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Randomized Algorithms 

• A Randomized Algorithm uses a random 
number generator. 

– its behavior is determined not only by its 
input but also by the values chosen by RNG. 

– It is impossible to predict the output of the 
algorithm. 

– Two executions can produce different 
outputs. 
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Why Randomized Algorithms? 

• Efficiency 
• Simplicity 
• Reduction of the impact of bad cases! 
• Fighting an adversary. 
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Types of Randomized Algorithms 

• Las Vegas algorithms 
– Answers are always correct, 

running time is random 

– In analysis: bound expected running time 

• Monte Carlo algorithms 
– Running time is fixed,  

answers may be incorrect 

– In analysis: bound error probabilities 
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Randomized Algorithms 

• Where do random numbers come from? 
– Sources of Entropy: physical phenomena, user’s mouse 

movements, keystrokes, atmospheric noise, lava lamps. 

• Pseudo-random generators: take a few “good” random 
bits and generate a lot of “fake” random bits. 
– Most often used in practice 

– Output of pseudorandom generator should be 
“indistinguishable” from true random 
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We will see  
(up to random decisions): 

1. A randomized approximation Algorithm for 
determining the value of . 

2. A Randomized algorithm for the selection 
problem. 

3. A randomized data structure. 
4. Analysis of random walk on a graph. 
5. A randomized graph algorithm. 
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Determining  

0,1 1,1 

1,0 0,0 

Square area = 1 
Circle area = /4 

The probability 
that a random 
point in the 
square is in the 
circle = /4 

 = 4 * points in circle/points 
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Determining  
def findPi (points): 
    incircle = 0 
 
    for i in 1 to points: 
        x = random() // float in [0,1] 
        y = random() 
        if (x - ½)2 + (y - ½)2 < 0.25)  

     incircle = incircle + 1 
 
    return 4.0 * incircle / points 

Note : a point is in the circle if its distance from (½, ½)   <  r 
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Determining   - Results 

1      0.0 
2      4.0 
4      3.0 
64     3.0625 
1024   3.1640625 
16384  3.1279296 
131072      3.1376647 
1048576  3.1411247 

If we wait long 
enough will it produce 
an arbitrarily 
accurate value? 

n                 Output  Real  = 3.14159265 
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Basic Probability Theory 
(a short recap) 

• Sample Space Ω:  
– Set of possible outcome points 

• Event AΩ:   
– A subset of outcomes 

• Pr[A]: probability of an event  
– For every event A: Pr[A][0,1] 

– If AB= then Pr[AB]=Pr[A]+Pr[B] 

– Pr[Ω]=1 

Sample 
space 

0.1 
0.1 

0.1 

0.3 

0.2 

0.05 

0.1 

0.05 
0 

0.35 
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Basic Probability Theory 
(a short recap) 

• Random Variable X:  
– Function from sample space to ℝ 

• Example: 
• Ω={v=(g1,g2,…gn) | gi[0,100]} 

– Events: 
• A={v=(g1,g2,…gn) | i: gi[60,100]} 

• B={v=(g1,g2,…gn) | i,j,k : gi,gj,gk [60,100]} 

– Random variables 

• Xi – 1 if student i passed, 0 if not 

• X=X1+…+Xn – number of passing students  

• Y – Average grade 
 

Possible grades 

for entire class 

Everyone 

passed 

At least three 

passed 
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Basic Probability Theory 
(a short recap) 

• Expectation of a Random Variable X:  
– E[X]=xxPr[X=x] – the “average value” 

• Expectation of Indicator Variables: 
– E[Xi]=Pr[Xi=1] – for an indicator r.v.  

• Linearity of Expectation: 
– E[a1X1+…+anXn]=a1E[X1]+…+anE[Xn] 

– Works for arbitrary random variables! 
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Back to π  

• How many points must we test to get 
accuracy of 0.01? How about 0.0001? 

 

• Xi=1 iff the ith point is in the circle 
– E[Xi]=Pr[Xi=1]=/4 

– E[X1+…+Xn]=E[X1]+…+E[Xn]=n/4 

• Accuracy: distance of X from E[X] 

 

• We want to bound Pr[|X-E[X]|>δ] 

0,1 1,1 

1,0 0,0 
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A Simple Calculation 

If the average income of people is $100 then  
more than 50% of the people can be 

earning more than $200 each 

False! else the average would be higher!!! 

True or False: 
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Andrei A. Markov 

Markov’s Inequality 

• If X is a non-negative r.v. with mean E[X] 
then 
– Pr[ X > 2E[X] ] ≤  ½  

• More generally, for all a>0: 
– Pr[ X > a ] ≤  E[X]/a  
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(since X,a non-neg) 

Markov’s Inequality 

Non-neg random variable X has expectation E[X] 

E[X] =  𝑥 ∙ Pr 𝑋 = 𝑥𝑥  

 ≥  𝑥 ∙ Pr 𝑋 = 𝑥𝑥≥𝑎  

 ≥  𝑎 ∙ Pr 𝑋 = 𝑥𝑥≥𝑎  

 = 𝑎 Pr 𝑋 = 𝑥𝑥≥𝑎  

 = 𝑎 Pr 𝑋 ≥ 𝑎  

   Pr 𝑋 ≥ 𝑎 ≤ E X /𝑎 
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Back to π again 

• X is the number of points in the circle  
– X is non-negative 

– E[X]=n/4 

• What does Markov’s inequality give us? 

– Pr 𝑋 − 𝐸 𝑋 > 𝛿 = Pr 𝑋 > 𝛿 + 𝐸 𝑋 ≤
𝐸[𝑋]

𝐸 𝑋 +𝛿
 

– However, 
𝐸[𝑋]

𝐸 𝑋 +𝛿
→ 1  when 𝑛 → ∞ 

• Not good enough! 

0,1 1,1 

1,0 0,0 
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Chernoff-Hoeffding Bound 

• Used to bound convergence of sums of 

random variables: X=X1+…+Xn 

– Xi are zero/one variables  

– All variables are independent 

• For all i,j: Pr[Xi=1|Xj=1]=Pr[Xi=1] 

– Denote 𝜇 = 𝐸 𝑋 /𝑛 

• When satisfied, sum converges 

exponentially fast ! 

Pr
𝑋

𝑛
− 𝜇 ≥ 𝛿𝜇 ≤ 2𝑒−

𝑛𝛿2𝜇
3  
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Using Chernoff to estimate accuracy 

• Recall: 
– Xi=1 iff the ith point is in the circle 

– E[Xi]=Pr[Xi=1]=/4 

– E[X1+…+Xn]=E[X1]+…+E[Xn]=n/4 

– µ = /4 
0,1 1,1 

1,0 0,0 
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Using Chernoff to estimate accuracy 

• Using Chernoff: 

 Pr
𝑋

𝑛
− 𝜇 ≥ 𝛿𝜇 ≤2𝑒−

𝑛𝛿2𝜇
3 ⇔ Pr

𝑋

𝑛
− 𝜇 ≥ 𝛿 ≤2𝑒

−
𝑛𝛿2

3𝜇  

 
• To get close within 𝛿 with error prob. 𝜖: 

2𝑒
−
𝑛𝛿2

3𝜇 < 𝜖 ⇔ 𝑛 >
3𝜇 ln 2/𝜖

𝛿2
=
3𝜋 ln 2/𝜖

4𝛿2
 

 
• E.g.: to get 0.01 accuracy with 95% success: 

 

𝜖 = 0.05, 𝛿 = 0.01 ⇒ 𝑛 >
3𝜋 ln 40

4 ⋅ 0.0001
≈ 86917 
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The Selection Problem 

• Input:  Array A[1...n] of elements in an arbitrary order, 
and an index i. 

• Output:  the i-th smallest element in A[1..n]. 
• If i = 1, we are looking for the smallest element. 
• If i = n, we are looking for the largest element. 

• If i = n/2, we are looking for the median.  
 

• Possible algorithm: Sort and return the i-th element. 
    Complexity: At least (n log n) 
• We will see a practical randomized algorithm with O(n) 

expected running time 

21 

In class example:  i=4  

A = {7, 3, 2, 1, 5, 9, 8}; 



Randomized Selection 

• Key idea: similar to quicksort 

• Choose a random element q 

• partition the array into small (<q) and big (>q) 
elements. 

• Keep searching in the appropriate side. 

<q >q q 
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Randomized Selection 

Select(A,i) 

• If array A is of size 1 – trivial 

• Randomly partition A with pivot q. 

• Suppose q was the k’th smallest element 

• If i=k, answer is q 

• If i<k, recursively select i’th element in left 
subarray 

• If i>k, recursively find (i-k)’th element in right 
subarray 

<q >q q 

23 
k 



Randomized Selection 

RandSelect(A, p, r, i) 

    if (p == r) then return A[p]; 

    q = RandPartition(A, p, r) 

    k = q - p + 1; 

    if (i == k) then return A[q];  

    if (i < k) then 

        return RandSelect(A,p,q-1,i); 

    else 

        return RandSelect(A,q+1,r,i-k); 

     

 A[q]  A[q] 

k 

q p r 
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How to partition? 

We choose a random element q and want to move all 
elements smaller than q before q. and all elements 
greater than q after q.  

• Keep two indices, one running from left and the 
other from right.  

• Move each index until points to an element that 
belongs to the other side 

• swap the two elements and repeat. 

• Stop when indices cross each other. 

 

Running time?  
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RandPartition In Words 

• RandPartition(A, p, r): 

– Select at random an element to act as 
the “pivot” 

– Grow two regions, A[p..i] and A[j..r] 
• All elements in A[p..i] ≤ pivot 

• All elements in A[j..r] ≥ pivot 

– Increment i until A[i] ≥ pivot  

– Decrement j until A[j] ≤ pivot 

– Swap A[i] and A[j] 

– Repeat until i >= j  

– Return j 

In class example:  

p=1, r=7 

A = {7, 3, 2, 1, 5, 9, 8}; 



Partition Code 

RandPartition(A, p, r) 

    x = A[random integer in p..r]; 

    i = p - 1; 

    j = r + 1; 

    while (TRUE) 

        repeat  

            j--; 

        until A[j] <= x; 

        repeat  

            i++; 

        until A[i] >= x; 

        if (i < j) 

            Swap(A, i, j); 

        else 

            return j; 

What is the running time of 

RandPartition()? 
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Randomized Selection 

• Analysis: 
– Worst case: partition always 0:n-1 

T(n)  = T(n-1) + O(n)  

   = O(n2)  (arithmetic series) 

• Worse than sorting! 

– “Best” case: suppose an n : (1-)n 
partition for some fraction .  
T(n)  = T(n) + O(n)   

  = O(n)  (Master Theorem, case 3) 

• Better than sorting! 

a=1, b=1/ 

f(n)=Ω(nlogb(a)+ε) 
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Randomized Selection 

• Average case 
– For upper bound, assume i-th element 

always falls in larger side of partition: 

 

 

 

 

 

– We show that E[T(n)] = O(n) by induction 

        

    















1n

n/2k

1n

0k

nΘkTE
n

2

nΘ1knk,maxTE
n

1
nTE

Pr[pivot is kth element] 
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Randomized Selection 

• Assume E[T(k)]  ck for some const. c (and k<n) : 

The recurrence we start with 

Inductive assumption 

Arithmetic series 

For large enough c 
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𝐸 𝑇 𝑛 ≤
2

𝑛
 𝐸 𝑇 𝑘

𝑛−1

𝑘=
𝑛
2

+ 𝜃 𝑛  

 ≤
2

𝑛
 𝑐𝑘

𝑛−1

𝑘=
𝑛
2

+ 𝜃 𝑛  

 ≤ 𝑐
2

𝑛
⋅
1

2

𝑛

2
+ 𝑛
𝑛

2
+ 𝜃 𝑛  

≤
3

4
𝑐𝑛 + 𝜃 𝑛  

≤ 𝑐𝑛 



Randomized Selection 

• We got a randomized selectio algorithm 
that runs in expected linear time. 

 

• Is this Monte Carlo or Las vegas? 
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Skip lists – a randomized data 
structure 

Review: 
• Sorted Linked List 

What is the worst case performance of find( ), 
insert( )? 
 
 
 

• Sorted Array 
 What is the worst case performance of find( ), 

insert( )? 

3 9 12 18 29 35 37 

3 9 12 18 29 35 37 
32 



An Alternative Sorted Linked List 

• What if you skip every other node? 

– Every other node has a pointer to the next and the 
one after that 

 

 

 

• Find : 

– follow “skip” pointer until pass target 

• Resources 

– Additional storage 

• Performance of find( )? 
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Skipping every 2nd node 

The value stored in each node is shown below the node and 
corresponds to the the position of the node in the list. 

It’s clear that find( ) does not need to examine every 
node.  It can skip over every other node, then do a final 
examination at the end.  The number of nodes examined is 
no more than n/2 + 1. 

For example the nodes examined finding the value 15 
would be 
 2, 4, 6, 8, 10, 12, 14, 16, 15 -- a total of 16/2 + 1 = 9. 
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Skipping every 2nd and 4th node 

The find operation can now make bigger skips than the 
previous example.  Every 4th node is skipped until the 
search is confined between two nodes.  At this point as 
many as three nodes may need to be scanned. The 
number of nodes examined is no more than n / 4 + 3. 

Again, look at the nodes examined when searching for 
15 
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Skipping every 2i-th node 

Add hierarchy of skip pointers 
every 2i-th node points 2i nodes ahead 
For example, every 2nd node has a reference 2 
nodes ahead; every 8th node has a reference 8 
nodes ahead 

We can now search just as binary search in an array.  

The max number of nodes examined is O(log n). 
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Some serious problems 

• what happens when we insert or remove a value 
from the list?   
Reorganizing the list is θ(n).  

• E.g., removing the first element in the list 
elements that were in odd positions (only at lowest 
level) are now at even positions and vice versa. 
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A Probabilistic Skip Lists 

• Concept: A skip list that maintains the same 
distribution of nodes, but without the 
requirement for the rigid pattern of node sizes 

• On average, 1/2 have 1 pointer 

• On average, 1/4 have 2 pointers 

• … 

• On average, 1/2i have i pointers 

• It’s no longer necessary to maintain the rigid 
pattern by moving values around for insert and 
remove.  This gives us a high probability of still 
having O(log n) performance.  The probability 
that a skip list will behave badly is very small. 
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A Probabilistic Skip List 

The number of forward reference pointers a node 
has is its “size” 

The distribution of node sizes is exactly the same 
as the previous figure, the nodes just occur in a 
different pattern. 
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Skip List Search 

• To search for an element with a given key: 

– Find location in top list  

• Top list has O(1) elements (with high 
probability). 

• Location in this list defines a range of 
items in next list 

– Drop down a level and recurse 

• O(1) time per level on average 

• O(log n) levels with high probability 

• Total expected time: O(log n) 
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Skip List Insert 

1. Perform a search for that key 

2. Insert element in bottom-level list 

3. With probability p, recurse to insert in 
upper level (note: p does not have to be 1/2) 

– Expected number of occurances = 1+ p + p2 + … = 
 = 1/(1-p) = O(1) if p is constant 

– Total time = Search + O(1) = O(log n) expected 

 

Skip list delete: O(1) (assuming a pointer to the 
element is given) 
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Probabilistic Skip Lists - summary 

• O(log n) expected time for find, insert 

• O(n) time worst case (Why?) 
– But random, and probability of getting worst-

case behavior is extremely small 

• O(n) expected storage requirements 
(Why?) 

• Easy to code 
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- 

Random Walks on Graphs 

At any node, go to one of the neighbors of 
the node with equal probability 

Slides on Random Walks are based on 

slides by Prof. Steven Rudich (CMU)  43 



- 

Random Walks on Graphs 
 

At any node, go to one of the neighbors of 
the node with equal probability 
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- 

Random Walks on Graphs 

At any node, go to one of the neighbors of 
the node with equal probability 
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- 

Random Walks on Graphs 
 

At any node, go to one of the neighbors of 
the node with equal probability 
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- 

Random Walks on Graphs 

At any node, go to one of the neighbors of 
the node with equal probability 
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0 n 

k 

Random Walk on a Line 

You go into a casino with $k, and at each time 
step, you bet $1 on a fair game 

You leave when you are broke or have $n 

Question 1: what is your expected amount 
of money at time t? 

Let Xt be a R.V. for the amount of $ at time t 
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0 n 

k 

You go into a casino with $k, and at each time 
step, you bet $1 on a fair game 

You leave when you are broke or have $n 

Xt = k + d1 + d2 + ... + dt, 

  (di is RV for change in your money at time i) 

So, E[Xt] = k 

E[di] = 0 

Random Walk on a Line 
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Question 2: what is the probability that you leave 
with $n? 

E[Xt] = k 

E[Xt] = E[Xt| Xt = 0] × Pr(Xt = 0)  

  + E[Xt | Xt = n] × Pr(Xt = n)  

  + E[ Xt | neither] × Pr(neither) 

As t ∞, Pr(neither)  0, also somethingt < n 
 Hence Pr(Xt = n)  k/n 

     k  = n × Pr(Xt = n)  

  + (somethingt) × Pr(neither) 

0 

k 

n 

probability 
that you hit 
green before 
you hit red 

Random Walk on a Line 

50 



Getting Back Home 

- 

Lost in a city, you want to get back to your hotel 
How should you do this? 

Requires a good memory or a piece of chalk 

Depth First Search! 
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Getting Back Home 

- 

How about walking randomly? 

52 



 
 
 

Will this work? 

When will I get home? 

Is Pr[ reach home ] = 1? 

What is  
E[ time to reach home ]? 

Pr[ will reach home ] = 1 
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We Will Eventually Get Home 

Look at the first n steps 

There is a non-zero chance p1 that we get home 

Also, p1 ≥ (1/n)n 

Suppose we fail 

Then, wherever we are, there is a chance p2 ≥ 
(1/n)n that we hit home in the next n steps 
from there 

Probability of failing to reach home by time kn  

 = (1 – p1)(1 – p2) … (1 – pk)  0 as k  ∞ 
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Furthermore: 

If the graph has  
n nodes and m edges, then 

E[ time to visit all nodes ]  
≤ 2m × (n-1) 
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Cover Times 

Cover time (from u) 
Cu = E [ time to visit all vertices | start at u ] 

Cover time of the graph 

(worst case expected time to see all vertices) 

C(G) = maxu { Cu } 
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Cover Time Theorem 

If the graph G has  
n nodes and m edges, then  

the cover time of G is 

C(G) ≤ 2m (n – 1) 

Any graph on n vertices has < n2/2 edges 

Hence C(G) < n3 for all graphs G 
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Actually, we get home  
pretty fast… 

 
Chance that we don’t hit home by  

(2k)2m(n-1) steps is (½)k 

Why? 
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Random Walks are useful 

• Efficient sampling from complicated 
distributions 

• Ranking (search results, web pages, friend 
suggestions, spam detection) 

• Clustering 

• Design and analysis of random data 
structures and algorithms 

• Applications in physics, economics, biology… 

• Much more….. 
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Cut Problems 

• Definition:  A Cut S in the graph G(V; E) is 
a vertex partitioning into two sets: S and 
S’ such that S S’= V .  

• The edges in the cut (S;S’) are those 
connecting a vertex in S and a vertex in S’.  
 

S                                 S’ 

The cut defined by S 60 



Minimum Cut Problem 
• Input: an undirected, connected graph G = 

(V,E)  

• Output: A cut (V1,V2 where V1V2 = V  and 
V1  V2 = ) such that number of edges 
between V1 and V2 is the fewest possible. 

 
 

Equivalent problem: find the fewest edges 
that can be removed to disconnect G. 

A deterministic algorithm: Run max-flow algorithm n2 
times (for all possible s-t pairs). 

Resulting complexity:   O(n3m2( 
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Maximum Cut Problem 

• Input: an undirected, connected graph G = 
(V,E)  

• Output: A cut (V1,V2 where V1V2 = V  and 
V1  V2 = ) such that number of edges 
between V1 and V2 is the largest possible. 

    
Equivalent problem: find the largest set of 

edges that can be removed without 
disconnecting  G. 
 

 
 

Min cut is polynomially solvable 

Max Cut is NP-hard. 
62 



A randomized 2-approx algorithm 
for max-cut 

• Weights may be assigned to the edges (and 
the goal is to find the heaviest cut). 
 

• Algorithm: Independently for every vertex 
v, chose randomly with probability ½ 
whether v belongs to S.  
 

• Analysis: Consider an edge e. The 
probability that it is in the cut is ½ (why?). 
So the expected weight of the cut is 
½ew(e)  ½ OPTCUT. 
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A randomized 2-approx algorithm 
for max-cut 

Remarks: 

• We can run the algorithm a few times to 
improve its performance – getting closer 
to guaranteeing 2-approx. 

• Corollary: There exists a cut having weight 
at least ½ew(e).  
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Minimum Cut Problem in a multigraph 

MultiGraph: A graph that may contain 
multiple edges between any pair of vertices. 
 

 Min-Cut 

 some cut 

G 
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Minimum Cut 

A 

B 

C 

D 

Size of the min cut 
is not larger 
than the smallest 
node degree in graph 

E 

G 

F 

H 

A 

B 

C 

D 

But can be much smaller… 66 



An Algorithm for min-cut 

1. While the number of nodes in G is more 
than 2 

  1.1. Choose an edge e not in the min-cut 

  1.2. contract e 

2. MinCut  edges connecting the last two 
remaining vertices.  

67 

Contract e = merge the two nodes connected by e 



An Algorithm for min-cut 

1. While the number of nodes in G is more 
than 2 

  1.1. Choose an edge e not in the min-cut 

  1.2. contract e 

2. MinCut  edges connecting the last two 
remaining vertices.  

68 
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A Randomized Algorithm for min-cut 

1. While the number of nodes in G is more 
than 2 

  1.1. Choose a random edge. 

  1.2. Merge the two nodes connected by that 
edge.  

2. MinCut  edges connecting the last two 
remaining vertices. Notice that these 
edges are actually all the edges 
connecting nodes contracted to one of the 
remaining nodes with nodes contracted to 
the other remaining node. 
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Running example 

1 
2 

3 4 

5 

1 
2 

,43 

5 

Iteration 1: Iteration 2: 
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Running example (cont’) 

1,2 

,43 

5 

,431,2, 

5 

G 
1 

2 

3 4 

5 

stop: the cut 
separates the 
vertices sets {5} 
and {1,2,3,4} 

Iteration 3: Iteration 4:       Output: 
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Min-Cut algorithm analysis 

Will this algorithm return the Min-Cut? 

Let C be a particular Min-Cut. Let k be size of C. 

The algorithm will return C if it never contracts any 
edge of C. 

We need to estimate the probability that in each 
iteration it chooses an edge not from C. 
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Min-Cut algorithm analysis (cont’) 

• The probability of picking at each iteration an edge 
from C is k/|E|, where |E| is the number of edges 
still in G. 

• There is no vertex with degree less than k (we 
already mentioned that k ≤ minimal degree) 

• So |E| = (sum of degrees)/2 ≥ kn/2 

• Therefore, the probability of choosing an edge from 
C in iteration i is at most 

1in

2

2
k1)i(n

k






Note: In 
iteration i 
there are    
n-i+1 nodes. 
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Min-Cut algorithm analysis (cont’) 

• Define ei to be the event of not choosing an edge 

from C in iteration i. 

  

•The probability of not choosing an edge from C in 

iteration i (assuming not chosen earlier) is at least 

 

• The probability of not choosing an edge from C at 

all is: 

1

2
1




in

 
n

2
1Pr 1 e

Pr  𝜀𝑖

𝑛−2

𝑖=1

 ≥ 1−
2

𝑛 − 𝑖 + 1
=

𝑛−2

𝑖=1

 (𝑛 − 𝑗 + 1)𝑛
𝑗=3

 (𝑛 − 𝑖 + 1)𝑛−2
𝑖=1

=
2

𝑛(𝑛 − 1)
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Is this good enough? How can we 
improve it? 

• The probability that the algorithm will not 
find the Min-Cut is: 

  

•To improve the performance we repeat the 
algorithm n2/2 times, making independent 
random choices each time. 

• This way, the probability that the algorithm 
will not find the Min-Cut is reduced to  

en

n

12
1

2

2

2











2

2
1

)1(

2
1

nnn





Recall: x≥1:  (1 – 1/x)x ≤ 1/e 
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Primality Testing 
• Public-Key Cryptography needs large prime 

numbers 

• How can you tell if p is prime? 
– Try dividing p by all smaller integers 

• Exponential in |p| 
(number of bits to represent p) 

– Improvement: try only smaller primes 
• Still exponential 

• Until 2002 no deterministic Poly-time test 
was known! 
– Agrawal-Kayal-Saxena showed (inefficient) test 

– Much more efficient randomized tests exist. 76 



Fermat’s (little) Theorem 

• If p is a prime then for all a, 
𝑎𝑝−1 ≡ 1 mod  𝑝  

• Randomized test for a number n: 
– Choose a random a between 1 and n-1 

– Check if 𝑎𝑛−1 ≡ 1 mod  𝑛  

– If not, n is definitely not prime 

 

• What is the probability of error? 
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Fermat Primality Test 
• If 𝑎𝑛−1 ≢  1 mod  𝑛  we call a a “Fermat 

Witness” for the compositeness of n 

• For composite n, if 𝑏𝑛−1 ≡ 1 mod  𝑛  (b≠1) 
we call b a “Fermat Liar” 

 

• Claim: if a is a Fermat witness for n, then 
at least half the a’s are Fermat witnesses 

• Proof: Let b1,…,bk be Fermat liars. Then  
(𝑎 ⋅ 𝑏𝑖)

𝑛−1≡ 𝑎𝑛−1𝑏𝑖
𝑛−1 ≡ 𝑎𝑛−1 ⋅ 1 ≢  1 mod  𝑛  

– So ab1,…,abk are all Fermat witnesses! 
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Fermat Primality Test 
• So, error probability at most ½? 

 

• No: we assumed there exists a Fermat witness. 

– There is an infinite sequence of composites 
that have no Fermat witnesses at all:  
the Carmichael Numbers 

• Fermat primality test will always fail for 
Carmichael numbers. 

– They are rarer than primes, but still a problem. 

• Slightly more complex test (Rabin-Miller) always 
works 
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