
Almost Optimal Distance Oracles for Planar Graphs∗

Panagiotis Charalampopoulos

King’s College London

UK

IDC Herzliya

Israel

panagiotis.charalampopoulos@kcl.ac.uk

Paweł Gawrychowski

University of Wrocław

Poland

gawry@cs.uni.wroc.pl

Shay Mozes

IDC Herzliya

Israel

smozes@idc.ac.il

Oren Weimann

University of Haifa

Israel

oren@cs.haifa.ac.il

ABSTRACT
We present new tradeoffs between space and query-time for exact

distance oracles in directed weighted planar graphs. These tradeoffs

are almost optimal in the sense that they are within polylogarith-

mic, subpolynomial or arbitrarily small polynomial factors from

the naïve linear space, constant query-time lower bound. These

tradeoffs include: (i) an oracle with space O(n1+ϵ) and query-time

˜O(1) for any constant ϵ > 0, (ii) an oracle with space
˜O(n) and

query-time O(nϵ) for any constant ϵ > 0, and (iii) an oracle with

space n1+o(1) and query-time no(1).

CCS CONCEPTS
• Theory of computation→ Shortest paths.

KEYWORDS
planar graphs, distance oracles, shortest paths, Voronoi diagrams

ACM Reference Format:
Panagiotis Charalampopoulos, Paweł Gawrychowski, ShayMozes, and Oren

Weimann. 2019. Almost Optimal Distance Oracles for Planar Graphs. In

Proceedings of the 51st Annual ACM SIGACT Symposium on the Theory of
Computing (STOC ’19), June 23–26, 2019, Phoenix, AZ, USA. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3313276.3316316

1 INTRODUCTION
Computing shortest paths is one of the most fundamental and

well-studied algorithmic problems, with numerous applications in

various fields. In the data structure version of the problem, the goal

is to preprocess a graph into a compact representation such that

the distance (or a shortest path) between any pair of vertices can be

retrieved efficiently. Such data structures are called distance oracles.
∗
This work was partially supported by the Israel Science Foundation under grant

number 592/17.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6705-9/19/06. . . $15.00

https://doi.org/10.1145/3313276.3316316

4/3 23/2 5/31

1/4
1/3

1/2

1

0

lg S/lgn

lgQ/lgn

F
O
C
S
‘0
1
[
2
1
]

W
G
‘9
6
[1
6
]

E
S
A
‘9
6
[1
]

W
G‘96

[16]

STO
C‘00

[12]

SO
DA‘06

[7]

F
O
C
S
‘1
7
[
1
3
]

SO
DA‘12

[38]

S
O
D
A
‘1
8
[2
3
]

Our result

Figure 1: Tradeoff of the space (S) vs. the query time (Q) for
exact distance oracles in planar graphs on a doubly logarith-
mic scale, hiding subpolynomial factors. The previous trade-
offs are indicated by solid black lines and points, while our
new tradeoff is indicated by the red point at the bottom left.

Distance oracles are useful in applications ranging from navigation,

geographic information systems and logistics, to computer games,

databases, packet routing, web search, computational biology, and

social networks. The topic has been studied extensively; see for

example the survey by Sommer [43] for a comprehensive overview

and references.

The two main measures of efficiency of a distance oracle are the

space it occupies and the time it requires to answer a distance query.

To appreciate the tradeoff between these two quantities consider

two naïve oracles. The first stores all Θ(n2) pairwise distances in a

table, and answers each query in constant time using table lookup.

The second only stores the input graph, and runs a shortest path

algorithm over the entire graph upon each query. Both of these

oracles are not adequate when working with mildly large graphs.

The first consumes too much space, and the second is too slow in

answering queries. A third quantity of interest is the preprocessing

time required to construct the oracle. Since computing the data

138

https://doi.org/10.1145/3313276.3316316
https://doi.org/10.1145/3313276.3316316

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and Oren Weimann

structure is done offline, this quantity is often considered less im-

portant. However, one approach to dealing with dynamic networks

is to recompute the entire data structure quite frequently, which is

only feasible when the preprocessing time is reasonably small.

One of the ways to design oracles with small space is to consider

approximate distance oracles (allowing a small stretch in the distance

output). However, it turns out that one cannot get both small stretch

and small space. In their seminal paper, Thorup and Zwick [45]

showed that, assuming the girth conjecture of Erdős [18], there exist

dense graphs for which no oracle with size less than n1+1/k and

stretch less than 2k−1 exists. Pǎtraşcu and Roditty [42] showed that
even sparse graphs with

˜O(n)1 edges do not have distance oracles

with stretch better than 2 and subquadratic space, conditioned on

a widely believed conjecture on the hardness of set intersection.

To bypass these impossibility results one can impose additional

structure on the graph. In this work we follow this approach and

focus on distance oracles for planar graphs.

1.1 Distance Oracles for Planar Graphs
The importance of studying distance oracles for planar graphs stems

from several reasons. First, distance oracles for planar graphs are

ubiquitous in real-world applications such as geographical naviga-

tion on road networks [43] (road networks are often theoretically

modeled as planar graphs even though they are not quite planar

due to tunnels and overpasses). Second, shortest paths in planar

graphs exhibit a remarkable wealth of structural properties that

can be exploited to obtain efficient oracles. Third, techniques devel-

oped for shortest paths problems in planar graphs often carry over

(because of intricate and elegant connections) to maximum flow

problems. Fourth, planar graphs have proven to be an excellent

sandbox for the development of algorithms and techniques that

extend to broader families of graphs.

As such, distance oracles for planar graphs have been exten-

sively studied. Works on exact distance oracles for planar graphs

started in the 1990’s with oracles requiring
˜O(n2/Q) space and

˜O(Q) query-time for any Q ∈ [1,n] [1, 16]. Note that this includes
the two trivial approaches mentioned above. Over the past three

decades, many other works presented exact distance oracles for

planar graphs with increasingly better space to query-time trade-

offs [1, 7, 12, 13, 16, 21, 23, 38, 40]. Figure 1 illustrates the advance-

ments in the space/query-time tradeoffs over the years. Until re-

cently, no distance oracles with subquadratic space and polyloga-

rithmic query time were known. Cohen-Addad et al. [13], inspired

by Cabello’s use of Voronoi diagrams for the diameter problem in

planar graphs [8], provided the first such oracle. The currently best

known tradeoff [23] is an oracle with
˜O(n3/2/Q) space and ˜O(Q)

query-time for any Q ∈ [1,n1/2]. Note that all known oracles with

nearly linear (i.e.
˜O(n)) space require Ω(

√
n) time to answer queries.

The holy grail in this area is to design an exact distance oracle for

planar graphs with both linear space and constant query-time. It is

not knownwhether this goal can be achieved.We do know, however,

(for nearly twenty years now) that approximate distance oracles

can get very close. For any fixed ϵ > 0 there are (1+ϵ)-approximate

distance oracles that occupy nearly-linear space and answer queries

1
The

˜O(·) notation hides polylogarithmic factors.

in polylogarithmic, or even constant time [10, 24, 28–30, 44, 46].

However, the main question of whether an approximate answer

is the best one can hope for, or whether exact distance oracles

for planar graphs with linear space and constant query time exist,

remained a wide open important and interesting problem.

1.2 Our Results and Techniques
In this paper we approach the optimal tradeoff between space and

query time for reporting exact distances.We design exact distance

oracles that require almost-linear space and answer distance queries

in polylogarithmic time. Specifically, given a planar graph of size

n, we show how to construct in roughly O(n3/2) time a distance

oracle admitting any of the following ⟨space, query-time⟩ tradeoffs
(see Theorem 7 and Corollary 8 for the exact statements).

(i) ⟨ ˜O(n1+ϵ),O(log1/ϵ n)⟩, for any constant 1/2 ≥ ϵ > 0;

(ii) ⟨O(n log2+1/ϵ n),O(n2ϵ)⟩, for any constant ϵ > 0;

(iii) ⟨n1+o(1),no(1)⟩.

1.2.1 Voronoi Diagrams. The main tool we use to obtain this result

is point location in Voronoi diagrams on planar graphs. The concept
of Voronoi diagrams has been used in computational geometry for

many years (cf. [2, 14]). We consider graphical (or network) Voronoi
diagrams [20, 35]. At a high level, a graphical Voronoi diagram with

respect to a set S of sites is a partition of the vertices into |S | parts,
called Voronoi cells, where the cell of site s ∈ S contains all vertices

that are closer (in the shortest path metric) to s than to any other

site in S . Graphical Voronoi diagrams have been studied and used

quite extensively, most notably in applications in road networks

(e.g., [15, 17, 26, 41]).

Perhaps the most elementary operation on Voronoi diagrams is

point location. Given a point (vertex) v , one wishes to efficiently

determine the site s such that v belongs to the Voronoi cell of s .
Cohen-Addad et al. [13], inspired by Cabello’s [8] breakthrough use

of Voronoi diagrams in planar graphs, suggested a way to perform

point location that led to the first exact distance oracle for planar

graphs with subquadratic space and polylogarithmic query time. A

simpler and more efficient point location mechanism for Voronoi

diagrams in planar graphs was subsequently developed in [23]. In

both oracles, the space efficiency is obtained from the fact that the

size of the representation of a Voronoi diagram is proportional to

the number of sites and not to the total number of vertices.

To obtain our result, we add two new ingredients to the point

location mechanism of [23]. The first is the use of what might be

called external Voronoi diagrams. Unlike previous constructions,

instead of working with Voronoi diagrams for every piece in some

partition (r -division) of the graph, we work with many overlapping

Voronoi diagrams, representing the complements of such pieces.

This is analogous to the use of external dense distance graphs

in [5, 38]. This approach alone leads to an oracle with space
˜O(n4/3)

and query time O(log2 n) (see Section 3). The obstacle with pushing

this approach further is that the point location mechanism consists

of auxiliary data for each piece, whose size is proportional to the

size of the complement of the piece, which is Θ(n) rather than the

much smaller size of the piece. We show that this problem can be

mitigated by using recursion, and storing much less auxiliary data

at a coarser level of granularity. This approach is made possible by

139

Almost Optimal Distance Oracles for Planar Graphs STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

a more modular view of the point location mechanism which we

present in Section 2, along with other preliminaries. The proof of

our main space/query-time tradeoffs is given in Section 4 and the

algorithm to efficiently construct these oracles is given in Section 5.

2 PRELIMINARIES
In this section we review the main techniques required for de-

scribing our result. Throughout the paper we consider as input

a weighted directed planar graph G = (V (G),E(G)), embedded in

the plane. We use the term length for edges and paths throughout

the paper. We use |G | to denote the number of vertices in G. Since
planar graphs are sparse, |E(G)| = O(|G |) as well. The dual of a
planar graph G is another planar graph G∗ whose vertices corre-
spond to faces of G and vice versa. Arcs of G∗ are in one-to-one

correspondence with arcs ofG; there is an arc e∗ from vertex f ∗ to
vertex д∗ of G∗ if and only if the corresponding faces f and д of G
are to the left and right of the arc e , respectively.

We assume that the input graph has no negative length cycles.

We can transform the graph in O(n log
2 n

log logn) time in a standard

way [39] so that all edge lengths are non-negative and distances

are preserved. With another standard transformation we can guar-

antee that each vertex has constant degree and that the graph is

triangulated, while distances are preserved and without increas-

ing asymptotically the size of the graph. We further assume that

shortest paths are unique; this can be ensured in O(n) time by

a deterministic perturbation of the edge lengths [19]. Each origi-

nal distance can be recovered from the corresponding distance in

the transformed graph in constant time. Let dG (u,v) denote the
distance from a vertex u to a vertex v in G.

2.1 Multiple-Source Shortest Paths
The multiple-source shortest paths (MSSP) data structure [31] rep-

resents all shortest path trees rooted at the vertices of a single

face f in a planar graph using a persistent dynamic tree. It can be

constructed in O(n logn) time, requires O(n logn) space, and can

report any distance between a vertex of f and any other vertex in

the graph in O(logn) time. We note that it can be augmented to

also return the first edge of this path within the same complexities.

The authors of [23] show that it can be further augmented —within

the same complexities— such that given two vertices u,v ∈ G and

a vertex x of f it can return, in O(logn) time, whether u is an an-

cestor of v in the shortest path tree rooted at x as well as whether

u occurs before v in a preorder traversal of this tree. We consider

shortest path trees as ordered trees with the order inherited from

the planar embedding.

2.2 Separators and Recursive Decompositions
Miller [36] showed how to compute, in a biconnected triangulated

planar graph with n vertices, a simple cycle of size O(
√
n) that

separates the graph into two subgraphs, each with at most 2n/3
vertices. Simple cycle separators can be used to recursively separate

a planar graph until pieces have constant size. The authors of [33]

show how to obtain a complete recursive decomposition tree A
of G in O(n) time. A is a binary tree whose nodes correspond to

subgraphs of G (pieces), with the root being all of G and the leaves

being pieces of constant size. We identify each piece P with the

node representing it in A. We can thus abuse notation and write

P ∈ A. An r -division [22] of a planar graph, for r ∈ [1,n], is a
decomposition of the graph into O(n/r) pieces, each of size O(r),
such that each piece has O(

√
r) boundary vertices, i.e. vertices that

belong to some separator along the recursive decomposition used

to obtain P . Another desired property of an r -division is that the

boundary vertices lie on a constant number of faces of the piece

(holes). For every r larger than some constant, an r -division with

few holes is represented in the decomposition tree A of [33]. In

fact, it is not hard to see that if the original graph G is triangulated

then all vertices of each hole of a piece are boundary vertices.

Throughout the paper, to avoid confusion, we use “nodes" when

referring to A and “vertices" when referring toG. We denote the

boundary vertices of a piece P by ∂P . We refer to non-boundary

vertices as internal. We assume for simplicity that each hole is a

simple cycle. Non-simple cycles do not pose a significant obstacle,

as we discuss at the end of Section 4.

It is shown in [33, Theorem 3] that, given a geometrically de-

creasing sequence of numbers (rm , rm−1, . . . , r1), where r1 is a suf-
ficiently large constant, ri+1/ri = b for all i for some b > 1, and

rm = n, we can obtain the ri -divisions for all i in time O(n) in
total. For convenience we define the only piece in the rm division

to be G itself. These r -divisions satisfy the property that a piece

in the ri -division is a —not necessarily strict— descendant (in A)

of a piece in the r j -division for each j > i . This ancestry relation

between the pieces of an r -division can be captured by a tree T
called the recursive r -division tree.

The boundary vertices of a piece P ∈ A that lie on a hole h of

P separate the graph G into two subgraphs G1 and G2 (the cycle

is in both subgraphs). One of these two subgraphs is enclosed by

the cycle and the other is not. Moreover, P is a subgraph of one of

these two subgraphs, say G1. We then call G2 the outside of hole

h with respect to P and denote it by Ph,out . In the sections where

we assume that the boundary vertices of each piece lie on a single

hole that is a simple cycle, the outside of this hole with respect to

P is G \ (P \ ∂P) and to simplify notation we denote it by Pout .

2.3 Additively Weighted Voronoi Diagrams
Let H be a directed planar graph with real edge-lengths, and no

negative-length cycles. Assume that all faces of H are triangles

except, perhaps, a single face h. Let S be the set of vertices that

lie on h. The vertices of S are called sites. Each site s ∈ S has a

weightω(s) ≥ 0 associated with it. The additively weighted distance

between a site s ∈ S and a vertex v ∈ V , denoted by dω (s,v) is
defined as ω(s) plus the length of the s-to-v shortest path in H .

Definition 1. The additively weighted Voronoi diagram of (S,ω)
(VD(S,ω)) within H is a partition of V (H) into pairwise disjoint sets,
one set Vor(s) for each site s ∈ S . The set Vor(s), which is called the
Voronoi cell of s , contains all vertices in V (H) that are closer (w.r.t.
dω (. , .)) to s than to any other site in S .

There is a dual representation VD∗(S,ω) (or simply VD∗) of a
Voronoi diagram VD(S,ω). Let H∗ be the planar dual of H . Let

VD∗
0
be the subgraph of H∗ consisting of the duals of edges uv

of H such that u and v are in different Voronoi cells. Let VD∗
1

be the graph obtained from VD∗
0
by contracting edges incident

to degree-2 vertices one after another until no degree-2 vertices

140

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and Oren Weimann

remain. The vertices of VD∗
1
are called Voronoi vertices. A Voronoi

vertex f ∗ , h∗ is dual to a face f such that the vertices of H
incident to f belong to three different Voronoi cells. We call such a

face trichromatic. Each Voronoi vertex f ∗ stores for each vertex u
incident to f the site s such that u ∈ Vor(s). Note that h∗ (i.e. the
dual vertex corresponding to the face h to which all the sites are

incident) is a Voronoi vertex. Each face of VD∗
1
corresponds to a

cell Vor(s). Hence there are at most |S | faces in VD∗
1
. By sparsity

of planar graphs, and by the fact that the minimum degree of a

vertex in VD∗
1
is 3, the complexity (i.e., the number of vertices, edges

and faces) of VD∗
1
is O(|S |). Finally, we define VD∗ to be the graph

obtained from VD∗
1
after replacing the node h∗ by multiple copies,

one for each occurrence of h as an endpoint of an edge in VD∗
1
. It

was shown in [23] that VD∗ is a forest, and that, if all vertices of h
are sites and if the additive weights are such that each site is in its

own nonempty Voronoi cell, then VD∗ is a ternary tree. See Fig. 2

(also used in [23]) for an illustration.

Figure 2: A planar graph (black edges) with four sites on the
infinite face together with the dual Voronoi diagramVD∗ (in
blue). The sites are shown togetherwith their corresponding
shortest path trees (in turquoise, red, yellow, and green).

2.4 Point Location in Voronoi Diagrams
A point location query for a nodev in a Voronoi diagram VD asks for

the site s of VD such that v ∈ Vor(s) and for the additive distance

from s tov . Gawrychowski et al. [23] described a data structure sup-
porting efficient point location, which is captured by the following

theorem.

Theorem 2 ([23]). Given an O(|H | log |H |)-sized MSSP data struc-
ture for H with sources S , and some VD∗ for H with sources S , after
an O(|S |)-time preprocessing, point location queries can be answered
in time O(log2 |H |).

We now describe this data structure. The data structure is essen-

tially the same as in [23], but the presentation is a bit more modular.

We will later adapt the implementation in Section 4.

Recall that H is triangulated (except the face h). The main idea

is as follows. In order to find the Voronoi cell Vor(s) to which a

query vertex v belongs, it suffices to identify an edge e∗ of VD∗

that is adjacent to Vor(s). Given e∗ we can simply check which of

its two adjacent cells contains v by comparing the distances from

the corresponding two sites to v . The point location structure is

based on a centroid decomposition of the tree VD∗ into connected
subtrees, and on the ability to determine which of the subtrees is

the one that contains the desired edge e∗.
The preprocessing consists of just computing a centroid decom-

position of VD∗. A centroid of an n-node tree T is a node u ∈ T
such that removing u and replacing it with copies, one for each

edge incident to u, results in a set of trees, each with at most
n+1
2

edges. A centroid always exists in a tree with at least one edge. In

every step of the centroid decomposition of VD∗, we work with

a connected subtree T ∗ of VD∗. Recall that there are no nodes of

degree 2 in VD∗. If there are no nodes of degree 3, then T ∗ con-
sists of a single edge of VD∗, and the decomposition terminates.

Otherwise, we choose a centroid c∗, and partition T ∗ into the three

subtrees T ∗
0
,T ∗

1
,T ∗

2
obtained by splitting c∗ into three copies, one

for each edge incident to c∗. Clearly, the depth of the recursive

decomposition is O(log |S |). The decomposition can be computed

in O(|S |) time [6] and can be represented as a ternary tree which we

call the centroid decomposition tree, in O(|S |) space. Each non-leaf

node of the centroid decomposition tree corresponds to a centroid

vertex c∗, which is stored explicitly. We will refer to nodes of the

centroid decomposition tree by their associated centroid. Each node

also corresponds implicitly to the subtree of VD∗ of which c∗ is the
centroid. The leaves of the centroid decomposition tree correspond

to single edges of VD∗, which are stored explicitly.

Point location queries for a vertex v in the Voronoi diagram VD
are answered by employing procedure PointLocate(VD∗,v) (Algo-
rithm 1), which takes as input the Voronoi diagram, represented by

the centroid decomposition of VD∗, and the vertex v . This in turn

calls the recursive procedure HandleCentroid(VD∗, c∗,v) (Algo-
rithm 2), where c∗ is the root centroid in the centroid decomposition

tree of VD∗.

Algorithm 1 PointLocate(VD∗, v)

Input: The centroid decomposition of the dual representation VD∗

of a Voronoi diagram VD and a vertex v .
Output: The site s of VD such that v ∈ Vor(s) and the additive

distance from s to v .

1: c∗ ← root centroid in the centroid decomposition of VD∗

2: return HandleCentroid(VD∗, c∗,v)

We now describe the procedure HandleCentroid. It gets as

input the Voronoi diagram, represented by its centroid decomposi-

tion tree, the centroid node c∗ in the centroid decomposition tree

that should be processed, and the vertex v to be located. It returns

the site s such that v ∈ Vor(s), and the additive distance to v . If
c∗ is a leaf of the centroid decomposition, then its corresponding

subtree of VD∗ is the single edge e∗ we are looking for (Lines 1-6).

Otherwise, c∗ is a non-leaf node of the centroid decomposition tree,

so it corresponds to a node in the tree VD∗, which is also a vertex

of the dual H∗ of H . Thus, c is a face of H . Let the vertices of c be
y1,y2 and y3. We obtain si , the site such that yi ∈ Vor(si), from the

representation of VD∗ (Line 7). (Recall that si , sk if i , k since

141

Almost Optimal Distance Oracles for Planar Graphs STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Algorithm 2 HandleCentroid(VD∗, c∗,v)
Input: The centroid decomposition of the dual representation VD∗

of a Voronoi diagram, a centroid c∗ and a vertex v such that the

subtree of which c∗ is a centroid contains an edge e∗ incident to
the Voronoi cell to which v belongs.

Output: The site s of VD such that v ∈ Vor(s) and the additive

distance from s to v .

1: if c∗ is a leaf then
2: s1, s2 ← sites corresponding to c∗

3: for k = 1, 2 do
4: dk ← ω(sk) + dH (sk ,v)
5: j ← argmink (dk)
6: return (sj ,dj)
7: s1, s2, s3 ← sites corresponding to c∗

8: for k = 1, 2, 3 do
9: dk ← ω(sk) + dH (sk ,v)
10: j ← argmink (dk)
11: a ← left/right/ancestor relationship of v to vcj in the shortest

path tree of sj in H

12: if v is an ancestor of vcj then
13: return (sj ,dj)
14: else
15: c∗ ← NextCentroid(c∗,a)
16: return HandleCentroid(VD∗, c∗,v)

c is a trichromatic face.) Next, for each i , we retrieve the additive
distance from si to v . Let sj be the site among them with minimum

additive distance to v .
If v is an ancestor of the node yj in the shortest path tree rooted

at sj , then v ∈ Vor(sj) and we are done. Otherwise, handling c
consists of finding the child c ′∗ of c∗ in the centroid decomposition

tree whose corresponding subtree contains e∗.

Definition 3. For a tree T and two nodes x and y, such that none
is an ancestor of the other, we say that x is left of y if the preorder
number of x is smaller than the preorder number of y. Otherwise, we
say that x is right of y.

For every face f , whose vertices are x1,x2,x3, let v
f
j for j =

1, 2, 3 be artificial vertices embedded in f , each with a single zero-

length incident edge (x j ,vfj). It is shown in [23] that identifying

c ′∗ amounts to determining whether v is left or right of vcj in the

shortest path tree rooted at sj . We call the procedure that computes

c ′∗ from c∗ NextCentroid. Having found the next centroid in

Line 15, HandleCentroid moves on to handle it recursively.

The efficiency of procedure HandleCentroid depends on the

time to compute distances inH (Lines 4 and 9) and the left/right/ancestor

relationship (Line 11). Given an MSSP data structure for H , with

sources S , each of these operations can be performed in timeO(log |H |)
and hence Theorem 2 follows.

3 AN ˜O(n4/3)-SPACE O(log2 n)-QUERY ORACLE
In this section we present a simple oracle that illustrates the use

of external Voronoi diagrams. Understanding this oracle may be

helpful, but is not crucial, to understanding the main result in

Section 4. We start by stating the following result from [23] that

we use in the oracle presented in this section.

Theorem4 ([23]). For a planar graphG of sizen, there is anO(n3/2)-
sized data structure that answers distance queries in time O(logn).

For clarity of presentation, we first describe our oracle under

the assumption that the boundary vertices of each piece P in the

r -division of the graph lie on a single hole and that each such hole

is a simple cycle. Multiple holes and non-simple cycles do not pose

any significant complications; we explain how to treat pieces with

multiple holes that are not necessarily simple cycles, separately.

3.1 Data Structure
We obtain an r -division for r = n2/3

√
logn. The data structure

consists of the following for each piece P of the r -division:

(1) The O(|P |3/2)-space, O(log |P |)-query-time distance oracle

of Theorem 4. These occupy O(n
√
r) space in total.

(2) Two MSSP data structures, one for P and one for Pout , both
with sources the nodes of ∂P . The MSSP data structure for

P requires space O(r log r), while the one for Pout requires
space O(n logn). The total space required for the MSSP data

structures is O(n2

r logn), since there are O(nr) pieces.
(3) For each node u of P :
• VD∗in (u, P), the dual representation of the Voronoi diagram
for P with sites the nodes of ∂P , and additive weights the

distances from u to these nodes in G;
• VD∗out (u, P), the dual representation of the Voronoi dia-

gram for Pout with sites the nodes of ∂P , and additive

weights the distances from u to these nodes in G.
The representation of each Voronoi diagram occupies O(

√
r)

space and hence, since each vertex belongs to a constant num-

ber of pieces, all Voronoi diagrams require space O(n
√
r).

3.2 Query
We obtain a piece P of the r -division that containsu. Let us first sup-
pose thatv ∈ P . We have to consider both the case that the shortest

u-to-v path crosses ∂P and the case that it does not. If it does cross,

we retrieve this distance by performing a point location query forv
in the Voronoi diagram VDin (u, P). If the shortest u-to-v path does

not cross ∂P , the path lies entirely within P . We thus retrieve the

distance by querying the exact distance oracle of Theorem 4 stored

for P . The answer is the minimum of the two returned distances.

This requires O(log2 n) time by Theorems 2 and 4. Else, v < P and

the shortest path fromu tov must cross ∂P . The answer can be thus
obtained by a point location query for v in the Voronoi diagram

VDout (u, P) in time O(log2 n) by Theorem 2. The pseudocode of the

query algorithm is presented below as procedure SimpleDist(u,v)
(Algorithm 3).

142

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and Oren Weimann

Algorithm 3 SimpleDist(u,v)
Input: Two nodes u and v .
Output: dG (u,v).
1: P ← a piece of the r -division containing u
2: if v ∈ P then
3: d1 ← dP (u,v)
4: d2 ← PointLocate(VD∗in (u, P),v)
5: return min(d1,d2)
6: else
7: return PointLocate(VD∗out (u, P),v)

3.3 Dealing with Holes
The data structure has to be modified as follows.

(2) For each hole h of P , two MSSP data structures, one for P
and one for Ph,out , both with sources the nodes of ∂P that

lie on h.
(3) For each node u of P , for each hole h of P :
• VD∗in (u, P ,h), the dual representation of the Voronoi dia-

gram for P with sites the nodes of ∂P that lie on h, and
additive weights the distances from u to these nodes inG;
• VD∗out (u, P ,h), the dual representation of the Voronoi dia-

gram for Ph,out with sites the nodes of ∂P that lie on h,
and additive weights the distances from u to these nodes

in G.

As for the query, if v ∈ P we have to perform a point location

query in VDin (u, P ,h) for each hole h of P . Else v < P and we have

to perform a point location query in VDout (u, P ,h) for the hole

h of P such that v ∈ Ph,out . We can afford to store the required

information to identify this hole explicitly in balanced search trees.

We thus obtain the following result.

Theorem5. For a planar graphG of sizen, there is anO(n4/3
√
logn)-

sized data structure that answers distance queries in time O(log2 n).

4 AN ORACLE WITH ALMOST OPTIMAL
TRADEOFFS

In this section we describe how to obtain an oracle with almost

optimal space to query-time tradeoffs. Consider the oracle in the

previous section. The size of the representation we store for each

Voronoi diagram is proportional to the number of sites, while the

size of an MSSP data structure is roughly proportional to the size

of the graph in which the Voronoi diagram is defined. Thus, the

MSSP data structures that we store for the outside of pieces of the

r -division are the reason that the oracle in the previous section

requires Ω(n4/3) space. However, storing the Voronoi diagrams for

the outside of each piece is not a problem. For instance, if we could

somehow afford to store MSSP data structures for P and Pout of
each piece P of annϵ -division using just O(nϵ) space, then plugging
r = nϵ into the data structure from the previous sections would

yield an oracle with space O(n1+ϵ) and query-time O(log2 n).
We cannot hope to have such a compact MSSP representation.

However, we can use recursion to get around this difficulty. We com-

pute a recursive r -division, represented by a recursive r -division
tree T. We store, for each piece P ∈ T, the Voronoi diagram for

Pout . However, instead of storing the costly MSSP for the entire

Pout , we store the MSSP data structure (and some additional in-

formation) just for the portion of Pout that belongs to the parent
Q of P in T. Roughly speaking, when we need to perform point

location on a vertex of Pout that belongs to Q we can use this

MSSP information. When we need to perform point location on a

vertex of Pout that does not belong to Q (i.e., it is also in Qout
), we

recursively invoke the point location mechanism for Qout
.

We next describe the details. For clarity of presentation, we

assume that the boundary vertices of each piece P in T lie on a

single hole which is a simple cycle. We later explain how to remove

these assumptions. In what follows, if a vertex in a Voronoi diagram

can be assigned to more than one Voronoi cell, we assign it to the

Voronoi cell of the site with largest additive weight. In other words,

since we define the additive weights as distances from some vertex

u, and since shortest paths are unique, we assign each vertexv to the

Voronoi cell of the last site on the shortestu-to-v path. In particular,

this implies that there are no empty Voronoi cells as every site

belongs to its own cell. Thus VD∗ is a ternary tree (see [23]). We

can make such an assignment by perturbing the additive weights

to slightly favor sites with larger distances from u at the time that

the Voronoi diagram is constructed.

4.1 Data Structure
Consider a recursive (rm , . . . , r1)-division of G for some n = rm >
· · · > r1 = O(1) to be specified later. Recall that our convention

is that the rm-division consists of G itself. For convenience, we

define each vertex v to be a boundary vertex of a singleton piece

at level 0 of the recursive division. Denote the set of pieces of the

ri -division by Ri . Let T denote the tree representing this recursive

(rm , . . . , r0)-division (each singleton piece v at level 0 is attached

as the child of an arbitrary piece P at level 1 such that v ∈ P).
We will handle distance queries between vertices u,v that have

the same parent P inR1 separately by storing these distances explic-
itly (this takes O(n) space because pieces at level 1 have constant
size).

The oracle consists of the following for each 0 ≤ i ≤ m − 1, for
each piece R ∈ Ri whose parent in T is Q ∈ Ri+1:

(1) If i > 0, two MSSP data structures for Q \ (R \ ∂R), with
sources ∂R and ∂Q , respectively.

(2) If i < m − 1, for each vertex u ∈ ∂R:
• VD∗near (u,Q), the dual representation of the Voronoi dia-

gram forQ \(R\∂R)with sites the nodes of ∂Q , and additive

weights the distances from u to these nodes in Rout ;2

• VD∗f ar (u,Q), the dual representation of the Voronoi dia-

gram for Qout
with sites the nodes of ∂Q , and additive

weights the distances from u to these nodes in Rout ;
• if i > 0, the coarse tree TR

u , which is the tree obtained from

the shortest path tree rooted at u in Rout (the fine tree) by
recursively contracting a rootmost edge that is incident to

a vertex not in ∂Q ∪ ∂R. Note that the left/right/ancestor
relationship between vertices of ∂Q ∪ ∂R in the coarse tree

is the same as in the fine tree. Also note that each (coarse)

edge in TR
u originates from a contracted path in the fine

2
In the query algorithm we will use VD∗near (u, Q) (and VD∗f ar (u, Q) which will be

defined immediately) only to compute distances in Rout . Hence, the additive weights
are with respect to Rout , not to G .

143

Almost Optimal Distance Oracles for Planar Graphs STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

tree. We preprocess the coarse tree TR
u in time proportional

to its size to allow for O(1)-time lowest common ancestor

(LCA)
3
and level ancestor

4
queries [3, 4]. In addition, for

every (coarse) edge of TR
u , we store the first and last edges

of the underlying path in the fine tree. We also store the

preorder numbers of the vertices of TR
u .

Space. The space required to store the described data structure is
O(n∑i

ri+1
ri log ri+1). Part 1 of the data structure: At the ri -division,

we have O(nri) pieces and for each of them, we store two MSSP

data structures, each of size O(ri+1 log ri+1). Thus, the total space
required for the MSSP data structures is O(n∑i

ri+1
ri log ri+1). Part

2 of the data structure: At the ri -division, we store, for each of

the O(n√
ri
) boundary nodes, the representation of two Voronoi

diagrams and a coarse tree, each of size O(√ri+1). The space for
this part is thus O(n∑i (ri+1ri)

1/2).

4.2 Query
Upon a query dG (u,v) for the distance between vertices u and v in

G , we pick the singleton pieceQ0 = {u} ∈ R0 and call the procedure
Dist(u,v,Q0) presented below. In what follows we denote by Q j
the ancestor of Q0 in T that is in Rj .

The procedure Dist(u,v,Qi) (Algorithm 4) gets as input a piece

Qi , a source vertex u ∈ ∂Qi and a destination vertex v ∈ Qout
i . The

output of Dist(u,v,Qi) is a tuple (β ,d), where d is the distance

fromu tov inQout
i and β is a sequence of certain boundary vertices

of the recursive division that occur along the recursive query. (Note

that Qout
0
= G and thus Dist(u,v,Q0) returns dG (u,v).) Let i∗

be the smallest index such that v ∈ Qi∗ . For every 1 ≤ i < i∗,
the i’th element in the list β is the last boundary vertex on the

shortest u-to-v path that belongs to ∂Qi . As we shall see, the list β
enables us to obtain sufficient information to determine the required

left/right/ancestor relationships during the recursion. Dist(u,v,Qi)
works as follows.

(1) If v ∈ Qi+1 \Qi , it computes the required distance by con-

sidering the minimum of the distance from u to v returned

by a query in the MSSP data structure for Qi+1 \ (Qi \ ∂Qi)
with sources ∂Qi and the distance returned by a (vanilla)

point location query for v in VDnear (u,Qi+1) using the pro-
cedure PointLocate. The first query covers the case where

the shortest path from u to v lies entirely withinQi+1, while

the second one covers the complementary case. The time

required in this case is O(log2 n).
(2) If v < Qi+1, Dist performs a recursive point location query

on VDf ar (u,Qi+1) by calling the procedure ModifiedPoint-

Locate.

Since Dist returns a list of boundary vertices as well as the dis-

tance, PointLocate and HandleCentroid must pass and augment

these lists as well. The pseudocode for ModifiedPointLocate is

identical to that of PointLocate, except it calls ModifiedHandle-

Centroid instead of HandleCentroid; see Algorithm 5. In what

follows, when any of the three procedures is called with respect

3
An LCA query takes as input two nodes of a rooted tree and returns the deepest node

of the tree that is an ancestor of both.

4
A level ancestor query takes as input a node v at depth d and an integer ℓ ≤ d and

returns the ancestor of v that is at depth ℓ.

Algorithm 4 Dist(u,v,Qi)
Input: A piece Qi , a vertex u ∈ ∂Qi and a vertex v ∈ Qout

i (v may

belong to Qi if i =m).

Output: (β ,d), where β is a list of (some) boundary vertices on the

u-to-v shortest path in Qout
i , and d is the u-to-v distance in Qout

i .

1: if v ∈ Qi+1 then
2: (β ,d) ← (null , distance returned by querying the MSSP

data structure for Qi+1 \ (Qi \ ∂Q))
3: (β ′,d ′) ← PointLocate(VD∗near (u,Qi+1),v)
4: if d ′ < d then
5: (β,d) ← (β ′,d ′)
6: else if i =m − 2 then
7: (β ,d) ← PointLocate(VD∗f ar (u,Qm−1),v)
8: else
9: (β ,d) ← ModifiedPointLocate(VD∗f ar (u,Qi+1),v, i + 1)

10: return (β ,d)

Algorithm 5 ModifiedPointLocate(VD∗,v, i)
Input: The centroid decomposition of the dual representation VD∗

of a Voronoi diagram VD for Qout
i with sites ∂Qi and a vertex

v ∈ Qout
i .

Output: The site s of VD such that v ∈ Vor(s) and the additive

distance from s to v .

1: c∗ ← root centroid in the centroid decomposition of VD∗

2: return ModifiedHandleCentroid(VD∗, c∗,v, i)

to a piece Qi , we refer to this as an invocation of this procedure at

level i .

The pseudocode of ModifiedHandleCentroid (Algorithm 6)

is similar to that of the procedure HandleCentroid, except that

when the site s such that v ∈ Vor(s) is found, s is prepended to

the list. A more significant change in ModifiedHandleCentroid

stems from the fact that, since we no longer have an MSSP data

structure for all of Qout
i , we use recursive calls to Dist to obtain

the distances from the sites sk to v in Qout
i in Lines 4 and 9. We

highlight these changes in red in the pseudocode provided below

(Algorithm 6). We next discuss how to determine the required

left/right/ancestor relationships in VDf ar (Line 12) in the absence

of MSSP information for the entire Qout
i .

4.2.1 Left/Right/Ancestor Relationships in VDf ar . Let sj be the site
among the three sites corresponding to a centroid c∗ such that v
is closest to sj with respect to the additive distances (see Lines 7-

10 of Algorithm 6). Recall that yj is the vertex of the centroid

face c that belongs to Vor(sj) and that vcj is the artificial vertex

connected to yj and embedded inside the face c . In Line 12 of

ModifiedHandleCentroid we have to determine whether v is an

ancestor of yj in the shortest path tree rooted at sj in Qout
i , and if

not, whether the sj -to-v path is left or right of the sj -to-v
c
j path. To

avoid clutter, we will omit the subscript j in the following, and refer

to sj as s , to v
c
j as v

c
, and to the sequence of boundary vertices βj

returned by the recursion as β . To infer the relationship between

the two paths we use the sites (boundary vertices) stored in the list

144

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and Oren Weimann

Algorithm 6ModifiedHandleCentroid(VD∗, c∗,v, i)
Input: The centroid decomposition of the dual representation VD∗

of a Voronoi diagram VD for Qout
i with sites ∂Qi , a centroid c

∗

and a vertex v ∈ Qout
i such that the subtree of which c∗ is a

centroid contains an edge e∗ incident to the Voronoi cell to which

v belongs.

Output: The site s of VD such that v ∈ Vor(s) and the additive

distance from s to v .

1: if c∗ is a leaf then
2: s1, s2 ← sites corresponding to c∗

3: for k = 1, 2 do
4: (βk ,dk) ← Dist(sk ,v,Qi)
5: j ← argmink (ω(sk) + dk)
6: return (prepend(sj , βj),ω(sj) + dj)
7: s1, s2, s3 ← sites corresponding to c∗

8: for k = 1, 2, 3 do
9: (βk ,dk) ← Dist(sk ,v,Qi)
10: j ← argmink (ω(sk) + dk)
11: (γ ,d) ← Dist(sj ,vcj ,Qi)
12: a ← left/right/ancestor relationship of v to vcj in the shortest

path tree of sj in Qout
i using β and γ

13: if v is an ancestor of vcj then
14: return (prepend(sj , βj),ω(sj) + dj)
15: else
16: c∗ ← NextCentroid(c∗,a)
17: returnModifiedHandleCentroid(VD∗, c∗,v, i)

β . We prepend s to β , and, if v is not already the last element of β ,
we append v to β and use a flag to denote that v was appended.

To be able to compare the s-to-v path with the s-to-vc path, we

perform another recursive call Dist(s,vc ,Qi) in Line 11. Let γ be

the list of sites returned by this call. As above, we prepend s to γ ,
and append vc if it is not already the last element. The intuition is

that the lists β and γ are a coarse representation of the s-to-v and s-
to-vc shortest paths, and that we can use this coarse representation

to roughly locate the vertex where the two paths diverge. The

left/right relationship between the two paths is determined solely

by the left/right relationship between the two paths at that vertex

(the divergence point). We can use the local coarse tree information

or the local MSSP information to infer this relationship.

Recall that s is a boundary vertex of the piece Qi at level i of
the recursive division. More generally, for any k ≥ 0, β[k] is a
boundary vertex of Qi+k (except, possibly, when β[k] = v). To
avoid this shift between the index of a site in the list and the level

of the corresponding piece in the recursive r -division, we prepend
i empty elements to both lists, so that now, for any k ≥ i , β[k]
is a boundary vertex of Qk . Let k be the largest integer such that

β[k] = γ [k]. Note that k exists because s is the first vertex in both

β and γ .

Observation 6. The restriction of the shortest path from β[i] to
β[i + 1] in Qout

i to the nodes of ∂Qi ∪ ∂Qi+1 is identical to the path

from β[i] to β[i + 1] in the coarse tree TQi
β [i].

We next analyze the different cases that might arise and describe

how to correctly infer the left/right relationship in each case. An

illustration is provided as Fig. 3.

(1) (β[k + 1] = v < ∂Qk+1) or (γ [k + 1] = c < ∂Qk+1). This
corresponds to the case that in at least one of the lists there

are no boundary vertices after the divergence point. We have

a few cases depending on whether β[k + 1] and γ [k + 1] are
in Qk or not.

a. If β[k + 1],γ [k + 1] ∈ Qk , then it must be that β[k + 1] = v
andγ [k+1] = c were appended to the sequences manually.

In this case we can query the MSSP data structure for

Qk \ (Qk−1 \ ∂Qk−1) with sources the boundary vertices

of ∂Qk to determine the left/right/ancestor relationship.

b. If β[k + 1],γ [k + 1] < Qk , we can use the MSSP data

structure stored for Qk+1 \ (Qk \ ∂Qk) with sources the

nodes of ∂Qk . Let us assume without loss of generality

that β[k +1] = v < ∂Qk+1. We then definew to be γ [k +1]
if γ [k + 1] = c < ∂Qk+1 or the childw of the root β[k] of
the coarse T

Qk
β [k] that is an ancestor of γ [k + 1] otherwise.

(In the latter case we can compute w in O(1) time with

a level ancestor query.) We then query the MSSP data

structure for the relation between v and thew . Note that

the relation between the s-to-v and s-to-c paths is the

same as the relation between the s-to-v and s-to-w paths.

c. Else, one of β[k + 1],γ [k + 1] is inQk and the other is not.

Let us assume without loss of generality that β[k + 1] =
v ∈ Qk . We can infer the left/right relation by looking at

the circular order of the following edges: (i) the last fine

edge in the root-to-β[k] path in T
Qk−1
β [k−1], (ii) the first edge

in the β[k]-to-β[k + 1] path, and (iii) the first edge in the

β[k]-to-w path, wherew is defined as in Case 1(b). Edge

(i) is stored in T
Qk−1
β [k−1] —note that β[k − 1] exists since

β[k + 1] ∈ Qk . Edge (ii) can be retrieved from the MSSP

data structure for Qk \ (Qk−1 \ ∂Qk−1) with sources the

boundary vertices of ∂Qk , and edge (iii) can be retrieved

from the MSSP data structure for Qk+1 \ (Qk \ ∂Qk) with
sources the boundary vertices of ∂Qk .

(2) β[k + 1],γ [k + 1] ∈ ∂Qk+1. We first compute the LCA x of

β[k + 1] and γ [k + 1] in TQk
β [k].

a. If neither of β[k + 1],γ [k + 1] is an ancestor of the other

in T
Qk
β [k] we are done by utilising the preorder numbers

stored in T
Qk
β [k].

b. Else, x is one of β[k + 1],γ [k + 1]. We can assume without

loss of generality that x = β[k + 1]. Using a level ancestor

query we find the child z of β[k + 1] inTQk
β [k] that is a (not

necessarily strict) ancestor of γ [k + 1]. The x-to-z shortest
path inQout

k is internally disjoint from ∂Qk+1; i.e. it starts

and ends at ∂Qk+1, but either entirely lies inside Qk+1 or

entirely outside Qk+1. If β[k + 2] = v < ∂Qk+2 letw be v ;

otherwise letw be the child of the root in T
Qk+1
β [k+1] that is

an ancestor of β[k + 2]. The x-to-w shortest path also lies

either entirely inside or entirely outside Qk+1. It remains

145

Almost Optimal Distance Oracles for Planar Graphs STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

to determine the relationship of the x-to-w and the x-to-z
paths.

i. If the shortest x-to-z path and the shortest x-to-w path

lie on different sides of ∂Qk+1, we can infer the left/right

relation by looking at the circular order of the following

edges: (i) the last edge on the coarse edge from β[k] to
x in T

Qk
β [k], (ii) the first edge on the x-to-z shortest path

in Qout
k , and (iii) the first edge on the x-to-w shortest

path in Qout
k . Edges (ii) and (iii) can be retrieved from

the MSSP data structure.

ii. Else, the x-to-z and the x-to-w shortest paths lie on the

same side, and we compute the required relation using

the MSSP data structure for this side, with sources the

sites of ∂Qk+1.

Query Correctness. Let us consider an invocation of Dist at

level i . We first show that if such a query is answered without

invoking ModifiedPointLocate (Line 9 of Algorithm 4) then the

distance it returns is correct. Indeed, let us recall that the input

to Dist is a piece Qi , a vertex u ∈ ∂Qi and a vertex v ∈ Qout
i

and the desired output is the u-to-v distance in Qout
i (along with

some vertices on the u-to-v shortest path inQout
i). Let us now look

at the cases in which Dist does not call ModifiedPointLocate

(Lines 1-7). If v ∈ Qi+1 then we have two cases: either the shortest

u-to-v path in Qout
i crosses ∂Qi+1 or it does not. In the first case

the answer is obtained by a point location query in the graph

Qi+1 \ (Qi \ ∂Qi) with sites the vertices of ∂Qi+1 and additive

weights the distances from u to these vertices in Qout
i , while in the

second case by a query on the MSSP data structure for this graph

with sources the vertices of ∂Qi . Else, ifv < Qi+1 and i =m− 2, the
shortest path must cross ∂Qi+1. We can thus obtain the distance by

performing a point location query in the Voronoi diagram forQout
m−1

with sites the vertices of ∂Qi+1 and additive weights the distances

to these vertices from u in Qout
m−2. Note that in both the cases that

we perform point location queries, we have MSSP information for

the underlying graph on which the Voronoi diagram is defined and

hence the correctness of the answer follows from the correctness

of the point location mechanism designed in [23].

We now observe that if invocations of Dist at level i + 1 return
the correct answer, then so does the invocation of ModifiedPoint-

Locate at line 9 of the invocation of Dist at level i , since the only
other requirement for the correctness of ModifiedPointLocate

is the ability to resolve the left/right/ancestor relationship; this

follows from inspecting the cases analyzed above. It follows that

invocations of Dist at level i also return the correct answer. The

correctness of the query algorithm then follows by induction.

Query Time.We initially call Dist at level 0. A call to Dist at

level i , either returns the answer in O(log2 n) time by using MSSP

information and/or invoking PointLocate (Lines 1-7), or makes a

call to ModifiedPointLocate at level i+1 (Line 9). For the latter to
happen it must be that i ≤ m−3. This call toModifiedPointLocate

at level i + 1 invokes a call to ModifiedHandleCentroid at level

i + 1. Then, ModifiedHandleCentroid makes O(log ri+1) calls to
Dist at level i + 1, while going down the centroid decomposition

of a Voronoi diagram with O(√ri+1) sites.
LetD[i] be the time required by a call to Dist at level i andC[i, t]

be the time required by a call to ModifiedHandleCentroid at

level i , where the size of the subtree of VD∗ corresponding to the

input centroid is t . We then have the following:

D[i] =
{
C[i + 1,√ri+1] + O(logn + log2 ri+1) If i < m − 2
O(log2 n) If i =m − 2

(The additive O(logn) factor comes from the possible existence of

multiple holes, see Section 4.3.)

C[i,k] =
{
O(D[i] + logn) +C[i,k/2] If k > 1

2D[i] If k = 1

(The additive O(logn) factor comes from resolving the left/right/

ancestor relationship.)

Hence, for i < m − 2, D[i] = O(log ri+1(D[i + 1]+ logn)). The total

time complexity of the query is thusD[0] = O(log2 n
m−3∏
i=1

c log ri+1)

= O(cm log
m−1 n), where c > 0 is a constant.

Retrieving the Shortest Path. First of all, let us recall that
given an MSSP data structure for a planar graph H of size n with

sources the nodes of a face f , we can construct the shortest path

from a node x in f to any node y of H , backwards from y in

O(log logn) per reported edge (cf. [32]). We can easily retrieve

one by one the edges of the coarse trees T
Qi
β [i] corresponding to

paths whose concatenation would give us the shortest u-to-v path.

The shortest path is in fact the concatenation of the β[i]-to-β[i + 1]
paths in T

Qi
β [i], plus perhaps an extra final leg, which lies entirely

in Q j \ (Q j−1 \ ∂Q j−1) for some j, if v was appended to β . Our
MSSP data structures for each i allow us to refine those coarse

edges of T
Qi
β [i] when their underlying shortest path lies entirely

within Qi+1 \ (Qi \ ∂Qi). For an edge (x ,y) of TQi
β [i] that corre-

sponds to a path lying entirely in Qout
i+1 , we use the x-to-y path in

T
Qi+1
x , which we can refine using the MSSP information we have

for Qi+2 \ (Qi+1 \ ∂Qi+1). We then proceed inductively on coarse

edges whose underlying path is entirely in Qout
i+2 . In each step we

obtain and refine an edge from a node in ∂Qi to a node in ∂Q j ,

j ∈ {i − 1, i, i + 1} using the local MSSP information. To summarize,

we retrieve one by one the edges of the coarse trees T
Qi
β [i], corre-

sponding to portions of the actual shortest path that lie entirely

in Qi \ (Qi−1 \ ∂Qi−1) in O(1) time each. We then use the local

MSSP information to obtain the actual edges of each coarse edge in

O(log logn) time per actual edge.

We prove in Section 5 that the time bound for the construction

of the data structure is
˜O(n∑i

ri+1√
r i
). We summarize our main result

in the following theorem.

Theorem 7. Given a planar graphG of size n, for any decreasing se-
quencen = rm > rm−1 > · · · > r1, where r1 is a sufficiently large con-
stant andm ≥ 3, there is a data structure of size O(n∑i

ri+1
ri log ri+1)

that answers distance queries in time O(cm log
m−1 n), where c > 0

is a constant. The construction time is ˜O
(
n
∑
i
(ri+1√

ri
+

√
nr 1/4i+1√
r i

))
. The

shortest path can be retrieved backwards from v to u, at a cost of
O(log logn) time per edge.

146

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and Oren Weimann

(a) Case 1.a. (b) Case 1.b.

(c) Case 1.c. (d) Case 2.a.

(e) Case 2.b.i. (f) Case 2.b.ii

Figure 3: An illustration of the different cases that arise in determining the left/right/ancestor relationship of β[k + 1] and
γ [k + 1] in the shortest path tree rooted at s in Rout . The s-to-v path is red, the s-to-c path is blue, and their common prefix is
purple.

147

Almost Optimal Distance Oracles for Planar Graphs STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

We next present three specific tradeoffs that follow from this theo-

rem.

Corollary 8. Given a planar graph G of size n, we can construct a
distance oracle admitting any of the following ⟨space, query-time⟩
tradeoffs:

(a) ⟨O(n log2+1/ϵ n),O(n2ϵ)⟩, for any constant ϵ > 0;
(b) ⟨n1+o(1),no(1)⟩;
(c) ⟨O(n1+ϵ logn),O(log1/ϵ n)⟩, for any constant 1/2 ≥ ϵ > 0.

The construction time is ˜O(n3/2 log1/2ϵ n),n3/2+o(1) and ˜O(n3/2+ϵ/2),
respectively.

Proof. Let ρi denote
ri+1
ri ; we will set all ρi to be equal to a

value ρ. We get tradeoffs (a), (b) and (c) by setting ρ = log
1/ϵ n,

ρ = 2

√
logn

and ρ = nϵ , respectively.
We provide the arithmetic below.

(a) If we set ρ = log
1/ϵ n, then the depth of the recursive r -

division ism = logρ n + 1 =
logn
log ρ + 1 = ϵ logn/log logn + 1.

Then, the space required is O(nmρ logn) = O(n log2+1/ϵ n),
and the query time is

O((c logn)m) = O(2log(c logn)ϵ logn/log logn) = O(n2ϵ).
(b) If we set ρ = 2

√
logn

, then the depth of the recursive r -

division ism = logρ n+ 1 =
logn
log ρ + 1 =

√
logn+ 1. Then, the

space required is O(nmρ logn) = n1+o(1) and the query time

is O((c logn)m) = O((c logn)
√
logn) = O(2log(c logn)

√
logn)

= no(1).
(c) If we set ρ = nϵ , then the depth of the recursive r -division

is m = logρ n + 1 = 1/ϵ + 1. Then, the space required is

O(nmρ logn) = O(n1+ϵ logn) and the query time is

O((c logn)m) = O((c logn)1/ϵ) = O(log1/ϵ n).
As for the construction time, we note that

ri+1√
r i
=
√
ri+1ρ and

r 1/4i+1√
r i
=
√
ρ

r 1/4i+1

. Hence
˜O
(
n
∑
i
(ri+1√

ri
+

√
nr 1/4i+1√
r i

))
is

˜O(nm√nρ). The stated
bounds follow. □

4.3 Dealing with Multiple Holes
We now remove the assumption that all boundary vertices of each

piece lie on a single hole.

4.3.1 Data Structure. The oracle consists of the following for each

0 ≤ i ≤ m−1, for each piece R ∈ Ri whose parent in T isQ ∈ Ri+1:
(1) If i > 0, for each pair of holes h of R and д of Q , such that д

lies in Rh,out , two MSSP data structures for Rh,out ∩Q , one

with sources the vertices of ∂R that lie on h, and one with

sources the vertices of ∂Q that lie on д.
(2) If i < m − 1, for each boundary vertex u of R that lies on a

hole h of R:
• For each hole д of Q that lies in Rh,out :
– VD∗near (u,Q,д), the dual representation of the Voronoi

diagram for Rh,out ∩Q with sites the nodes of ∂Q that

lie on д, and additive weights the distances from u to

these nodes in Rh,out ;

– VD∗f ar (u,Q,д), the dual representation of the Voronoi

diagram for Qд,out
with sites the nodes of ∂Q that lie

on д, and additive weights the distances from u to these

nodes in Rh,out ;

• If i > 0, the coarse tree TR,h
u , which is the tree obtained

from the shortest path tree rooted at u in Rh,out by recur-

sively contracting a rootmost edge that is incident to a

vertex that is neither in h nor in ∂Q , preprocessed as in

the single hole case.

4.3.2 Query. If v ∈ Qi+1 \Qi then in Line 3 of Dist, we need to

consider O(1) Voronoi diagrams VD∗near (u,Qi+1,д), one for each
hole of Qi+1, instead of just one. If not, we find the correct hole h

of Qi+1 such that v ∈ Qh,out
i+1 , and recurse on VD∗f ar (u,Qi+1,h).

We can find the correct hole by storing some information for

each hole of each piece. It is not hard to see that each separator

of the O(logn) ancestors of a piece P ∈ A lies in Ph,out for some

hole h of P . For each piece P ∈ A, we store, for each separator of

an ancestor of P in A, the hole h of P such that Ph,out contains
that separator. Then, by performing an LCA query for the constant

size piece of A containing v and Qi+1 in A we find the separator

that separated v from Qi+1 and we can thus find the appropriate

hole of Qi+1 in O(1) time.

Obtaining the left/right/ancestor information is essentially the

same as in the single hole case. There is one additional case that

needs to be considered, in which the vertex at which the s-to-v path

and the s-to-vc path diverge is located inside a hole. In this case

we may have to look into finer and finer coarse trees until we get

to a level of resolution where we can either deduce the left/right

relationship from the coarse tree at that level, or from the MSSP

data structure at that level. This refining process has O(logn) levels
and takes constant time per level, except for the last level where

we use the MSSP data structure in O(logn) time as in the single

hole case. Therefore, the asymptotic query time is unchanged.

As for retrieving the edges of the shortest path in O(log logn)
time each, the presence of multiple holes does not pose any further

complications.

4.3.3 Dealing with Holes That Are Non-simple Cycles. Non-simple

holes do not introduce any significant difficulties. The technique to

handle non-simple holes is the one described in [27, Section 5.1, pp.

27]. We make an incision along the non-simple boundary of a hole

to turn it into a simple cycle. Making this incision creates multiple

copies of vertices that are visited multiple times by the non-simple

cycle. However, the total number of copies is within a constant of

the original number of boundary vertices along the hole. These

copies do not pose any problems because, for our purposes, they

can be treated as distinct sites of the Voronoi diagram.

5 CONSTRUCTION TIME
In this section we show how to construct our oracles in

˜O(n∑i
ri+1√
r i
)

time, as stated in Theorem 7. Before doing so, we give some prelim-

inaries on dense distance graphs.

148

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and Oren Weimann

5.1 Dense Distance Graphs and FR-Dijkstra
The dense distance graph of a piece P , denoted DDGP is a com-

plete directed graph on the boundary vertices of P . Each edge (u,v)
has length dP (u,v), equal to the length of the shortest u-to-v path

in P . DDGP can be computed in time O((|∂P |2 + |P |) log |P |) us-
ing the multiple source shortest paths (MSSP) algorithm [9, 31].

Over all pieces of the recursive decomposition this takes time

O(n log2 n) in total and requires space O(n logn). We refer to the

aforementioned (standard) DDGs as internal; the external DDG
of a piece P is the complete directed graph on the vertices of ∂P ,
with the edge (u,v) having length equal to dPout (u,v). There is

an efficient implementation of Dijkstra’s algorithm (nicknamed

FR-Dijkstra [21]) that runs on any union of DDGs. The algorithm

exploits the fact that, due to planarity, a DDG’s adjacency matrix

M satisfies a Monge property (namely, for any i , j we have that
M[i + 1, j] +M[i, j + 1] ≤ M[i + 1, j + 1] +M[i, j]). We next give

a —convenient for our purposes— interface for FR-Dijkstra which

was essentially proved in [21], with some additional components

and details from [27, 39].

Theorem 9 ([21, 27, 39]). A set of DDGs with O(M) vertices in
total (with multiplicities), each having at most m vertices, can be
preprocessed in time and extra space O(M logm) in total. After this
preprocessing, Dijkstra’s algorithm can be run on the union of any
subset of these DDGs with O(N) vertices in total (with multiplicities)
in time O(N logN logm).

5.2 Construction
For ease of presentation we present the construction algorithm

assuming pieces have only one hole. Generalizing to multiple holes

does not pose any new obstacles. Recall that for each piece R in

the recursive decomposition whose parent in T is Q we need to

compute two MSSP data structures, and for each boundary vertex

u of R we need to compute VD∗near (u,Q), VD∗f ar (u,Q), and the

coarse tree TR
u .

Computing the MSSP data structures takes nearly linear time

in the total size of these data structures. To be able to compute

the distances between vertices in the same piece of the r1 division,
additive distances for all Voronoi diagrams, and the coarse trees

TR
u , we compute the internal and external dense distance graphs

of every piece in the recursive r -division. This can be done in

nearly linear time [38]. We also compute the dense distance graph

of ∂R ∪ ∂Q . This is done by running MSSP twice in Q \ (R \ ∂R),
and then querying all pairwise distances. For a piece R of the ri
division, this takes

˜O(ri+1) time, so it takes a total of
˜O(∑i n

ri+1
ri)

time overall.

We then compute the distances from each vertex inG to all other

vertices in the same piece R of the r1-division in time O(1), using
Dijkstra on R and the external DDG of R. To compute the additive

weights for the Voronoi diagrams VD∗near (u,Q) and VD∗f ar (u,Q),
as well as the coarse tree TR

u , we need to compute distances from u
to ∂Q ∪ ∂R in Rout . This can be done in time O(|∂Q | log2 |∂Q |) by
running FR-Dijkstra from u on the union of the DDG ofQ \ (R \ ∂R)
and the external DDG of Q . The total time to compute all such

additive weights is thus O(∑i
n√
ri

√
ri+1 log

2 ri+1).

To compute each Voronoi diagram VD∗near (u,Q) we compute

the primal Voronoi diagram VDnear (u,Q) with a single-source

shortest path computation in Q from an artificial super-source s
connected to all vertices ∂Q with edges whose lengths are the

additive weights. This can be done in linear O(|Q |) time [25]. In

O(|Q |) time it is then easy to obtain the dual VD∗near (u,Q) from the

primal VDnear (u,Q). The total time to compute all such diagrams

is therefore O(∑i n
ri+1√
ri
).

It remains to compute the diagram VD∗f ar (u,Q). Here we can-
not afford to make an explicit computation of the primal Voronoi

diagram VDf ar (u,Q). Instead, we will compute just the tree struc-

ture and the trichromatic faces of VDf ar (u,Q). These suffice as the

representation of VD∗f ar (u,Q) since all we need for point location

is the centroid decomposition of VD∗f ar (u,Q). The main idea is to

use FR-Dijkstra to locate the trichromatic faces. Let K be a star with

center u and leaves ∂Q , where for each vertexw ∈ ∂Q , the length
of the arc uw is the additive distance ofw in VD∗f ar (u,Q). We start

by computing a shortest path tree T rooted at u in the union of K
and the DDGs of all siblings of pieces in the complete recursive

decomposition tree A that contain Q . We shall prove that, by in-

specting the restriction of T to the DDG of each piece P , we can
infer whether P contains a trichromatic face or not. If P contains a

trichromatic face we refine T inside P by replacing the DDG of P
with the DDGs of its two children inA, and recomputing the part of

T inside P using FR-Dijkstra. We continue doing so until we locate

all O(|∂Q |) trichromatic faces. The tree structure of VDf ar (u,Q) is
captured by the structure of the shortest path tree in the DDGs of

all the pieces at the end of this process. The total time to locate all

the trichromatic faces is proportional, up to polylogarithmic factors,

to the total number of vertices in all of the DDGs involved in all

these computations. Since the total number of vertices in all DDGs

containing a particular face is O(
√
n), the total time for finding all

trichromatic faces as well as the tree structure is
˜O(
√
n ·

√
|Q |). A

more careful analysis that takes into account double counting of

large pieces (cf. [11]) bounds this time by
˜O(
√
n
√
|Q |). Since there

are n/
√
r i boundary vertices at level i of the recursive r -division,

the total time to compute all Voronoi diagrams VD∗f ar (u,Q) for a

single level is
˜O(n√

r i
·
√
nr

1/4
i+1). Thus, the total time to construct all

Voronoi diagrams VD∗f ar (u,Q) for all levels is
˜O(n3/2∑i

r 1/4i+1√
r i
).

Putting everything together, the total construction time sums

up to
˜O
(
n
∑
i
(ri+1√

ri
+

√
nr 1/4i+1√
r i

))
.

Remark 10. We could use the described algorithm to also com-

pute VD∗near (u,Q), bringing the complexity down to ˜O(n∑i
r 3/4i+1√
ri
).

We omit the description due to technicalities arising from having
to consider DDGs of ancestors of R, excluding R. If we did that, the

construction time in Theorem 7 would be ˜O(n3/2∑i
r 1/4i+1√
r i
).

The only missing part in the explanation above is showing we

can infer whether a piece P contains a trichromatic face just by

inspecting the restriction of T to P . Our choice of additive distance
guarantees that each vertex of ∂Q is a child of u in T . We label

149

Almost Optimal Distance Oracles for Planar Graphs STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

each vertex w of T by its unique ancestor in T that belongs to

∂Q . Note that the label of a vertex w corresponds to the Voronoi

cell containing w in VD∗f ar (u,Q). Consider the restriction of T

to the DDG of P . We use a representation of size O(|∂P |) of the
edges of T embedded as curves in P , such that each edge of T is

homologous (w.r.t. the holes of P) to its underlying shortest path

in P . See [34, 37] for details on such a representation. We make

incisions in the embedding of P along the edges ofT (the endpoints

of edges of T are duplicated in this process). Let P be the set of

connected components of P after all incisions are made.

Lemma 11. P contains a trichromatic face if and only if some con-
nected component C in P contains boundary vertices of P with more
than two distinct labels.

Intuitively, for each connected component C in P, each label

appears as the label of boundary vertices along at most a single

sequence of consecutive boundary vertices along the boundary of

C . Consider the component C ′ obtained from C by connecting an

artificial new vertex to all the boundary vertices with the same label.

Since these boundary vertices form a single consecutive interval on

the boundary ofC ,C ′ is also a planar graph when the new vertices

are embedded in the infinite face of C . Now C ′ has a new infinite

face where every vertex on that face has a distinct label, and there

are more than two labels. The Voronoi diagram of C ′ necessarily
contains a trichromatic face.

z
<latexit sha1_base64="V61ahDJnnWKPVhpM/yuf77m1lKo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQkBS8eW7Af0Iay2U7atZtN2N0INfQXePGgiFd/kjf/jds2B219YeHhnRl25g0SwbVx3W+nsLa+sblV3C7t7O7tH5QPj1o6ThXDJotFrDoB1Si4xKbhRmAnUUijQGA7GN/O6u1HVJrH8t5MEvQjOpQ85IwaazWe+uWKW3XnIqvg5VCBXPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXYuSRqj9bL7olJxZZ0DCWNknDZm7vycyGmk9iQLbGVEz0su1mflfrZua8NrPuExSg5ItPgpTQUxMZleTAVfIjJhYoExxuythI6ooMzabkg3BWz55FVoXVc9y47JSu8njKMIJnMI5eHAFNbiDOjSBAcIzvMKb8+C8OO/Ox6K14OQzx/BHzucP6A+M+g==</latexit><latexit sha1_base64="V61ahDJnnWKPVhpM/yuf77m1lKo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQkBS8eW7Af0Iay2U7atZtN2N0INfQXePGgiFd/kjf/jds2B219YeHhnRl25g0SwbVx3W+nsLa+sblV3C7t7O7tH5QPj1o6ThXDJotFrDoB1Si4xKbhRmAnUUijQGA7GN/O6u1HVJrH8t5MEvQjOpQ85IwaazWe+uWKW3XnIqvg5VCBXPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXYuSRqj9bL7olJxZZ0DCWNknDZm7vycyGmk9iQLbGVEz0su1mflfrZua8NrPuExSg5ItPgpTQUxMZleTAVfIjJhYoExxuythI6ooMzabkg3BWz55FVoXVc9y47JSu8njKMIJnMI5eHAFNbiDOjSBAcIzvMKb8+C8OO/Ox6K14OQzx/BHzucP6A+M+g==</latexit><latexit sha1_base64="V61ahDJnnWKPVhpM/yuf77m1lKo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQkBS8eW7Af0Iay2U7atZtN2N0INfQXePGgiFd/kjf/jds2B219YeHhnRl25g0SwbVx3W+nsLa+sblV3C7t7O7tH5QPj1o6ThXDJotFrDoB1Si4xKbhRmAnUUijQGA7GN/O6u1HVJrH8t5MEvQjOpQ85IwaazWe+uWKW3XnIqvg5VCBXPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXYuSRqj9bL7olJxZZ0DCWNknDZm7vycyGmk9iQLbGVEz0su1mflfrZua8NrPuExSg5ItPgpTQUxMZleTAVfIjJhYoExxuythI6ooMzabkg3BWz55FVoXVc9y47JSu8njKMIJnMI5eHAFNbiDOjSBAcIzvMKb8+C8OO/Ox6K14OQzx/BHzucP6A+M+g==</latexit><latexit sha1_base64="V61ahDJnnWKPVhpM/yuf77m1lKo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQkBS8eW7Af0Iay2U7atZtN2N0INfQXePGgiFd/kjf/jds2B219YeHhnRl25g0SwbVx3W+nsLa+sblV3C7t7O7tH5QPj1o6ThXDJotFrDoB1Si4xKbhRmAnUUijQGA7GN/O6u1HVJrH8t5MEvQjOpQ85IwaazWe+uWKW3XnIqvg5VCBXPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXYuSRqj9bL7olJxZZ0DCWNknDZm7vycyGmk9iQLbGVEz0su1mflfrZua8NrPuExSg5ItPgpTQUxMZleTAVfIjJhYoExxuythI6ooMzabkg3BWz55FVoXVc9y47JSu8njKMIJnMI5eHAFNbiDOjSBAcIzvMKb8+C8OO/Ox6K14OQzx/BHzucP6A+M+g==</latexit>

y
<latexit sha1_base64="k2E7geM6EpzwHg6AXJpYg82YvKU=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjreZ0UK54NW8hsg5+ARUo1BiUv/rDhGUxSsME1brne6kJcqoMZwJnbrWfaUwpm9AR9ixKGqMO8sWmM1K1zpBEibJPGrJw3V8TOY21nsah7YypGevV2tz8r9bLTHQb5FymmUHJlh9FmSAmIfOzyZArZEZMLVCmuF2WsDFVlBkbjmtT8FdvXof2Vc233Lyu1O+KPEpwDhdwCT7cQB0eoAEtYIDwDK/w5kycF+fd+Vi2bjjFzBn8kfP5A0vFjSQ=</latexit><latexit sha1_base64="k2E7geM6EpzwHg6AXJpYg82YvKU=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjreZ0UK54NW8hsg5+ARUo1BiUv/rDhGUxSsME1brne6kJcqoMZwJnbrWfaUwpm9AR9ixKGqMO8sWmM1K1zpBEibJPGrJw3V8TOY21nsah7YypGevV2tz8r9bLTHQb5FymmUHJlh9FmSAmIfOzyZArZEZMLVCmuF2WsDFVlBkbjmtT8FdvXof2Vc233Lyu1O+KPEpwDhdwCT7cQB0eoAEtYIDwDK/w5kycF+fd+Vi2bjjFzBn8kfP5A0vFjSQ=</latexit><latexit sha1_base64="k2E7geM6EpzwHg6AXJpYg82YvKU=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjreZ0UK54NW8hsg5+ARUo1BiUv/rDhGUxSsME1brne6kJcqoMZwJnbrWfaUwpm9AR9ixKGqMO8sWmM1K1zpBEibJPGrJw3V8TOY21nsah7YypGevV2tz8r9bLTHQb5FymmUHJlh9FmSAmIfOzyZArZEZMLVCmuF2WsDFVlBkbjmtT8FdvXof2Vc233Lyu1O+KPEpwDhdwCT7cQB0eoAEtYIDwDK/w5kycF+fd+Vi2bjjFzBn8kfP5A0vFjSQ=</latexit><latexit sha1_base64="k2E7geM6EpzwHg6AXJpYg82YvKU=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjreZ0UK54NW8hsg5+ARUo1BiUv/rDhGUxSsME1brne6kJcqoMZwJnbrWfaUwpm9AR9ixKGqMO8sWmM1K1zpBEibJPGrJw3V8TOY21nsah7YypGevV2tz8r9bLTHQb5FymmUHJlh9FmSAmIfOzyZArZEZMLVCmuF2WsDFVlBkbjmtT8FdvXof2Vc233Lyu1O+KPEpwDhdwCT7cQB0eoAEtYIDwDK/w5kycF+fd+Vi2bjjFzBn8kfP5A0vFjSQ=</latexit>

u
<latexit sha1_base64="rezAWKkdjTLXShLFd/Wl6eaKQ9E=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjrWY2KFe8mrcQWQe/gAoUagzKX/1hwrIYpWGCat3zvdQEOVWGM4Ezt9rPNKaUTegIexYljVEH+WLTGalaZ0iiRNknDVm47q+JnMZaT+PQdsbUjPVqbW7+V+tlJroNci7TzKBky4+iTBCTkPnZZMgVMiOmFihT3C5L2JgqyowNx7Up+Ks3r0P7quZbbl5X6ndFHiU4hwu4BB9uoA4P0IAWMEB4hld4cybOi/PufCxbN5xi5gz+yPn8AUWxjSA=</latexit><latexit sha1_base64="rezAWKkdjTLXShLFd/Wl6eaKQ9E=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjrWY2KFe8mrcQWQe/gAoUagzKX/1hwrIYpWGCat3zvdQEOVWGM4Ezt9rPNKaUTegIexYljVEH+WLTGalaZ0iiRNknDVm47q+JnMZaT+PQdsbUjPVqbW7+V+tlJroNci7TzKBky4+iTBCTkPnZZMgVMiOmFihT3C5L2JgqyowNx7Up+Ks3r0P7quZbbl5X6ndFHiU4hwu4BB9uoA4P0IAWMEB4hld4cybOi/PufCxbN5xi5gz+yPn8AUWxjSA=</latexit><latexit sha1_base64="rezAWKkdjTLXShLFd/Wl6eaKQ9E=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjrWY2KFe8mrcQWQe/gAoUagzKX/1hwrIYpWGCat3zvdQEOVWGM4Ezt9rPNKaUTegIexYljVEH+WLTGalaZ0iiRNknDVm47q+JnMZaT+PQdsbUjPVqbW7+V+tlJroNci7TzKBky4+iTBCTkPnZZMgVMiOmFihT3C5L2JgqyowNx7Up+Ks3r0P7quZbbl5X6ndFHiU4hwu4BB9uoA4P0IAWMEB4hld4cybOi/PufCxbN5xi5gz+yPn8AUWxjSA=</latexit><latexit sha1_base64="rezAWKkdjTLXShLFd/Wl6eaKQ9E=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjrWY2KFe8mrcQWQe/gAoUagzKX/1hwrIYpWGCat3zvdQEOVWGM4Ezt9rPNKaUTegIexYljVEH+WLTGalaZ0iiRNknDVm47q+JnMZaT+PQdsbUjPVqbW7+V+tlJroNci7TzKBky4+iTBCTkPnZZMgVMiOmFihT3C5L2JgqyowNx7Up+Ks3r0P7quZbbl5X6ndFHiU4hwu4BB9uoA4P0IAWMEB4hld4cybOi/PufCxbN5xi5gz+yPn8AUWxjSA=</latexit>

q
<latexit sha1_base64="bdGUh2GFhz17H0BtMF+W9k6UzbQ=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkIuhJCl48tmA/oA1ls520SzebuLsRSukv8CQoiFd/kif/jds2B219YeHhnRl25g1TwbXxvG+nsLG5tb1T3HX39g8Oj0rHJy2dZIphkyUiUZ2QahRcYtNwI7CTKqRxKLAdju/m9fYTKs0T+WAmKQYxHUoecUaNtRqP/VLZq3oLkXXwcyhDrnq/9NUbJCyLURomqNZd30tNMKXKcCZw5lZ6mcaUsjEdYteipDHqYLrYdEYq1hmQKFH2SUMWrvtrYkpjrSdxaDtjakZ6tTY3/6t1MxPdBFMu08ygZMuPokwQk5D52WTAFTIjJhYoU9wuS9iIKsqMDce1KfirN69D67LqW25clWu3eR5FOINzuAAfrqEG91CHJjBAeIZXeHPGzovz7nwsWwtOPnMKf+R8/gA/nY0c</latexit><latexit sha1_base64="bdGUh2GFhz17H0BtMF+W9k6UzbQ=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkIuhJCl48tmA/oA1ls520SzebuLsRSukv8CQoiFd/kif/jds2B219YeHhnRl25g1TwbXxvG+nsLG5tb1T3HX39g8Oj0rHJy2dZIphkyUiUZ2QahRcYtNwI7CTKqRxKLAdju/m9fYTKs0T+WAmKQYxHUoecUaNtRqP/VLZq3oLkXXwcyhDrnq/9NUbJCyLURomqNZd30tNMKXKcCZw5lZ6mcaUsjEdYteipDHqYLrYdEYq1hmQKFH2SUMWrvtrYkpjrSdxaDtjakZ6tTY3/6t1MxPdBFMu08ygZMuPokwQk5D52WTAFTIjJhYoU9wuS9iIKsqMDce1KfirN69D67LqW25clWu3eR5FOINzuAAfrqEG91CHJjBAeIZXeHPGzovz7nwsWwtOPnMKf+R8/gA/nY0c</latexit><latexit sha1_base64="bdGUh2GFhz17H0BtMF+W9k6UzbQ=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkIuhJCl48tmA/oA1ls520SzebuLsRSukv8CQoiFd/kif/jds2B219YeHhnRl25g1TwbXxvG+nsLG5tb1T3HX39g8Oj0rHJy2dZIphkyUiUZ2QahRcYtNwI7CTKqRxKLAdju/m9fYTKs0T+WAmKQYxHUoecUaNtRqP/VLZq3oLkXXwcyhDrnq/9NUbJCyLURomqNZd30tNMKXKcCZw5lZ6mcaUsjEdYteipDHqYLrYdEYq1hmQKFH2SUMWrvtrYkpjrSdxaDtjakZ6tTY3/6t1MxPdBFMu08ygZMuPokwQk5D52WTAFTIjJhYoU9wuS9iIKsqMDce1KfirN69D67LqW25clWu3eR5FOINzuAAfrqEG91CHJjBAeIZXeHPGzovz7nwsWwtOPnMKf+R8/gA/nY0c</latexit><latexit sha1_base64="bdGUh2GFhz17H0BtMF+W9k6UzbQ=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkIuhJCl48tmA/oA1ls520SzebuLsRSukv8CQoiFd/kif/jds2B219YeHhnRl25g1TwbXxvG+nsLG5tb1T3HX39g8Oj0rHJy2dZIphkyUiUZ2QahRcYtNwI7CTKqRxKLAdju/m9fYTKs0T+WAmKQYxHUoecUaNtRqP/VLZq3oLkXXwcyhDrnq/9NUbJCyLURomqNZd30tNMKXKcCZw5lZ6mcaUsjEdYteipDHqYLrYdEYq1hmQKFH2SUMWrvtrYkpjrSdxaDtjakZ6tTY3/6t1MxPdBFMu08ygZMuPokwQk5D52WTAFTIjJhYoU9wuS9iIKsqMDce1KfirN69D67LqW25clWu3eR5FOINzuAAfrqEG91CHJjBAeIZXeHPGzovz7nwsWwtOPnMKf+R8/gA/nY0c</latexit>

x
<latexit sha1_base64="qsvKBTJ5NAKSwUaIHVyo1ttN4GU=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkIuhJCl48tmA/oA1ls520SzebsLsRS+kv8CQoiFd/kif/jds2B219YeHhnRl25g1TwbXxvG+nsLG5tb1T3HX39g8Oj0rHJy2dZIphkyUiUZ2QahRcYtNwI7CTKqRxKLAdju/m9fYjKs0T+WAmKQYxHUoecUaNtRpP/VLZq3oLkXXwcyhDrnq/9NUbJCyLURomqNZd30tNMKXKcCZw5lZ6mcaUsjEdYteipDHqYLrYdEYq1hmQKFH2SUMWrvtrYkpjrSdxaDtjakZ6tTY3/6t1MxPdBFMu08ygZMuPokwQk5D52WTAFTIjJhYoU9wuS9iIKsqMDce1KfirN69D67LqW25clWu3eR5FOINzuAAfrqEG91CHJjBAeIZXeHPGzovz7nwsWwtOPnMKf+R8/gBKQI0j</latexit><latexit sha1_base64="qsvKBTJ5NAKSwUaIHVyo1ttN4GU=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkIuhJCl48tmA/oA1ls520SzebsLsRS+kv8CQoiFd/kif/jds2B219YeHhnRl25g1TwbXxvG+nsLG5tb1T3HX39g8Oj0rHJy2dZIphkyUiUZ2QahRcYtNwI7CTKqRxKLAdju/m9fYjKs0T+WAmKQYxHUoecUaNtRpP/VLZq3oLkXXwcyhDrnq/9NUbJCyLURomqNZd30tNMKXKcCZw5lZ6mcaUsjEdYteipDHqYLrYdEYq1hmQKFH2SUMWrvtrYkpjrSdxaDtjakZ6tTY3/6t1MxPdBFMu08ygZMuPokwQk5D52WTAFTIjJhYoU9wuS9iIKsqMDce1KfirN69D67LqW25clWu3eR5FOINzuAAfrqEG91CHJjBAeIZXeHPGzovz7nwsWwtOPnMKf+R8/gBKQI0j</latexit><latexit sha1_base64="qsvKBTJ5NAKSwUaIHVyo1ttN4GU=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkIuhJCl48tmA/oA1ls520SzebsLsRS+kv8CQoiFd/kif/jds2B219YeHhnRl25g1TwbXxvG+nsLG5tb1T3HX39g8Oj0rHJy2dZIphkyUiUZ2QahRcYtNwI7CTKqRxKLAdju/m9fYjKs0T+WAmKQYxHUoecUaNtRpP/VLZq3oLkXXwcyhDrnq/9NUbJCyLURomqNZd30tNMKXKcCZw5lZ6mcaUsjEdYteipDHqYLrYdEYq1hmQKFH2SUMWrvtrYkpjrSdxaDtjakZ6tTY3/6t1MxPdBFMu08ygZMuPokwQk5D52WTAFTIjJhYoU9wuS9iIKsqMDce1KfirN69D67LqW25clWu3eR5FOINzuAAfrqEG91CHJjBAeIZXeHPGzovz7nwsWwtOPnMKf+R8/gBKQI0j</latexit><latexit sha1_base64="qsvKBTJ5NAKSwUaIHVyo1ttN4GU=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkIuhJCl48tmA/oA1ls520SzebsLsRS+kv8CQoiFd/kif/jds2B219YeHhnRl25g1TwbXxvG+nsLG5tb1T3HX39g8Oj0rHJy2dZIphkyUiUZ2QahRcYtNwI7CTKqRxKLAdju/m9fYjKs0T+WAmKQYxHUoecUaNtRpP/VLZq3oLkXXwcyhDrnq/9NUbJCyLURomqNZd30tNMKXKcCZw5lZ6mcaUsjEdYteipDHqYLrYdEYq1hmQKFH2SUMWrvtrYkpjrSdxaDtjakZ6tTY3/6t1MxPdBFMu08ygZMuPokwQk5D52WTAFTIjJhYoU9wuS9iIKsqMDce1KfirN69D67LqW25clWu3eR5FOINzuAAfrqEG91CHJjBAeIZXeHPGzovz7nwsWwtOPnMKf+R8/gBKQI0j</latexit>

Q

q0

P

C
w

Figure 4: Illustration for the proof of Lemma 11. Some pieces
in a graph G are shown. The piece Q (in bold) is a piece of
some ri -division in the recursive r -division ofG. The piece P
(bold boundary, horizontal stripes) is some piece in the com-
plete recursive decomposition of G that lies outside Q . The
shortest path tree T is shown in blue, the connected compo-
nent C in yellow, and the cycle D in gray. Vertices x and y
have the same label q. The vertices w, z between x and y (on
the cyclic walk F along the infinite face of C) must also be
labeled q.

Proof. Let C be a connected component in P. Note that the

vertices of ∂Q either do not belong to C or they are incident to a

single face f ofC . In the former case, let f be the face ofC such that

∂Q is embedded in f . We think of f as the infinite face of C . Note
that, because any path from ∂Q to any vertex ofC must intersect f ,
the set of labels of the vertices of f is identical to the set of labels

of all of C .
We first claim that the vertices of f that have the same label are

consecutive in the cyclic order of f . To see this, consider any two

distinct vertices x ,y of f that have the same label q. Note that, by
the incision process definingC , if x is an ancestor of y in T (or vice

versa) then all the vertices on one of the x-to-y subpaths of f are

on the x-to-y path in T , and hence all have the label q. Assume,

therefore, that neither is an ancestor of the other (as illustrated

in Figure 4), and consider the (not necessarily simple) cycle D (in

Qout
) formed by the unique x-to-y path in T , and the x-to-y path

F of f such that D does not enclose C . Observe that D is non self

crossing, and that D encloses no vertices of ∂Q except, perhaps, q
itself. Suppose some vertex of F has a label q′ , q, and letw be a

rootmost such vertex inT . Since D does not enclose q′, the q′-to-w
path in T is not enclosed by D, and hence must intersect C . But
thenC should have been further dissected when the incisions along

T were performed, a contradiction.

The argument above established that the vertices of f that have

the same label are consecutive in the cyclic order of f . For every
unique label q of a vertex of f we embed inside f an artificial vertex

and connect it to every vertexw of f that has label q with an edge

whose length is the q-to-w distance in T . By the consecutiveness

property above, this can be done without violating planarity. We

connect the artificial vertices by infinite length edges, according

to the cyclic order of the labels along f , so that resulting graph

C ′ has a new infinite face containing just the artificial vertices.

Consider now the additively weighted Voronoi diagram VD(C ′)
with the artificial vertices as sites, where the additive weight of an

artificial vertex with label q is equal to the additive weight of the

corresponding site q in VD∗f ar (u,Q). Note that, by construction,

the additive distances in VD(C ′) and in VD∗f ar (u,Q) are the same,

so the restrictions of both diagrams to C are identical. It therefore

suffices to prove that VD(C ′) has a trichromatic face in C .
Since C has boundary vertices of P with more than two distinct

labels, C ′ has more than two sites. Since all the vertices on the

infinite face ofC ′ are sites, and since every site is in its own Voronoi
cell, VD(C ′) has at least two trichromatic faces [8, 23] (one being

the infinite face of C ′). Observe that all the newly introduced faces

of C ′ (those created by the edges connecting artificial vertices to

vertices of f or to each other) have either a single label (in case the

face is a triangle formed by an artificial vertex and two consecutive

vertices of f with the same label), or two labels (in case the face has

size 4, and is formed by two artificial vertices and two consecutive

vertices of f with two distinct labels). It follows that VD(C ′) must

have a trichromatic face of C , and so does VD∗f ar (u,Q). □

The entire discussion in this section on efficient computation of

dual Voronoi Diagrams can be generalized to the following state-

ment.

Theorem 12. Given a face f on a graphG , and a complete recursive
decomposition ofG , such that every piece has been preprocessed for FR-
Dijkstra as in Theorem 9, we can compute VD∗ with sites the vertices
on f and arbitrary input additive weights in time ˜O(

√
|G | · | f |).

150

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and Oren Weimann

6 FINAL REMARKS
The main open question is whether there exists a distance oracle

occupying linear (or nearly linear) space and requiring constant (or

polylogarithmic) time to answer queries. Note that currently, any or-

acle with
˜O(n) space requires polynomial query time. In particular,

the fastest known oracles with strictly linear space [38, 40] require

Ω(n1/2+ϵ) query time. Another important question concerns the

construction time. Is there a nearly-linear time algorithm to con-

struct our oracle, or oracles with comparable space to query-time

tradeoffs?

REFERENCES
[1] Srinivasa Rao Arikati, Danny Z. Chen, L. Paul Chew, Gautam Das, Michiel H. M.

Smid, and Christos D. Zaroliagis. 1996. Planar Spanners andApproximate Shortest

Path Queries among Obstacles in the Plane. In 4th ESA. 514–528.
[2] Franz Aurenhammer. 1991. Voronoi Diagrams: a Survey of a Fundamental Geo-

metric Data Structure. ACM Comput. Surv. 23, 3 (1991), 345–405.
[3] Michael A. Bender and Martin Farach-Colton. 2000. The LCA Problem Revisited.

In 4th LATIN. 88–94.
[4] Michael A. Bender and Martin Farach-Colton. 2004. The Level Ancestor Problem

simplified. Theor. Comput. Sci. 321, 1 (2004), 5–12.
[5] Glencora Borradaile, Piotr Sankowski, and Christian Wulff-Nilsen. 2010. Min

st-cut Oracle for Planar Graphs with Near-Linear Preprocessing Time. In 51th
FOCS. 601–610.

[6] Gerth Stølting Brodal, Rolf Fagerberg, Christian N. S. Pedersen, and Anna Östlin.

2001. The Complexity of Constructing Evolutionary Trees Using Experiments.

In Automata, Languages and Programming, 28th International Colloquium, ICALP
2001, Crete, Greece, July 8-12, 2001, Proceedings. 140–151. https://doi.org/10.1007/

3-540-48224-5_12

[7] Sergio Cabello. 2012. Many Distances in Planar Graphs. Algorithmica 62, 1-2

(2012), 361–381.

[8] Sergio Cabello. 2017. Subquadratic Algorithms for the Diameter and the Sum of

Pairwise Distances in Planar Graphs. In 28th SODA. 2143–2152.
[9] Sergio Cabello, Erin W. Chambers, and Jeff Erickson. 2013. Multiple-Source

Shortest Paths in Embedded Graphs. SIAM J. Comput. 42, 4 (2013), 1542–1571.
[10] Timothy M. Chan and Dimitrios Skrepetos. 2017. Faster Approximate Diameter

and Distance Oracles in Planar Graphs. In 25th ESA. 25:1–25:13.
[11] Panagiotis Charalampopoulos, Shay Mozes, and Benjamin Tebeka. 2019. Exact

Distance Oracles for Planar Graphs with Failing Vertices. In 30th SODA. 2110–
2123.

[12] Danny Z. Chen and Jinhui Xu. 2000. Shortest path queries in planar graphs. In

32nd STOC. 469–478.
[13] Vincent Cohen-Addad, Søren Dahlgaard, and Christian Wulff-Nilsen. 2017. Fast

and Compact Exact Distance Oracle for Planar Graphs. In 58th FOCS. 962–973.
[14] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars.

2008. Computational geometry: algorithms and applications, 3rd Edition. Springer.
http://www.worldcat.org/oclc/227584184

[15] Ugur Demiryurek and Cyrus Shahabi. 2012. Indexing Network Voronoi Diagrams.

In 17th DASFAA. 526–543.
[16] Hristo Djidjev. 1996. On-Line Algorithms for Shortest Path Problems on Planar

Digraphs. In 22nd WG. 151–165.
[17] David Eppstein and Michael T. Goodrich. 2008. Studying (non-planar) road

networks through an algorithmic lens. In 16th ACM-GIS. 16.
[18] Paul Erdős. 1963. Extremal problems in graph theory. In Proc. Symp. Theory of

Graphs and its Applications. 29–36.
[19] Jeff Erickson, Kyle Fox, and Luvsandondov Lkhamsuren. 2018. Holiest minimum-

cost paths and flows in surface graphs. In 50th STOC. 1319–1332.

[20] Martin Erwig. 2000. The graph Voronoi diagram with applications. Networks 36,
3 (2000), 156–163.

[21] Jittat Fakcharoenphol and Satish Rao. 2006. Planar graphs, negative weight edges,

shortest paths, and near linear time. J. Comput. Syst. Sci. 72, 5 (2006), 868–889.
[22] Greg N. Frederickson. 1987. Fast Algorithms for Shortest Paths in Planar Graphs,

with Applications. SIAM J. Comput. 16, 6 (1987), 1004–1022.
[23] Paweł Gawrychowski, Shay Mozes, Oren Weimann, and Christian Wulff-Nilsen.

2018. Better Tradeoffs for Exact Distance Oracles in Planar Graphs. In 29th SODA.
515–529.

[24] Qian-PingGu andGengchunXu. 2015. Constant Query Time (1+ϵ) -Approximate

Distance Oracle for Planar Graphs. In 26th ISAAC. 625–636.
[25] Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian.

1997. Faster Shortest-Path Algorithms for Planar Graphs. J. Comput. Syst. Sci. 55,
1 (1997), 3–23.

[26] Shinichi Honiden, Michael E. Houle, Christian Sommer, and Martin Wolff. 2010.

Approximate Shortest Path Queries Using Voronoi Duals. Trans. Computational
Science 9 (2010), 28–53.

[27] Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. 2017. Submatrix

Maximum Queries in Monge Matrices and Partial Monge Matrices, and Their

Applications. ACM Trans. Algorithms 13, 2 (2017), 26:1–26:42.
[28] Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Sommer. 2011. Linear-

Space Approximate Distance Oracles for Planar, Bounded-Genus and Minor-Free

Graphs. In 37th ICALP. 135–146.
[29] Ken-ichi Kawarabayashi, Christian Sommer, and Mikkel Thorup. 2013. More

Compact Oracles for Approximate Distances in Undirected Planar Graphs. In

23rd SODA. 550–563.
[30] Philip N. Klein. 2002. Preprocessing an Undirected Planar Network to Enable

Fast approximate distance queries. In 12th SODA. 820–827.
[31] Philip N. Klein. 2005. Multiple-source shortest paths in planar graphs. In 16th

SODA. 146–155.
[32] Philip N. Klein and Shay Mozes. [n. d.]. Optimization Algorithms for Planar

Graphs. http://planarity.org. Book draft.

[33] Philip N. Klein, Shay Mozes, and Christian Sommer. 2013. Structured recursive

separator decompositions for planar graphs in linear time. In 45th STOC. 505–514.
[34] Jakub Lacki and Piotr Sankowski. 2011. Min-Cuts and Shortest Cycles in Planar

Graphs in O(n loglogn) Time. In 19th ESA. 155–166.
[35] Kurt Mehlhorn. 1988. A Faster Approximation Algorithm for the Steiner Problem

in Graphs. Inf. Process. Lett. 27, 3 (1988), 125–128.
[36] Gary L. Miller. 1984. Finding Small Simple Cycle Separators for 2-Connected

Planar Graphs. In 16th STOC. 376–382.
[37] Shay Mozes, Kirill Nikolaev, Yahav Nussbaum, and Oren Weimann. 2018. Mini-

mum Cut of Directed Planar Graphs in O(nloglogn) Time. In 29th SODA. 477–494.
[38] ShayMozes and Christian Sommer. 2012. Exact distance oracles for planar graphs.

In 23rd SODA. 209–222.
[39] Shay Mozes and Christian Wulff-Nilsen. 2010. Shortest Paths in Planar Graphs

with Real Lengths in O(nlog2n/loglogn) Time. In 18th ESA. 206–217.
[40] Yahav Nussbaum. 2011. Improved Distance Queries in Planar Graphs. In 12th

WADS. 642–653.
[41] Atsuyuki Okabe, Toshiaki Satoh, Takehiro Furuta, Atsuo Suzuki, and K. Okano.

2008. Generalized network Voronoi diagrams: Concepts, computational methods,

and applications. International Journal of Geographical Information Science 22, 9
(2008), 965–994.

[42] Mihai Patrascu and Liam Roditty. 2014. Distance Oracles beyond the Thorup-

Zwick Bound. SIAM J. Comput. 43, 1 (2014), 300–311.
[43] Christian Sommer. 2014. Shortest-path queries in static networks. ACM Comput.

Surv. 46, 4 (2014), 45:1–45:31.
[44] Mikkel Thorup. 2004. Compact oracles for reachability and approximate distances

in planar digraphs. J. ACM 51, 6 (2004), 993–1024.

[45] Mikkel Thorup and Uri Zwick. 2005. Approximate distance oracles. J. ACM 52, 1

(2005), 1–24.

[46] Christian Wulff-Nilsen. 2016. Approximate Distance Oracles for Planar Graphs

with Improved Query Time-Space Tradeoff. In 26th SODA. 351–362.

151

https://doi.org/10.1007/3-540-48224-5_12
https://doi.org/10.1007/3-540-48224-5_12
http://www.worldcat.org/oclc/227584184
http://planarity.org

	Abstract
	1 Introduction
	1.1 Distance Oracles for Planar Graphs
	1.2 Our Results and Techniques

	2 Preliminaries
	2.1 Multiple-Source Shortest Paths
	2.2 Separators and Recursive Decompositions
	2.3 Additively Weighted Voronoi Diagrams
	2.4 Point Location in Voronoi Diagrams

	3 An (n4/3)-space O(log2 n)-query oracle
	3.1 Data Structure
	3.2 Query
	3.3 Dealing with Holes

	4 An oracle with almost optimal tradeoffs
	4.1 Data Structure
	4.2 Query
	4.3 Dealing with Multiple Holes

	5 Construction Time
	5.1 Dense Distance Graphs and FR-Dijkstra
	5.2 Construction

	6 Final remarks
	References

