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Advanced Algorithms 

On-line Algorithms 
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Introduction 

  Online Algorithms are algorithms that need 
to make decisions without full knowledge 
of the input. They have full knowledge of 
the past but no (or partial) knowledge of 
the future.  

 
   For this type of problem we will attempt to 

design algorithms that are competitive 
with the optimum offline algorithm, the 
algorithm that has perfect knowledge of 
the future.  
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The Ski-Rental Problem 

• Assume that you are taking ski lessons. 
After each lesson you decide (depending 
on how much you enjoy it, and if you broke 
your leg or not) whether to continue skiing 
or to stop forever.  

• You have the choice of either renting skis 
for 1$ a time or buying skis for y$.  

•  Will you buy or rent? 
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The Ski-Rental Problem 

• If you knew in advance how many times t 
you would ski in your life then the choice of 
whether to rent or buy is simple. If you will 
ski more than y times then buy before you 
start, otherwise always rent.  

• The cost of this algorithm is min(t, y). 

• This type of strategy, with 
perfect knowledge of the 
future, is known as an offline 
strategy. 
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The Ski-Rental Problem 
• In practice, you don't know how many 

times you will ski. What should you do?  
• An online strategy will be a number k such 

that after renting k-1 times you will buy 
skis (just before your kth visit).  

• Claim: Setting k = y guarantees that you 
never pay more than twice the cost of the 
offline strategy.  

• Example: Assume  y=7$ Thus, after 6 
rents, you buy.  Your total payment: 
6+7=13$.   
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The Ski-Rental Problem 

Theorem: Setting k = y guarantees that you never 
pay more than twice the cost of the offline 
strategy.  

Proof: when you buy skis in your kth visit, even if 
you quit right after this time,  t  y.  

• Your total payment is k-1+y =2y-1. 

• The offline cost is min(t, y) = y. 
• The ratio is (2y-1)/y = 2-1/y.                              

 

We say that this strategy is (2-1/y)competitive. 
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The Ski-Rental Problem 

Is there a better strategy?  

• Let k be any strategy (buy after k-1 rents).  

• Suppose you buy the skis at the kth time and then 
break your leg and never ski again. 

• Your total ski cost is k-1+y and the optimum offline 
cost is min(k,y).  

• For every k, the ratio (k-1+y)/min(k,y) is at least (2-
1/y) 

• Therefore, every strategy is at least (2-1/y)- -
competitive.                                                           
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The Ski-Rental Problem 

The general rule: 

   When balancing small incremental 
costs against a big onetime cost, you 
want to delay spending the big cost 
until you have accumulated roughly 
the same amount in small costs.  
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Competitive analysis 

For a minimization problem, an online 
algorithm A is k-competitive if 

C𝐴 ≤ 𝑘 ⋅ 𝐶𝑂𝑃𝑇 + 𝑏 for some constant b  

Cost of solution 
produced by 
algorithm A 

Cost of solution 
produced by 

optimal offline 
algorithm 
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The Hole in the Fence Problem 

A cow wants to escape from Old McDonald’s 
farm. It knows that there is a hole in the 
fence, but doesn’t know on which direction 
it is. 

Suggest the cow a path that will guarantee 
its freedom. 

http://images.google.com/imgres?imgurl=www.mbd2.com/B_Photos/cow.gif&imgrefurl=http://www.mbd2.com/card.htm&h=235&w=205&prev=/images?q=cow&start=180&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&sa=N
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The Hole in the Fence Problem 

Cow’s algorithm: 

1. d=1; current side = right  

2. repeat:  

i. Walk distance d on current side  

ii. if find hole then exit  

iii. else return to starting point  

iv. d = 2d  

v. Flip current side  

http://images.google.com/imgres?imgurl=www.mbd2.com/B_Photos/cow.gif&imgrefurl=http://www.mbd2.com/card.htm&h=235&w=205&prev=/images?q=cow&start=180&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&sa=N
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The Hole in the Fence Problem 

Theorem: The cow’s algorithm is 9-
competitive. 

In other words: The distance the cow might 
pass before finding the hole is at most 9 
times the distance of an optimal offline 

algorithm (that knows where the hole is).  

  

opt 

alg 

http://images.google.com/imgres?imgurl=www.mbd2.com/B_Photos/cow.gif&imgrefurl=http://www.mbd2.com/card.htm&h=235&w=205&prev=/images?q=cow&start=180&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&sa=N
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The Hole in the Fence Problem 

Theorem: The cow’s algorithm is 9-competitive. 

Proof:The worst case is that it finds the hole a 
little bit beyond the distance it last searched on 
this side (why?). 

Thus, OPT = 2j +  where j = # of iterations and  is 
some small distance. Then,  

Cost OPT = 2j +   >  2j 

Cost COW = 2(1 + 2 + 4 + … + 2j+1 ) + 2j +   

               = 22j+2 + 2j +  = 92j +  < 9  Cost OPT. 
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Edge Coloring 

• An Edge-coloring of a graph G=(V,E) is an assignment, 
c, of integers to the edges such that if e1 and e2 
share an endpoint then c(e1)  c(e2).  

 

 

 

• Let  be the maximal degree of some vertex in G. 

• In the offline case, it is possible to edge-color G 
using  or +1 colors (which is almost optimal).  

• Online edge coloring: The graph is not known in 
advance. In each step a new edge is added and we 
need to color it before the next edge is known. 
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Optimal Online Algorithm for Edge 
Coloring 

- We color the edges with numbers 1,2,3… 

- Let e=(u,v) be a new edge. 

Color e with the smallest color which is not used by 
any edge adjacent to u or v.  

Claim: The algorithm uses at most 2-1 colors. 

Proof sketch: assume we need the color 2. It must 
be that all the colors 1,2,…,2-1 are used by edges 
adjacent to u or v. Therefore, either u or v has  
adjacent edges, excluding e, contradicting the 
definition of . 

u v 
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Online Edge Coloring 
Claim: Any deterministic algorithm needs at least 2-1 

colors. 
Proof: Assume  an algorithm that uses only 2-2 

colors. Given  we add to the graph many (-1)-stars. 
 

There is a finite number of ways to edge-color a (-1)-
star with colors from {1,2,…,2-2}, so at some point we 
must have  stars, all colored with the the same set 
of-1 colors. 

Example: 

=6  
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Online Edge Coloring 

v2 

v1 

v3 

v5 

v4 

  stars, all 
colored with 
the the same 
set of -1 
colors. v6 

 Let v1,v2,…,v be the centers of these stars.      

    We are ready to shock the algorithm! 

    We add a new vertex, a, and  edges (a-v1), …,(a,v). 

    Each new edge must have a unique color (why?), 
that is not one of the (-1) colors used to color the 
stars (why?)  2-1 colors must be used. 

 

Note: the maximal degree is  
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Online Scheduling and Load Balancing 

Problem Statement:  

• A set of m identical machines,  

• A sequence of jobs with processing times p1, p2,….  

• Each job must be assigned to one of the machines. 

• When job j is scheduled, we don’t know how many 
additional jobs we are going to have and what are 
their processing times. 

Goal: schedule the jobs on machines in a way that 
minimizes the makespan = max i j on Mi pj . 

    (the maximal load on one machine)  
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Online versus off-line 

• We compare the last completion time 
in the schedule of the on-line 
algorithm to the last completion time 
in the schedule of an optimal off-line 
algorithm which knows the full 
sequence of jobs in advance and has 
unlimited calculation power. 
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Applications 

• In operating systems:                          

  Assignment of jobs to   

computers/servers/processors 

• Data storage on disks 

• Giving tasks to employees 

• In all these problems, on-line 
scenarios are often more realistic 
than off-line scenarios 
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Online Scheduling and Load Balancing 

List Scheduling [Graham 1966]: 

A greedy algorithm: always schedule a job on 
the least loaded machine.  

Example: m=3   = 7 3 4 5 6 10 

M3 

M2 

M1 7 

3 

4 

5 

6 

10 

Makespan = 17 

Theorem: List- Scheduling is (2-1/m)- competitive.  

Proof: you did this in HW2. 
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The Analysis is Tight - Example 

• m(m-1) unit jobs followed by a single 
job of size m 

• OPT=m 

• LS=2m-1 

LS 

m 

m-1 



23 

Online Scheduling 

 Are there any better algorithms? 

 Not significantly. Randomization does help. 

deterministic randomized 

m lower 
bound 

upper
bound 

LS lower 
bound 

upper
bound 

2 1.5 1.5 1.5 1.334 1.334 

3 1.666 1.667 1.667 1.42 1.55 

4 1.731 1.733 1.75 1.46 1.66 

 1.852 1.923 2 1.58   --- 
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A lower Bound for Online Scheduling 

Theorem: For m=2, no algorithm has r< 1.5 

Proof: Consider the sequence  = 1,1,2. 

If the first two jobs are scheduled on different 
machines, the third job completes at time 3. 

2 

1 

3 

m1 
m2 1 2 

3 m1 
m2 

CA=3, Copt=2 

r=3/2 

If the first two jobs are scheduled on the same 
machine, the adversary stops. 

 
2 1 

m1 
m2 2 

1 m1 
m2 

CA=2, Copt=1 

r=2 

alg                              opt 

alg                              opt 
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Paging: Cache Replacement Policies 

Problem Statement:  

•There are two levels of memory: 

– fast memory M1 consisting of k pages (cache) 

– slow memory M2 consisting of n pages (k < n).  

• Pages in M1 are a strict subset of the pages in M2.  

• Pages are accessible only through M1 . 

• Accessing a page contained in M1 has cost 0.  

• When accessing a page not in M1, it must first be 
brought in from M2 at a cost of 1 before it can be 
accessed. This event is called a page fault.  
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Paging- Cache Replacement Policies 

Problem Statement (cont.):  

If M1  is full when a page fault occurs, some  

page in M1 must be evicted in order to make room in 
M1.  

 

How to choose a page to evict each time a 
page fault occurs in a way that minimizes the  

total number of page faults over time? 
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Paging- An Optimal Offline Algorithm 

Algorithm LFD (Longest-Forward-Distance) 

An optimal off-line page replacement strategy.  

On each page fault, evict the page in M1  

that will be requested farthest in the future.  

 

Example: M2={a,b,c,d,e} n=5, k=3 

= a, b, c , d , a , b , e , d , e , b , c , c , a , d 
a
b
c 

a
b
d 

a
b
d 

e
b
d 

a
b
d 

e
b
d 

e
b
d 

e
b
d 

c
b
d 

c
b
d 

c
a
d 

c
a
d 

                 *                *                     *         * 

4 cache misses in LFD 

M1 =  
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Paging- An Optimal Offline Algorithm 

A classic result from 1966:  

LFD is an optimal page replacement policy.  

Proof idea: For any other algorithm A, the cost of 
A is not increased if in the 1st time that A differs 
from LFD we evict in A the page that is requested 

farthest in the future.  

 

However, LFD is not practical. 

It is not an online algorithm! 
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Online Paging Algorithms 

FIFO: first in first out: evict the page that was 
entered first to the cache. 

Example: M2={a,b,c,d,e} n=5, k=3 

= a, b, c , d , a , b , e , d , e , b , c , c , a , d 

 a
b
c 

b
c 
d 

c
d
a 

a
b 
e 

d
a
b 

b
e
d 

b
e
d 

b
e
d 

e
d
c 

e
d
c 

d
c
a 

d
c
a 

            *    *    *    *   *                *         * 

Theorem:  FIFO is k-competitive: for any 
sequence, #misses(FIFO)  k #misses (LFD) 

7 cache 
misses 
in FIFO 

M1 =  



FIFO is k competitive 

Claim: phase i contains k distinct misses different from pi 

⇒ OPT has at least one miss in phase i.  

Proof: 

- If k distinct misses different from pi, we’re done. 

- If all misses different from pi but not distinct. Some page q 
missed twice. q must be evicted before missed second time. 
⇒  k distinct misses. 

- pi is missed. Same argument as above with q = pi.  

k misses k misses ≤k misses 

pi       *   *  *   *    * *    **   *                *            * 
p2 

Last miss before 
phase i 
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Online Paging Algorithms 

LIFO: last in first out: evict the page that was 
entered last to the cache. 

Example: M2={a,b,c,d,e} n=5, k=3 

= a, b, c , d , a , b , e , d , e , b , c , c , a , d 
a
b
c 

a
b
d 

a
b
d 

a
b
e 

a
b
d 

a
b
d 

a
b
e 

a
b
e 

a
b
c 

a
b
c 

a
b
c 

a
b
d 

            *                *   *    *          *              * 

Theorem:  For all n>k, LIFO is not competitive: 
For any c, there exists a sequence of requests 
such that #misses(FIFO)  c #misses (LFD) 

6 cache 
misses 
in LIFO 

M1 =  

Proof idea: Consider  = 1, 2,..., k, k+1, k, k+1, k, k+1, … 
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Online Paging Algorithms 

LRU: least recently used: evict the page with the 
earliest last reference. 

Example: M2={a,b,c,d,e} n=5, k=3 

= a, b, c , d , a , b , d , e , d , e , b , c  
a
b
c 

b
c
d 

c
d
a 

a
b
d 

d
a
b 

b
d
e 

b
e
d 

b
d
e 

d
e
b 

e
b
c 

            *    *    *         *                     * 

Theorem:  LRU is k-competitive 

Proof: Almost identical to FIFO 

In practice, LRU much better than FIFO 
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Paging- a bound for any deterministic 
online algorithm 

Theorem: For any k and any deterministic online 

algorithm A, the competitive ratio of A  k.  

Proof: Assume n= k+1 (there are k+1 distinct pages).   

What will the adversary do? 

Always request the page that is not currently in M1 

This causes a page fault in every access. The total 

cost of A is ||. 
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Paging- a bound for any deterministic 
online algorithm 

What is the price of LFD in this sequence?  

•At most a single page fault in any k accesses  

(LFD evicts the page that will be needed in the k+1th 

request or later) 

•The total cost of LFD is at most ||/k.                  

Therefore: Worst-case analysis is not so important 
in analyzing paging algorithm 

Can randomization help? Yes!! There is a randomized 
2Hk-competitive algorithm.  (Hk= 1+1/2+1/3+…+1/k = O(ln k) ) 
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The MARKING algorithm 

When request r arrives: 

- if r in not in cache evict a random unmarked page, 
and fetch r 

- MARK r 

- If no unmarked page, unmark all pages. 

Theorem: MARKING is 2Hk-competitive 
(Hk= 1+1/2+1/3+…+1/k = O(ln k) ) 

 

Proof: Consider access sequence σ. Partition σ into 
maximal subsequences (phases) containing k distinct 
pages. Each phase starts with all pages unmarked and 
ends with all marked. 
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The MARKING algorithm 
Consider phase i. A request is old if it appeared in 
phase i-1, and new otherwise.  
Let mi be the number of new requests 

Max. number of misses occurs when new requests 
precede old requests. 

Each new requests causes a miss. ⇒ mi misses 

After all new requests were served, there are k-mi 
random unmarked old pages in the cache.  

Prob. that the 1st old request is one of those: 
𝑘 − 𝑚𝑖

𝑘
 

Prob. that the 1st request causes a miss 1 −
𝑘−𝑚𝑖

𝑘
=

𝑚𝑖

𝑘
 

 

unmarked old pages  
in the cache  

unmarked old pages  
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The MARKING algorithm 
More generally: 

After all new requests and the first j old requests 
were served, there are k-mi-j random unmarked old 
pages in the cache.  

Prob. that (j+1)’th old request is one of those? 
𝑘−𝑚𝑖−𝑗

𝑘−𝑗
 

Prob. that  (j+1)’th request is a miss 1 −
𝑘−𝑚𝑖−𝑗

𝑘−𝑗
=

𝑚𝑖

𝑘−𝑗
 

So, expected number of misses on phase i is 

𝑚𝑖 + 𝑚𝑖(
1

𝑘
+

1

𝑘−1
+ ⋯ +

1

𝑚𝑖+1
) 

= 𝑚𝑖 + 𝑚𝑖 𝐻𝑘 − 𝐻𝑚𝑖
≤ 𝑚𝑖𝐻𝑘 

 

unmarked old pages  
in the cache  

unmarked old pages  
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The MARKING algorithm 
 

- Number of cache misses in phase i: 𝑚𝑖𝐻𝑘 

- Number of distinct pages in phases i-1 and i: 𝑘 + 𝑚𝑖 

- So OPT makes at least 𝑚𝑖 misses on phases i-1,i. 

- Overall, OPT makes at least 
∑𝑚𝑖

2
 misses 

- Expected number of misses of MARKING is at most  
∑𝑚𝑖𝐻𝑘  

 

- Competitive ratio is at most 2Hk 
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Online Bin Packing 

The input: A sequence of items (numbers), a1,a2,…,an, 
such that for all i, 0 < ai <1 

The goal: ‘pack’ the items in bins of size 1.     Use as few 
bins as possible. 

Example: The input: 1/2, 1/3, 2/5, 1/6, 1/5, 2/5.  

Optimal packing in two bins: 

(1/2, 1/3, 1/6), (2/5, 2/5, 1/5). 

Legal packing in three bins: 

(1/2, 1/3), (2/5, 1/6, 1/5), (2/5)  

Online BP: ai must be packed before we know ai+1,..,an 
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Online Bin Packing 

Next-fit Algorithm:  
1. Open an active bin. 
2. For all i=1,2,…,n : 

– If possible, place ai in the current active bin; 
– Otherwise, open a new active bin and place ai in it. 

 
Example: The input: {0.3, 0.9, 0.2}.  
Next-fit packing (three bins): (0.3), (0.9), (0.2). 
 
Theorem: Next-fit is 2-competitive. 
Proof: Identical to 2-approximation in Lecture 4 
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Online Bin Packing 

First fit algorithm: place the next item in the 
first open bin that can accommodate it. Open a 
new bin only if no open bin has enough room. 

 

Example: items 0.6,0.2,0.8,0.1,0.3 

 

Bin 1  0.6,0.2,0.1   OPT 

Bin 2  0.8   Bin 1   0.6, 0.3, 0.1 

Bin 3   0.3            Bin 2   0.8, 0.2  

 

Theorem: hff  1.7opt +2  (proof not here) 
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size 

type          k 

0 1 1/2 1/4 1/3 

   ....  6 5  4   3      2                   1 

k1

The HARMONIC-k Algorithm 

Classify items into k intervals according to size 
(1/2,1]  one item per bin 
(1/3,1/2]  two items per bin 
… 
(1/k,1/(k-1)]  k-1 items per bin 
(0,1/k]   use Next Fit 
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The HARMONIC Algorithm 

• Each bin contains items from only one 
class: i items of type i per bin 

• Items of last type are packed using NEXT 
FIT: use one bin until next item does not 
fit, then start a new bin 

• Keeps k-1 bins open (the bin (1/2,1] is never open) 
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Analysis of HARMONIC-3 

• Let X be the number of bins for (1/2,1] 
– Those bins are full by more than 1/2 

• Let Y be the number of bins for (1/3,1/2] 
– Those bins are full by more than 2/3 

• Let T be the number of bins for (0,1/3] 
– Those bins are full by more than 2/3 

 

Let W be the total size of all items 

Then W>X/2+2Y/3+2T/3 
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Analysis of HARMONIC-3 

• Other bounds 

• OPT   X             (items larger than 1/2) 

• OPT   W 

 

• H3   X+Y+T (+2)  3W/2+X/4 (+2)               

 
   1.75OPT (+2)  

 

               Asymptotically, this is ignored. 

𝑊 >
𝑋

2
+

2

3
𝑌 +

2

3
𝑇    ⋅

3

2
+

𝑋

4
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Analysis of HARMONIC-4 

• Let X be the number of bins for (1/2,1] 
– Those bins are full by more than 1/2 

• Let Y be the number of bins for (1/3,1/2] 
– Those bins are full by more than 2/3 

• Let Z be the number of bins for (1/4,1/3] 
– Those bins are full by more than 3/4 

• Let T be the number of bins for (0,1/4] 
– Those bins are full by more than 3/4 

• Let W be the total size of all items 
Then W>X/2+2Y/3+3Z/4+3T/4 
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Analysis of HARMONIC-4 

• OPT    W  
• OPT    X              (items larger than 1/2) 
• OPT   (X+2Y)/2  (items larger than 1/3) 

 
• H4   X+Y+Z+T (+3)       

 
   4·W/3+X/3+Y/9 (+3) =       
 = 24·W/18+ (X+2Y)/18+5·X/18 (+3)  
    31·OPT /18 (+3)  1.7222·OPT (+3)               

𝑊 >
𝑋

2
+

2

3
𝑌 +

3

4
𝑍 +

3

4
𝑇    ⋅

4

3
+

𝑋

3
+

𝑌

9
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Analysis of HARMONIC 

• Theorem: For any k, Harmonic-k is at most 

1 +
1

1⋅2
+

1

2⋅3
+

1

6⋅7
+ ⋯ ≃ 1.691 competitive. 

• Proof: Not here. 

 

               



Investing in the stock exchange 

• You have stocks of Apple INC. 

• Price changes every day. 

• How much should you sell and when??? 

 

• Note: maximization problem –  
competitive ratio: offline OPT/ALG 
 

• I don’t know…… 

49 



Investing in the stock exchange 

• You have stocks of Apple INC. 

• Price changes every day. 

• How much should you sell and when??? 

 

• Suppose you know m ≤ price ≤ M. 

• Let c = M/m 

 

• How competitive is selling everything now? 

50 



Investing in the stock exchange 

• Suppose you know m ≤ price ≤ M. 

• Let c = M/m 

• Selling now is c-competitive 

 

• How about waiting to see if price gets 
beyond 𝑀𝑚 and then selling everything? 

- If sold, ratio is at least 𝑀

𝑀𝑚
=

𝑀

𝑚
= 𝑐 

- If did not sell until last day, ratio at least 𝑀𝑚
𝑚

= 𝑐 
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Investing in the stock exchange 

• Now split sales: 

• Divide stocks into log(c) equal parts 

• Sell part i if price exceeds 𝑚2𝑖  

 
Highest sold part sold for at least OPT/2.  

So instead of getting OPT, got OPT/2log(c) 

Competitive ratio 2log(c). 

Actually, OPT/2 +OPT/4 + OPT/8 +… -> OPT,  

So algorithm is in fact log(c) competitive. 
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What did we learn in this class? 

• A little bit about many topics 
 

• Stable marriage problem, proofs by 
induction 

• Divide and conquer algorithms: the master 
thm., binary search, merge sort, counting inversions,  
integer/matrix mult., convex hull, closest pair 

• NP-hardness 

• Approximation algorithms – vertex cover, metric 
TSP, bin-packing, knapsack (PTAS), PCP theorem. 
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What did we learn in this class? 

• Structured inputs – trees: MIS, facility 

location/covering, partition 2i, interval graphs, Dynamic 
programming, tree decompositions 

• Parameterized complexity: FPT, 
Kernelization, branching, alternative 
parameters, Croucelle’s theorem (DP for 
many things). 

• Linear programming – polytopes, vertices, 
the Simplex algorithm, Integer Programs, 
approximation via relaxation, LP duality, 
complementary slackness 
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What did we learn in this class? 

• Randomized algorithms – Monte Carlo/Las-
Vegas, Markov and Chernoff bounds, sampling, 
selection, skip lists, random walks, max/min cut, primality testing 

• Online algorithms: ski rental, edge coloring, scheduling, 
paging, bin packing, sales decisions… 
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There is so much more 

• External memory, cache oblivious algorithms 

• Advanced techniques (Semi-definite 
programming, spectral techniques) 

• Numerical algorithms 

• Algorithms for “Big Data” 

• Quantum algorithms 

• Even more 
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