
1

Advanced Algorithms

On-line Algorithms

2

Introduction

 Online Algorithms are algorithms that need
to make decisions without full knowledge
of the input. They have full knowledge of
the past but no (or partial) knowledge of
the future.

 For this type of problem we will attempt to

design algorithms that are competitive
with the optimum offline algorithm, the
algorithm that has perfect knowledge of
the future.

3

The Ski-Rental Problem

• Assume that you are taking ski lessons.
After each lesson you decide (depending
on how much you enjoy it, and if you broke
your leg or not) whether to continue skiing
or to stop forever.

• You have the choice of either renting skis
for 1$ a time or buying skis for y$.

• Will you buy or rent?

4

The Ski-Rental Problem

• If you knew in advance how many times t
you would ski in your life then the choice of
whether to rent or buy is simple. If you will
ski more than y times then buy before you
start, otherwise always rent.

• The cost of this algorithm is min(t, y).

• This type of strategy, with
perfect knowledge of the
future, is known as an offline
strategy.

5

The Ski-Rental Problem
• In practice, you don't know how many

times you will ski. What should you do?
• An online strategy will be a number k such

that after renting k-1 times you will buy
skis (just before your kth visit).

• Claim: Setting k = y guarantees that you
never pay more than twice the cost of the
offline strategy.

• Example: Assume y=7$ Thus, after 6
rents, you buy. Your total payment:
6+7=13$.

6

The Ski-Rental Problem

Theorem: Setting k = y guarantees that you never
pay more than twice the cost of the offline
strategy.

Proof: when you buy skis in your kth visit, even if
you quit right after this time, t  y.

• Your total payment is k-1+y =2y-1.

• The offline cost is min(t, y) = y.
• The ratio is (2y-1)/y = 2-1/y. 

We say that this strategy is (2-1/y)competitive.

7

The Ski-Rental Problem

Is there a better strategy?

• Let k be any strategy (buy after k-1 rents).

• Suppose you buy the skis at the kth time and then
break your leg and never ski again.

• Your total ski cost is k-1+y and the optimum offline
cost is min(k,y).

• For every k, the ratio (k-1+y)/min(k,y) is at least (2-
1/y)

• Therefore, every strategy is at least (2-1/y)- -
competitive. 

8

The Ski-Rental Problem

The general rule:

 When balancing small incremental
costs against a big onetime cost, you
want to delay spending the big cost
until you have accumulated roughly
the same amount in small costs.

9

Competitive analysis

For a minimization problem, an online
algorithm A is k-competitive if

C𝐴 ≤ 𝑘 ⋅ 𝐶𝑂𝑃𝑇 + 𝑏 for some constant b

Cost of solution
produced by
algorithm A

Cost of solution
produced by

optimal offline
algorithm

10

The Hole in the Fence Problem

A cow wants to escape from Old McDonald’s
farm. It knows that there is a hole in the
fence, but doesn’t know on which direction
it is.

Suggest the cow a path that will guarantee
its freedom.

http://images.google.com/imgres?imgurl=www.mbd2.com/B_Photos/cow.gif&imgrefurl=http://www.mbd2.com/card.htm&h=235&w=205&prev=/images?q=cow&start=180&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&sa=N

11

The Hole in the Fence Problem

Cow’s algorithm:

1. d=1; current side = right

2. repeat:

i. Walk distance d on current side

ii. if find hole then exit

iii. else return to starting point

iv. d = 2d

v. Flip current side

http://images.google.com/imgres?imgurl=www.mbd2.com/B_Photos/cow.gif&imgrefurl=http://www.mbd2.com/card.htm&h=235&w=205&prev=/images?q=cow&start=180&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&sa=N

12

The Hole in the Fence Problem

Theorem: The cow’s algorithm is 9-
competitive.

In other words: The distance the cow might
pass before finding the hole is at most 9
times the distance of an optimal offline

algorithm (that knows where the hole is).

opt

alg

http://images.google.com/imgres?imgurl=www.mbd2.com/B_Photos/cow.gif&imgrefurl=http://www.mbd2.com/card.htm&h=235&w=205&prev=/images?q=cow&start=180&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&sa=N

13

The Hole in the Fence Problem

Theorem: The cow’s algorithm is 9-competitive.

Proof:The worst case is that it finds the hole a
little bit beyond the distance it last searched on
this side (why?).

Thus, OPT = 2j +  where j = # of iterations and  is
some small distance. Then,

Cost OPT = 2j +  > 2j

Cost COW = 2(1 + 2 + 4 + … + 2j+1) + 2j + 

 = 22j+2 + 2j +  = 92j +  < 9  Cost OPT.

14

Edge Coloring

• An Edge-coloring of a graph G=(V,E) is an assignment,
c, of integers to the edges such that if e1 and e2
share an endpoint then c(e1)  c(e2).

• Let  be the maximal degree of some vertex in G.

• In the offline case, it is possible to edge-color G
using  or +1 colors (which is almost optimal).

• Online edge coloring: The graph is not known in
advance. In each step a new edge is added and we
need to color it before the next edge is known.

15

Optimal Online Algorithm for Edge
Coloring

- We color the edges with numbers 1,2,3…

- Let e=(u,v) be a new edge.

Color e with the smallest color which is not used by
any edge adjacent to u or v.

Claim: The algorithm uses at most 2-1 colors.

Proof sketch: assume we need the color 2. It must
be that all the colors 1,2,…,2-1 are used by edges
adjacent to u or v. Therefore, either u or v has 
adjacent edges, excluding e, contradicting the
definition of .

u v

16

Online Edge Coloring
Claim: Any deterministic algorithm needs at least 2-1

colors.
Proof: Assume  an algorithm that uses only 2-2

colors. Given  we add to the graph many (-1)-stars.

There is a finite number of ways to edge-color a (-1)-
star with colors from {1,2,…,2-2}, so at some point we
must have  stars, all colored with the the same set
of-1 colors.

Example:

=6

17

Online Edge Coloring

v2

v1

v3

v5

v4

  stars, all
colored with
the the same
set of -1
colors. v6

 Let v1,v2,…,v be the centers of these stars.

 We are ready to shock the algorithm!

 We add a new vertex, a, and  edges (a-v1), …,(a,v).

 Each new edge must have a unique color (why?),
that is not one of the (-1) colors used to color the
stars (why?)  2-1 colors must be used.

Note: the maximal degree is 

18

Online Scheduling and Load Balancing

Problem Statement:

• A set of m identical machines,

• A sequence of jobs with processing times p1, p2,….

• Each job must be assigned to one of the machines.

• When job j is scheduled, we don’t know how many
additional jobs we are going to have and what are
their processing times.

Goal: schedule the jobs on machines in a way that
minimizes the makespan = max i j on Mi pj .

 (the maximal load on one machine)

19

Online versus off-line

• We compare the last completion time
in the schedule of the on-line
algorithm to the last completion time
in the schedule of an optimal off-line
algorithm which knows the full
sequence of jobs in advance and has
unlimited calculation power.

20

Applications

• In operating systems:

 Assignment of jobs to

computers/servers/processors

• Data storage on disks

• Giving tasks to employees

• In all these problems, on-line
scenarios are often more realistic
than off-line scenarios

21

Online Scheduling and Load Balancing

List Scheduling [Graham 1966]:

A greedy algorithm: always schedule a job on
the least loaded machine.

Example: m=3  = 7 3 4 5 6 10

M3

M2

M1 7

3

4

5

6

10

Makespan = 17

Theorem: List- Scheduling is (2-1/m)- competitive.

Proof: you did this in HW2.

22

The Analysis is Tight - Example

• m(m-1) unit jobs followed by a single
job of size m

• OPT=m

• LS=2m-1

LS

m

m-1

23

Online Scheduling

 Are there any better algorithms?

 Not significantly. Randomization does help.

deterministic randomized

m lower
bound

upper
bound

LS lower
bound

upper
bound

2 1.5 1.5 1.5 1.334 1.334

3 1.666 1.667 1.667 1.42 1.55

4 1.731 1.733 1.75 1.46 1.66

 1.852 1.923 2 1.58 ---

24

A lower Bound for Online Scheduling

Theorem: For m=2, no algorithm has r< 1.5

Proof: Consider the sequence  = 1,1,2.

If the first two jobs are scheduled on different
machines, the third job completes at time 3.

2

1

3

m1
m2 1 2

3 m1
m2

CA=3, Copt=2

r=3/2

If the first two jobs are scheduled on the same
machine, the adversary stops.

2 1

m1
m2 2

1 m1
m2

CA=2, Copt=1

r=2

alg opt

alg opt

25

Paging: Cache Replacement Policies

Problem Statement:

•There are two levels of memory:

– fast memory M1 consisting of k pages (cache)

– slow memory M2 consisting of n pages (k < n).

• Pages in M1 are a strict subset of the pages in M2.

• Pages are accessible only through M1 .

• Accessing a page contained in M1 has cost 0.

• When accessing a page not in M1, it must first be
brought in from M2 at a cost of 1 before it can be
accessed. This event is called a page fault.

26

Paging- Cache Replacement Policies

Problem Statement (cont.):

If M1 is full when a page fault occurs, some

page in M1 must be evicted in order to make room in
M1.

How to choose a page to evict each time a
page fault occurs in a way that minimizes the

total number of page faults over time?

27

Paging- An Optimal Offline Algorithm

Algorithm LFD (Longest-Forward-Distance)

An optimal off-line page replacement strategy.

On each page fault, evict the page in M1

that will be requested farthest in the future.

Example: M2={a,b,c,d,e} n=5, k=3

= a, b, c , d , a , b , e , d , e , b , c , c , a , d
a
b
c

a
b
d

a
b
d

e
b
d

a
b
d

e
b
d

e
b
d

e
b
d

c
b
d

c
b
d

c
a
d

c
a
d

 * * * *

4 cache misses in LFD

M1 =

28

Paging- An Optimal Offline Algorithm

A classic result from 1966:

LFD is an optimal page replacement policy.

Proof idea: For any other algorithm A, the cost of
A is not increased if in the 1st time that A differs
from LFD we evict in A the page that is requested

farthest in the future.

However, LFD is not practical.

It is not an online algorithm!

29

Online Paging Algorithms

FIFO: first in first out: evict the page that was
entered first to the cache.

Example: M2={a,b,c,d,e} n=5, k=3

= a, b, c , d , a , b , e , d , e , b , c , c , a , d

 a
b
c

b
c
d

c
d
a

a
b
e

d
a
b

b
e
d

b
e
d

b
e
d

e
d
c

e
d
c

d
c
a

d
c
a

 * * * * * * *

Theorem: FIFO is k-competitive: for any
sequence, #misses(FIFO)  k #misses (LFD)

7 cache
misses
in FIFO

M1 =

FIFO is k competitive

Claim: phase i contains k distinct misses different from pi

⇒ OPT has at least one miss in phase i.

Proof:

- If k distinct misses different from pi, we’re done.

- If all misses different from pi but not distinct. Some page q
missed twice. q must be evicted before missed second time.
⇒ k distinct misses.

- pi is missed. Same argument as above with q = pi.

k misses k misses ≤k misses

pi * * * * * * ** * * *
p2

Last miss before
phase i

31

Online Paging Algorithms

LIFO: last in first out: evict the page that was
entered last to the cache.

Example: M2={a,b,c,d,e} n=5, k=3

= a, b, c , d , a , b , e , d , e , b , c , c , a , d
a
b
c

a
b
d

a
b
d

a
b
e

a
b
d

a
b
d

a
b
e

a
b
e

a
b
c

a
b
c

a
b
c

a
b
d

 * * * * * *

Theorem: For all n>k, LIFO is not competitive:
For any c, there exists a sequence of requests
such that #misses(FIFO)  c #misses (LFD)

6 cache
misses
in LIFO

M1 =

Proof idea: Consider  = 1, 2,..., k, k+1, k, k+1, k, k+1, …

32

Online Paging Algorithms

LRU: least recently used: evict the page with the
earliest last reference.

Example: M2={a,b,c,d,e} n=5, k=3

= a, b, c , d , a , b , d , e , d , e , b , c
a
b
c

b
c
d

c
d
a

a
b
d

d
a
b

b
d
e

b
e
d

b
d
e

d
e
b

e
b
c

 * * * * *

Theorem: LRU is k-competitive

Proof: Almost identical to FIFO

In practice, LRU much better than FIFO

33

Paging- a bound for any deterministic
online algorithm

Theorem: For any k and any deterministic online

algorithm A, the competitive ratio of A  k.

Proof: Assume n= k+1 (there are k+1 distinct pages).

What will the adversary do?

Always request the page that is not currently in M1

This causes a page fault in every access. The total

cost of A is ||.

34

Paging- a bound for any deterministic
online algorithm

What is the price of LFD in this sequence?

•At most a single page fault in any k accesses

(LFD evicts the page that will be needed in the k+1th

request or later)

•The total cost of LFD is at most ||/k.

Therefore: Worst-case analysis is not so important
in analyzing paging algorithm

Can randomization help? Yes!! There is a randomized
2Hk-competitive algorithm. (Hk= 1+1/2+1/3+…+1/k = O(ln k))

35

The MARKING algorithm

When request r arrives:

- if r in not in cache evict a random unmarked page,
and fetch r

- MARK r

- If no unmarked page, unmark all pages.

Theorem: MARKING is 2Hk-competitive
(Hk= 1+1/2+1/3+…+1/k = O(ln k))

Proof: Consider access sequence σ. Partition σ into
maximal subsequences (phases) containing k distinct
pages. Each phase starts with all pages unmarked and
ends with all marked.

36

The MARKING algorithm
Consider phase i. A request is old if it appeared in
phase i-1, and new otherwise.
Let mi be the number of new requests

Max. number of misses occurs when new requests
precede old requests.

Each new requests causes a miss. ⇒ mi misses

After all new requests were served, there are k-mi
random unmarked old pages in the cache.

Prob. that the 1st old request is one of those:
𝑘 − 𝑚𝑖

𝑘

Prob. that the 1st request causes a miss 1 −
𝑘−𝑚𝑖

𝑘
=

𝑚𝑖

𝑘

unmarked old pages
in the cache

unmarked old pages

37

The MARKING algorithm
More generally:

After all new requests and the first j old requests
were served, there are k-mi-j random unmarked old
pages in the cache.

Prob. that (j+1)’th old request is one of those?
𝑘−𝑚𝑖−𝑗

𝑘−𝑗

Prob. that (j+1)’th request is a miss 1 −
𝑘−𝑚𝑖−𝑗

𝑘−𝑗
=

𝑚𝑖

𝑘−𝑗

So, expected number of misses on phase i is

𝑚𝑖 + 𝑚𝑖(
1

𝑘
+

1

𝑘−1
+ ⋯ +

1

𝑚𝑖+1
)

= 𝑚𝑖 + 𝑚𝑖 𝐻𝑘 − 𝐻𝑚𝑖
≤ 𝑚𝑖𝐻𝑘

unmarked old pages
in the cache

unmarked old pages

38

The MARKING algorithm

- Number of cache misses in phase i: 𝑚𝑖𝐻𝑘

- Number of distinct pages in phases i-1 and i: 𝑘 + 𝑚𝑖

- So OPT makes at least 𝑚𝑖 misses on phases i-1,i.

- Overall, OPT makes at least
∑𝑚𝑖

2
 misses

- Expected number of misses of MARKING is at most
∑𝑚𝑖𝐻𝑘

- Competitive ratio is at most 2Hk

39

Online Bin Packing

The input: A sequence of items (numbers), a1,a2,…,an,
such that for all i, 0 < ai <1

The goal: ‘pack’ the items in bins of size 1. Use as few
bins as possible.

Example: The input: 1/2, 1/3, 2/5, 1/6, 1/5, 2/5.

Optimal packing in two bins:

(1/2, 1/3, 1/6), (2/5, 2/5, 1/5).

Legal packing in three bins:

(1/2, 1/3), (2/5, 1/6, 1/5), (2/5)

Online BP: ai must be packed before we know ai+1,..,an

40

Online Bin Packing

Next-fit Algorithm:
1. Open an active bin.
2. For all i=1,2,…,n :

– If possible, place ai in the current active bin;
– Otherwise, open a new active bin and place ai in it.

Example: The input: {0.3, 0.9, 0.2}.
Next-fit packing (three bins): (0.3), (0.9), (0.2).

Theorem: Next-fit is 2-competitive.
Proof: Identical to 2-approximation in Lecture 4

41

Online Bin Packing

First fit algorithm: place the next item in the
first open bin that can accommodate it. Open a
new bin only if no open bin has enough room.

Example: items 0.6,0.2,0.8,0.1,0.3

Bin 1 0.6,0.2,0.1 OPT

Bin 2 0.8 Bin 1 0.6, 0.3, 0.1

Bin 3 0.3 Bin 2 0.8, 0.2

Theorem: hff  1.7opt +2 (proof not here)

42

size

type k

0 1 1/2 1/4 1/3

 6 5 4 3 2 1

k1

The HARMONIC-k Algorithm

Classify items into k intervals according to size
(1/2,1] one item per bin
(1/3,1/2] two items per bin
…
(1/k,1/(k-1)] k-1 items per bin
(0,1/k] use Next Fit

43

The HARMONIC Algorithm

• Each bin contains items from only one
class: i items of type i per bin

• Items of last type are packed using NEXT
FIT: use one bin until next item does not
fit, then start a new bin

• Keeps k-1 bins open (the bin (1/2,1] is never open)

44

Analysis of HARMONIC-3

• Let X be the number of bins for (1/2,1]
– Those bins are full by more than 1/2

• Let Y be the number of bins for (1/3,1/2]
– Those bins are full by more than 2/3

• Let T be the number of bins for (0,1/3]
– Those bins are full by more than 2/3

Let W be the total size of all items

Then W>X/2+2Y/3+2T/3

45

Analysis of HARMONIC-3

• Other bounds

• OPT  X (items larger than 1/2)

• OPT  W

• H3  X+Y+T (+2)  3W/2+X/4 (+2)

  1.75OPT (+2)

 Asymptotically, this is ignored.

𝑊 >
𝑋

2
+

2

3
𝑌 +

2

3
𝑇 ⋅

3

2
+

𝑋

4

46

Analysis of HARMONIC-4

• Let X be the number of bins for (1/2,1]
– Those bins are full by more than 1/2

• Let Y be the number of bins for (1/3,1/2]
– Those bins are full by more than 2/3

• Let Z be the number of bins for (1/4,1/3]
– Those bins are full by more than 3/4

• Let T be the number of bins for (0,1/4]
– Those bins are full by more than 3/4

• Let W be the total size of all items
Then W>X/2+2Y/3+3Z/4+3T/4

47

Analysis of HARMONIC-4

• OPT  W
• OPT  X (items larger than 1/2)
• OPT  (X+2Y)/2 (items larger than 1/3)

• H4  X+Y+Z+T (+3) 

  4·W/3+X/3+Y/9 (+3) =
 = 24·W/18+ (X+2Y)/18+5·X/18 (+3)
  31·OPT /18 (+3)  1.7222·OPT (+3)

𝑊 >
𝑋

2
+

2

3
𝑌 +

3

4
𝑍 +

3

4
𝑇 ⋅

4

3
+

𝑋

3
+

𝑌

9

48

Analysis of HARMONIC

• Theorem: For any k, Harmonic-k is at most

1 +
1

1⋅2
+

1

2⋅3
+

1

6⋅7
+ ⋯ ≃ 1.691 competitive.

• Proof: Not here.

Investing in the stock exchange

• You have stocks of Apple INC.

• Price changes every day.

• How much should you sell and when???

• Note: maximization problem –
competitive ratio: offline OPT/ALG

• I don’t know……

49

Investing in the stock exchange

• You have stocks of Apple INC.

• Price changes every day.

• How much should you sell and when???

• Suppose you know m ≤ price ≤ M.

• Let c = M/m

• How competitive is selling everything now?

50

Investing in the stock exchange

• Suppose you know m ≤ price ≤ M.

• Let c = M/m

• Selling now is c-competitive

• How about waiting to see if price gets
beyond 𝑀𝑚 and then selling everything?

- If sold, ratio is at least 𝑀

𝑀𝑚
=

𝑀

𝑚
= 𝑐

- If did not sell until last day, ratio at least 𝑀𝑚
𝑚

= 𝑐

 51

Investing in the stock exchange

• Now split sales:

• Divide stocks into log(c) equal parts

• Sell part i if price exceeds 𝑚2𝑖

Highest sold part sold for at least OPT/2.

So instead of getting OPT, got OPT/2log(c)

Competitive ratio 2log(c).

Actually, OPT/2 +OPT/4 + OPT/8 +… -> OPT,

So algorithm is in fact log(c) competitive.

52

What did we learn in this class?

• A little bit about many topics

• Stable marriage problem, proofs by
induction

• Divide and conquer algorithms: the master
thm., binary search, merge sort, counting inversions,
integer/matrix mult., convex hull, closest pair

• NP-hardness

• Approximation algorithms – vertex cover, metric
TSP, bin-packing, knapsack (PTAS), PCP theorem.

53

What did we learn in this class?

• Structured inputs – trees: MIS, facility

location/covering, partition 2i, interval graphs, Dynamic
programming, tree decompositions

• Parameterized complexity: FPT,
Kernelization, branching, alternative
parameters, Croucelle’s theorem (DP for
many things).

• Linear programming – polytopes, vertices,
the Simplex algorithm, Integer Programs,
approximation via relaxation, LP duality,
complementary slackness

54

What did we learn in this class?

• Randomized algorithms – Monte Carlo/Las-
Vegas, Markov and Chernoff bounds, sampling,
selection, skip lists, random walks, max/min cut, primality testing

• Online algorithms: ski rental, edge coloring, scheduling,
paging, bin packing, sales decisions…

55

There is so much more

• External memory, cache oblivious algorithms

• Advanced techniques (Semi-definite
programming, spectral techniques)

• Numerical algorithms

• Algorithms for “Big Data”

• Quantum algorithms

• Even more

56

