sites a subset of the boundary
vertices of P , lying on a hole h is O

(∑
P∈T (SP,h +

|P | log |P |)
)
, where SP,h is the total cardinality of these

sets of sites. Summing over all holes of all pieces P ,

noting that
∑
P∈T

∑
h SP,h = O(n

5/2

r3/2
) by the above

discussion, and using Proposition 2.1, the total space

required for all Voronoi diagrams is O(n
5/2

r3/2
+ n log2 n).

We analyze the construction time in Section 5. The
internal dense distance graphs can be computed in time
O(n log2 n). The external dense distance graphs and the

additive weights can be computed in time O(n
2

r log2 n)

and O(n
2

r

√
nr log3 n), respectively; see Lemmas 5.1

and 5.2. We show in Lemma 5.3 that we can compute all
required Voronoi diagrams in time Õ(n2 + S), where S
is the size of their representation described in Section 2.

Query. If any two of {u, v, x} are in the same piece
of the r-division, then we can use FR-Dijkstra taking
into account just two pieces of the r-division containing
u, v, and x, similarly to the description in the warm up
above. We therefore assume no two of {u, v, x} are in
the same piece of the r-division. We first retrieve a piece
Rv of the r-division, containing v (to support that, each
vertex stores a pointer to some piece of the r-division
that contains it). In the following we will need to check
whether a vertex is in some particular piece of T . This
can be done inO(log n) time by storing, for each piece in
T , a binary tree with the vertices in the piece. We then
proceed as follows (inspect Fig. 3 for an illustration).
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1. Following parent pointers of Rv in T , we find the
highest ancestor Q of Rv containing neither u nor
x. Thus, the sibling R of Q in T contains a vertex
i ∈ {u, x}. We find a descendant Ri of R that is
in the r-division and contains i. We then find any
piece Rj of the r-division containing the element of
{u, x} \ {i}. Note that, by choice of Q, Rj is not
a descendant of Q. Finding these pieces requires
time O(log2 n).

2. Let Pu be a leaf descendant ofRu in T that contains
u. We run FR-Dijksta (not relaxing edges whose
tail is x if encountered) on:

(a) DDG◦s of each of the ancestors of Pu that is a
descendant of Ru in T , including Pu and Ru;

(b) DDG◦ext(Ru, Rx);

(c) the DDG◦s that allow us to represent DDG◦Rx

subject to the failure of x as in Section 3.

This takes time O(
√
r log2 n) and returns

dG(u, y, x) for each y ∈ ∂Ru ∪ ∂Rx.

3. For each y ∈ (∂Ru ∪ ∂Rx) \ {x}, for each hole h
of Q, we perform an O(log2 n)-time query to the
Voronoi diagram stored for Ru, Rx, y, and h to get
the distance from y to v in G \ ((Ru ∪ Rx) \ {y}).
The required distance is the minimum dG(u, y, x)+
d(y, v, (Ru∪Rx)\{y}) over all y. Each query takes
O(log2 n) time and hence the total time required is
O(
√
r log2 n).

We now argue the correctness of the query algo-
rithm. Let ρ be a shortest u-to-v path that avoids x.
Let z be the last vertex of ρ that belongs to ∂Ru∪∂Rx.
Let h′ be the hole of Q such that the last vertex of ρ that
belongs to the boundary of Q belongs to hole h′. The
distance dG(u, z, x) from u to z in G \ {x} is computed
by the FR-Dijkstra computation in step 2, while the dis-
tance from z to v in G \ {x} is obtained from the query
to the Voronoi diagram stored for Ru, Rx, z, and h′. It
is easy to see that we do not obtain any distance that
does not correspond to an actual path in G \ {x} and
hence the correctness of the query algorithm follows.

4.2 Handling multiple failures The warm-up ap-
proach of Section 4.1 can be trivially generalized to
handle k failed vertices by considering (k + 2)-tuples
of pieces of the r-division. (We consider the elements of
tuples to be unordered throughout.) The space required

is Õ(g(n, r, k + 2)(
√
r)2) = Õ(n

k+2

rk+1 ) and queries can

be answered in Õ(k
√
r) time. We reduce the space to

Õ(n
k+1

rk+1

√
nr) by generalizing the main algorithm of Sec-

tion 4.1.

Preprocessing.

1. We perform the precomputations of Section 3.

2. For each (k + 1)-tuple of pieces (Ri1 , . . . , Rik+1
) of

the r-division we compute and store the following:

(a) DDG◦ext(Ri1 , . . . , Rik+1
).

(b) Let S be a separator in the recursive decom-
position, separating a piece into Q and R,
such that for some j Rij ⊆ R and none of
the other pieces of the tuple is a subgraph of

Q. For each y ∈
k+1⋃
j=1

∂Rij , for each hole h of

Q, we store a Voronoi diagram with the point
location data structure for Q, with sites the
boundary vertices of Q that lie on h, and ad-
ditive weights the distances from y to these

sites in G \
(( k+1⋃

j=1

Rij
)
\ {y}

)
.

Query. We first retrieve a piece Rv of the r-division,
containing v. We can again assume that no two elements
of {u} ∪X are in the same piece of the r-division, since
otherwise we can answer the query in O(k

√
r) time by

running FR-Dijkstra on the DDG◦ext of a (k + 1)-tuple
and the DDG◦s we add for each of the pieces in the
tuple, following the algorithm of Section 3.

The algorithm is then essentially the same as that
of Section 4.1.

1. We find the highest ancestor Q of Rv in T that
does not contain any of the elements of {u}∪X and
retrieve a descendant of its sibling in the r-division
that does contain some element i ∈ {u} ∪ X. We
then identify a piece Rj in the r-division for each
j ∈ {u} ∪X \ {i}. This requires time O(k log2 n).

2. We run FR-Dijkstra on DDG◦s of total size
O(k
√
r).

3. We perform O(k
√
r) point location queries to

Voronoi diagrams of Q, each requiring time
O(log2 n).

We hence obtain the general tradeoff theorem.

Theorem 4.1. For any integer r ∈ [1, n] and for any
integer k ≤ n

r , there exists a data structure of size

O( (cn)k+1

rk+1
1
k!

√
nkr + n log2 n), which can be constructed

in time Õ( (cn)k+1

rk+1
1
k!

√
nkr+n2), for some constant c > 1,

and can answer the following queries in O(k
√
r log2 n)

time. Given vertices u and v and a set X of at most
k failing vertices, report the length of a shortest u-to-v
path that avoids X.
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(a) root-to-Ri paths in T
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(b) The u-to-v path in G \ {x}

Figure 3: To the left: A view of the root-to-Ri paths in T . Straight edges denote edges of the tree, while snake-
shaped edges denote paths. To the right: A view of the shortest path in G. The paths in blue are represented
by the DDG◦s, the ones in green by DDG◦ext and the length of the one in red is returned by the point location
query in the Voronoi diagram.

Remark. Our distance oracle can handle any number f
of failures that lie in at most k pieces of the r-division in

time Õ((k+
√
fk)
√
r) with an Õ(n

k+1

rk+1

√
nr)-size oracle.

This follows from the fact that the DDG◦s we will add
for a piece with fi failures have total size Õ(

√
fir) by the

same analysis as in the proof of Lemma 3.2 and the fact
that, given f1, . . . , fk such that

∑k
i=1 fi = f , we have∑k

i=1

√
fi ≤

√
fk by the Cauchy-Schwarz inequality.

Proof. [of Theorem 4.1.] The correctness of the query
algorithm follows by an argument identical to the one for
the case of single failures (see Section 4.1); its time com-
plexity is analyzed above. We next analyze the space
required by our data structure and its construction time.

Space Complexity. The space occupied by the pre-
processed DDG◦s and DDG◦exts is O(n log n) and

O(g(n, r, k + 1)k2r) = O( (cn)k+1

rk+1
kr
k! ), respectively, by

Theorem 2.1.
We bound the space required for the Voronoi di-

agrams by O(g(n, r, k + 1)k
√
nkr + n log2 n) as fol-

lows. For each of the O(k
√
r) boundary vertices of

each of the O(g(n, r, k + 1)) (k + 1)-tuples, we store
a Voronoi diagram for each of the O(1) holes, of (at
most) each of the siblings of the nodes in the root-to-
Ri path in T for each Ri in the tuple. With an ar-

gument identical to the one used in the proof of The-
orem 2.1, the total number of boundary vertices (with
multiplicities) of all of these pieces is O(

√
kn). Hence

the total number of all Voronoi diagrams that we store
is O(g(n, r, k + 1)k

√
nkr). By Theorem 2.2, the size

required to store them, with the required function-
ality, is O(g(n, r, k + 1)k

√
nkr +

∑
P∈T |P | log |P |) =

O( (cn)k+1

rk+1
1
k!

√
nkr+n log2 n), where the last equality fol-

lows by Proposition 2.1.

The total space is thus O( (cn)k+1

rk+1
1
k! )(kr +

√
nkr) +

n log2 n) = O( (cn)k+1

rk+1
1
k!

√
nkr + n log2 n) since k ≤ n/r.

Preprocessing time. We compute the DDG◦exts and
the required additive weights of all (k + 1)-tuples in

time Õ( (cn)k+1

rk
1

(k−1)! ) and Õ( (cn)k+1

rk+1
1

(k−1)!

√
nkr), re-

spectively, using Lemmas 5.1 and 5.2. Finally, con-
structing the Voronoi diagrams requires time Õ(n2+S),
where S is the total size of their representation, which
is equal to the total number of sites in these diagrams
(with multiplicities), as shown in Lemma 5.3; this dom-
inates the time complexity. �

5 Efficient preprocessing

In this section we show how to efficiently compute the
data structures described in Section 4. It is shown
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in [25, Theorem 3] that, given a geometrically increasing
sequence of numbers ∇ = (r1, r2, . . . , rν), where r1 is a
sufficiently large constant, ri+1/ri = b, for all i, for some
constant b > 1, and rν = n, we can obtain r-divisions
for all r ∈ ∇ in time O(n) in total. These r-divisions
satisfy the property that a piece in the ri-division is a
—not necessarily strict— descendant (in T ) of a piece
in the rj-division for each j > i.

We first show how to efficiently compute the ex-
ternal DDGs for all k-tuples of pieces of an r-division,
r ∈ ∇.

Lemma 5.1. Given ri ∈ ∇ and an integer d ≤ n
ri
, one

can compute DDG◦ext for all d-tuples of pieces of each

rt-division, t ≥ i, in time O( (cn)d

rd−1
i

1
(d−2)! log2 n) for some

constant c > 1.

Proof. We prove this lemma by induction on ∇ from
top to bottom. For rν = n, the only piece is G,
and DDG◦ext(G) is the empty graph. Assume induc-
tively that we have DDG◦ext(R1, . . . , Rd) for every d-
tuple (R1, . . . , Rd) of pieces at the ri+1-division. Let
Q1, . . . , Qd be pieces at the ri-division. Note that ev-
ery piece at level ri is contained in some piece at level
ri+1, but a piece at level ri+1 might contain multiple
pieces at level ri. Let R1, . . . , Rd be pieces of the ri+1-
division such that each Qj is a subgraph of some Rj′ .
Let QRj

be the maximal subset of {Q1, . . . , Qd} such
that each piece in QRj

is contained in Rj . For every
j ∈ {1, . . . d} let R′j = Rj \ (

⋃
QRj ) (i.e. the allowed

internal part of Rj). Since Rj and each Qm ∈ QRj

have O(
√
ri+1) and O(

√
ri) boundary vertices respec-

tively, R′j has O(
√
ri+1 +

√
ri|QRj

|) = O(|QRj
|√ri+1)

boundary vertices (recall that ri+1/ri = b).
We compute DDG◦R′j

in a similar manner to

the query of Section 3 by running FR-Dijkstra on
the union of the following DDG◦s. For each piece
Qm ∈ QRj , for each ancestor Q of Qm (including
Qm) that is a strict descendant of Rj in T , we take
the DDG◦P of the sibling P of Q if P contains no
piece of QRj

. The pieces of QRj
have O(|QRj

|√ri)
boundary vertices in total and the total number of
boundary vertices for their ancestors is bounded by
O(|QRj |

√
ri+1). Running FR-Dijkstra from each of the

O(|QRj |
√
ri+1) boundary vertices of R′j yields DDG◦R′j

and requires O(|QRj
|√ri+1|QRj

|√ri+1 log2 n) =

O(|QRj |2ri+1 log2 n) time in total. When summing

over R1, . . . , Rd we get
∑d
j=1 |QRj

|2ri+1 log2 n ≤
ri+1 log2 n

(∑d
j=1 |QRj

|
)2

= d2ri+1 log2 n. The inequal-
ity is due to the Cauchy-Schwarz inequality and the
equality follows from the fact that

∑d
j=1 |QRj

| = d.

Let D = DDG◦ext(R1, . . . , Rd)
⋃

(
d⋃
j=1

DDG◦R′j
).

DDG◦ext(R1, . . . , Rd) and
d⋃
j=1

DDG◦R′j
contribute

O(d
√
ri+1) and O(d(

√
ri+1 +

√
ri)) boundary vertices

to D, respectively. We run FR-Dijkstra on D from
each boundary vertex of Qm for m ∈ {1, . . . d}. There
are O(d

√
ri) such boundary vertices, so this requires

O(d
√
rid(
√
ri+1 +

√
ri) log2 n) = O(d2ri+1 log2 n) time,

and yields DDG◦ext(Q1, . . . , Qd).
We can thus compute DDG◦ext(Q1, . . . , Qd) for all

d-tuples at level ri in O((g(n, ri, d)d2ri+1 log2 n) =

O( (cn)d

rdi
ri+1

1
d!d

2 log2 n) = O( (cn)d

rd−1
i

1
(d−2)! log2 n) time,

assuming that we have the DDG◦exts for all d-tuples
of pieces of rt-divisions, t > i.

The time to compute the DDG◦exts for all d-tuples
of pieces of all rt-divisions, t > i, is, inductively,
O
(
(cn)d 1

(d−2)! log2 n
∑ν
t=i+1

1

rd−1
t

)
, and

∑ν
t=i+1

1

rd−1
t

=

1

rd−1
i

∑ν−i
t=1( 1

bd−1 )t = O( 1

rd−1
i

) since bd−1 > 1. Thus

computing the DDG◦exts for d-tuples of pieces of the
ri-division dominates the time complexity. �

We next show how to efficiently compute the ad-
ditive distances with respect to which the Voronoi dia-
grams stored by our oracle are computed.

Lemma 5.2. Let Rr be an r-division, such that r ∈ ∇,
and let d ≤ n

r be an integer. For all d-tuples of pieces
R1, . . . , Rd in Rr and for all pieces Q ∈ T such that Q
does not contain any of the pieces Ri, and Q is a sibling
of a node in the root to-Ri path in T for some Ri, one

can compute the distances from each y ∈
d⋃
i=1

∂Ri to each

boundary vertex of Q in the graph G \
(( d⋃

i=1

Ri
)
\ {y}

)
in time O

( (cn)d
rd

1
(d−2)!

√
ndr log3 n

)
in total, for some

constant c > 1.

Proof. Let us consider a d-tuple of pieces (R1, . . . , Rd)
and a piece Q, satisfying the properties in the statement
of the lemma. To compute the desired distances, we run

FR-Dijkstra from each y ∈
d⋃
i=1

∂Ri on the union of the

following DDGs:

1. DDG◦Q.

2. For each piece Ri ∈ {R1, . . . , Rd} for each ancestor
A of Ri (including Ri) in T , we take the DDG◦B
of the sibling B of A if B contains no piece of
R1, . . . , Rd.

This correctly computes the distances by the same
arguments that were applied in Section 3. It remains
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to analyze the time complexity. Consider the (n/d)-
division of G in T . By the same argument that was
applied in the proof of Lemma 3.2 we can bound the
number of boundary vertices for all the included DDG◦s

by O(
√
dn). There are O(d

√
r) choices of y ∈

d⋃
i=1

∂Ri,

so the time required to run FR-Dijkstra from each y is
O(d
√
r
√
dn log2 n) = O(d

√
nrd log2 n).

Each piece Ri ∈ {R1, . . . , Rd} has O(log n)
nodes in the root-to-Ri path in T , hence com-
puting the distances for all possible choices of Q
requires time O(d2

√
nrd log3 n). Finally, in or-

der to compute the distances for all d-tuples of
pieces we need time O((g(n, r, d)d2

√
nrd log3 n) =

O(( (cn)d

rd
) 1
d!d

2
√
nrd log3 n) =

O(( (cn)d

rd
) 1
(d−2)!

√
nrd log3 n). �

Lemma 5.3. We can compute the representation of the
Voronoi diagrams described in Section 2 with respect to
sets of sites of total cardinality S, each corresponding to
a piece P ∈ T and consisting of nodes of ∂P that lie on
a single hole of P , and specifying an additive weight for
each of these nodes in time Õ(n2 + S) in total.

Proof. We apply Theorem 2.2 and construct all the
Voronoi diagrams corresponding to each of the O(1)
holes of each piece as a batch. For a hole h of a piece P ,
the time required is Õ(|P ||∂P |2 +

∑
h SP,h), where SP,h

is the total cardinality of the sets of sites corresponding
to nodes of ∂P lying on h. Then we have that∑

P∈T

(
|P ||∂P |2 +

∑
h

|SP,h|
)

= O(n2 + S),

by Proposition 2.2 and hence the stated bound follows.
�

6 Dynamic Distance Oracles can handle Vertex
Deletions

In this section we briefly explain how the techniques of
Section 3, and specifically our notion of strict dense dis-
tance graph DDG◦ can be used to facilitate vertex dele-
tions in dynamic distance oracles for planar graphs. The
dynamic distance oracle of [16] for non-negative edge-
weight updates was improved and simplified in [24].
In [24], the algorithm obtains an r-division of G, and
then computes and preprocesses the DDGs of the pieces
of the r-division in O(n log n) time to allow for FR-
Dijkstra computations in the union of these DDGs in
O( n√

r
log2 n). For a given query asking for the distance

from some vertex u to some vertex v, the algorithm per-
forms standard Dijkstra computations within the piece
containing u (resp. v) to compute the distances from

u to the boundary vertices of the piece (resp. from the
boundary vertices of the piece to v). The algorithm
then combines this with an FR-Dijkstra computation
on the boundary vertices of the r-division. Given an
edge update, only the DDG of the unique piece in the
r-division containing the updated edge needs to get up-
dated, and this requires O(r log r) time. The balance is

at r = n2/3 log2/3 n, yielding O(n2/3 log5/3 n) time per
update and query. This result was extended in [22],
where the authors showed how to allow for edge in-
sertions (not violating the planarity of the embedding)
and edge deletions and further in [23] where the authors
showed how to handle arbitrary (i.e. also negative) edge-
weight updates. The time complexity was improved by
a log4/3 log n factor in [19].

We observe that, by using DDG◦s instead of the
standard DDGs, vertex deletions can also be handled
as follows. Each vertex is either a boundary vertex
in each piece of the r-division containing it, or an
internal vertex in a unique piece. If a deleted vertex
is a boundary vertex, we just mark it as such and do
not relax edges outgoing from it during (FR-)Dijkstra
computations. If a deleted vertex is internal, we
recompute the DDG◦ of the piece containing it, and
reprocess it in time O(r log r) exactly as in the case
of edge-weight updates. The only slightly technical
issue we need to take into account is that in Section 3,
edge weights in DDG◦ are shifted by the large constant
C (recall that C is defined as twice the sum of edge
weights in the entire graph G). The problem is that
C might change after each update operation, and this
update affects the weights of all the edges in all DDG◦s.
This can be easily solved using indirection. Instead of
using the explicit value of C in each edge weight, we
represent C symbolically, and store the actual value of
C explicitly at some placeholder. Updating C can be
done in constant time because only the explicit value
at the placeholder needs to be updated. Whenever
an edge weight is required by the algorithm, it is
computed on the fly in constant time using the value
of C stored in the placeholder. The data structures
underlying FR-Dijkstra do not make use of any integer
data structures like predecessor data structures — all
used data structures are comparison based. Hence,
since the value of C is greater than all edge-weights
at the time they are built, they are identical to the
data structures that would have been built for this
piece with any subsequent value of C. Vertex additions
do not alter shortest paths, and hence can be treated
trivially. Note that, as in [22], we can afford to
recompute the entire data structure from scratch after
every O(

√
r) operations. This guarantees that the

number of vertices and number of boundary vertices
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in each piece remain O(r) and O(
√
r), respectively,

throughout. We formalize the above discussion in the
following theorem.

Theorem 6.1. A planar graph G can be prepro-

cessed in time O(n log2 n
log logn ) so that edge-weight up-

dates, edge insertions not violating the planarity of the
embedding, edge deletions, vertex insertions and dele-
tions, and distance queries can be performed in time

O(n2/3 log5/3 n
log4/3 logn

) each, using O(n) space.

7 Final Remarks

Perhaps the most intriguing open question related to
our results is whether it is possible to answer distance
queries subject to even one failure in time Õ(1) with
an o(n2)-size oracle. Recall that the best known exact
failure-free distance oracle that answers queries in Õ(1)
occupies Õ(n3/2) space [20].

References

[1] Amir Abboud and Søren Dahlgaard. Popular conjec-
tures as a barrier for dynamic planar graph algorithms.
In Irit Dinur, editor, IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-
11 October 2016, Hyatt Regency, New Brunswick, New
Jersey, USA, pages 477–486. IEEE Computer Society,
2016.

[2] Ittai Abraham, Shiri Chechik, and Cyril Gavoille.
Fully dynamic approximate distance oracles for planar
graphs via forbidden-set distance labels. In Howard J.
Karloff and Toniann Pitassi, editors, Proceedings of the
44th Symposium on Theory of Computing Conference,
STOC 2012, New York, NY, USA, May 19 - 22, 2012,
pages 1199–1218. ACM, 2012.

[3] Srinivasa Rao Arikati, Danny Z. Chen, L. Paul Chew,
Gautam Das, Michiel H. M. Smid, and Christos D.
Zaroliagis. Planar spanners and approximate shortest
path queries among obstacles in the plane. In Josep
Dı́az and Maria J. Serna, editors, Algorithms - ESA
’96, Fourth Annual European Symposium, Barcelona,
Spain, September 25-27, 1996, Proceedings, volume
1136 of Lecture Notes in Computer Science, pages 514–
528. Springer, 1996.

[4] Surender Baswana, Utkarsh Lath, and Anuradha S.
Mehta. Single source distance oracle for planar di-
graphs avoiding a failed node or link. In Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2012, Kyoto, Japan, Jan-
uary 17-19, 2012, pages 223–232, 2012.

[5] Aaron Bernstein and David R. Karger. A nearly
optimal oracle for avoiding failed vertices and edges. In
Michael Mitzenmacher, editor, Proceedings of the 41st
Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2,
2009, pages 101–110. ACM, 2009.

[6] Sergio Cabello. Many distances in planar graphs.
Algorithmica, 62(1-2):361–381, 2012.

[7] Sergio Cabello, Erin W. Chambers, and Jeff Erickson.
Multiple-source shortest paths in embedded graphs.
SIAM J. Comput., 42(4):1542–1571, 2013.

[8] Danny Z. Chen and Jinhui Xu. Shortest path queries in
planar graphs. In F. Frances Yao and Eugene M. Luks,
editors, Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, May 21-23, 2000,
Portland, OR, USA, pages 469–478. ACM, 2000.

[9] Vincent Cohen-Addad, Søren Dahlgaard, and Chris-
tian Wulff-Nilsen. Fast and compact exact distance
oracle for planar graphs. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 962–973. IEEE Computer Society,
2017.

[10] Camil Demetrescu, Mikkel Thorup, Rezaul Alam
Chowdhury, and Vijaya Ramachandran. Oracles for
distances avoiding a failed node or link. SIAM J. Com-
put., 37(5):1299–1318, 2008.

[11] Hristo Djidjev. On-line algorithms for shortest path
problems on planar digraphs. In Fabrizio d’Amore,
Paolo Giulio Franciosa, and Alberto Marchetti-
Spaccamela, editors, Graph-Theoretic Concepts in
Computer Science, 22nd International Workshop, WG
’96, Cadenabbia (Como), Italy, June 12-14, 1996, Pro-
ceedings, volume 1197 of Lecture Notes in Computer
Science, pages 151–165. Springer, 1996.

[12] Ran Duan and Seth Pettie. Dual-failure distance and
connectivity oracles. In Claire Mathieu, editor, Pro-
ceedings of the Twentieth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2009, New York,
NY, USA, January 4-6, 2009, pages 506–515. SIAM,
2009.

[13] Yuval Emek, David Peleg, and Liam Roditty. A near-
linear-time algorithm for computing replacement paths
in planar directed graphs. ACM Trans. Algorithms,
6(4):64:1–64:13, 2010.

[14] David Eppstein. Finding the k shortest paths. SIAM
J. Comput., 28(2):652–673, 1998.

[15] Jeff Erickson, Kyle Fox, and Luvsandondov Lkham-
suren. Holiest minimum-cost paths and flows in sur-
face graphs. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, Proceedings of the 50th An-
nual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2018, Los Angeles, CA, USA, June 25-29,
2018, pages 1319–1332. ACM, 2018.

[16] Jittat Fakcharoenphol and Satish Rao. Planar graphs,
negative weight edges, shortest paths, and near linear
time. J. Comput. Syst. Sci., 72(5):868–889, 2006.

[17] Greg N. Frederickson. Fast algorithms for shortest
paths in planar graphs, with applications. SIAM J.
Comput., 16(6):1004–1022, 1987.

[18] Pawel Gawrychowski, Haim Kaplan, Shay Mozes,
Micha Sharir, and Oren Weimann. Voronoi diagrams
on planar graphs, and computing the diameter in deter-
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