
Randomized Algorithms

Textbook:

Randomized Algorithms, by Rajeev Motwani and
Prabhakar Raghavan.

1

Randomized Algorithms

• A Randomized Algorithm uses a random
number generator.

– its behavior is determined not only by its
input but also by the values chosen by RNG.

– It is impossible to predict the output of the
algorithm.

– Two executions can produce different
outputs.

2

Why Randomized Algorithms?

• Efficiency
• Simplicity
• Reduction of the impact of bad cases!
• Fighting an adversary.

3

Types of Randomized Algorithms

• Las Vegas algorithms
– Answers are always correct,

running time is random

– In analysis: bound expected running time

• Monte Carlo algorithms
– Running time is fixed,

answers may be incorrect

– In analysis: bound error probabilities

4

Randomized Algorithms

• Where do random numbers come from?
– Sources of Entropy: physical phenomena, user’s mouse

movements, keystrokes, atmospheric noise, lava lamps.

• Pseudo-random generators: take a few “good” random
bits and generate a lot of “fake” random bits.
– Most often used in practice

– Output of pseudorandom generator should be
“indistinguishable” from true random

5

We will see
(up to random decisions):

1. A randomized approximation Algorithm for
determining the value of .

2. A Randomized algorithm for the selection
problem.

3. A randomized data structure.
4. Analysis of random walk on a graph.
5. A randomized graph algorithm.

6 6

Determining 

0,1 1,1

1,0 0,0

Square area = 1
Circle area = /4

The probability
that a random
point in the
square is in the
circle = /4

 = 4 * points in circle/points
7

Determining 
def findPi (points):
 incircle = 0

 for i in 1 to points:
 x = random() // float in [0,1]
 y = random()
 if (x - ½)2 + (y - ½)2 < 0.25)

 incircle = incircle + 1

 return 4.0 * incircle / points

Note : a point is in the circle if its distance from (½, ½) < r
8

Determining  - Results

1 0.0
2 4.0
4 3.0
64 3.0625
1024 3.1640625
16384 3.1279296
131072 3.1376647
1048576 3.1411247

If we wait long
enough will it produce
an arbitrarily
accurate value?

n Output  Real  = 3.14159265

9

Basic Probability Theory
(a short recap)

• Sample Space Ω:
– Set of possible outcome points

• Event AΩ:
– A subset of outcomes

• Pr[A]: probability of an event
– For every event A: Pr[A][0,1]

– If AB= then Pr[AB]=Pr[A]+Pr[B]

– Pr[Ω]=1

Sample
space

0.1
0.1

0.1

0.3

0.2

0.05

0.1

0.05
0

0.35

10

Basic Probability Theory
(a short recap)

• Random Variable X:
– Function from sample space to ℝ

• Example:
• Ω={v=(g1,g2,…gn) | gi[0,100]}

– Events:
• A={v=(g1,g2,…gn) | i: gi[60,100]}

• B={v=(g1,g2,…gn) | i,j,k : gi,gj,gk [60,100]}

– Random variables

• Xi – 1 if student i passed, 0 if not

• X=X1+…+Xn – number of passing students

• Y – Average grade

Possible grades

for entire class

Everyone

passed

At least three

passed

11

Basic Probability Theory
(a short recap)

• Expectation of a Random Variable X:
– E[X]=xxPr[X=x] – the “average value”

• Expectation of Indicator Variables:
– E[Xi]=Pr[Xi=1] – for an indicator r.v.

• Linearity of Expectation:
– E[a1X1+…+anXn]=a1E[X1]+…+anE[Xn]

– Works for arbitrary random variables!

12

Back to π

• How many points must we test to get
accuracy of 0.01? How about 0.0001?

• Xi=1 iff the ith point is in the circle
– E[Xi]=Pr[Xi=1]=/4

– E[X1+…+Xn]=E[X1]+…+E[Xn]=n/4

• Accuracy: distance of X from E[X]

• We want to bound Pr[|X-E[X]|>δ]

0,1 1,1

1,0 0,0

13

A Simple Calculation

If the average income of people is $100 then
more than 50% of the people can be

earning more than $200 each

False! else the average would be higher!!!

True or False:

14

Andrei A. Markov

Markov’s Inequality

• If X is a non-negative r.v. with mean E[X]
then
– Pr[X > 2E[X]] ≤ ½

• More generally, for all a>0:
– Pr[X > a] ≤ E[X]/a

15

(since X,a non-neg)

Markov’s Inequality

Non-neg random variable X has expectation E[X]

E[X] = 𝑥 ∙ Pr 𝑋 = 𝑥𝑥

 ≥ 𝑥 ∙ Pr 𝑋 = 𝑥𝑥≥𝑎

 ≥ 𝑎 ∙ Pr 𝑋 = 𝑥𝑥≥𝑎

 = 𝑎 Pr 𝑋 = 𝑥𝑥≥𝑎

 = 𝑎 Pr 𝑋 ≥ 𝑎

 Pr 𝑋 ≥ 𝑎 ≤ E X /𝑎

16

Back to π again

• X is the number of points in the circle
– X is non-negative

– E[X]=n/4

• What does Markov’s inequality give us?

– Pr 𝑋 − 𝐸 𝑋 > 𝛿 = Pr 𝑋 > 𝛿 + 𝐸 𝑋 ≤
𝐸[𝑋]

𝐸 𝑋 +𝛿

– However,
𝐸[𝑋]

𝐸 𝑋 +𝛿
→ 1 when 𝑛 → ∞

• Not good enough!

0,1 1,1

1,0 0,0

17

Chernoff-Hoeffding Bound

• Used to bound convergence of sums of

random variables: X=X1+…+Xn

– Xi are zero/one variables

– All variables are independent

• For all i,j: Pr[Xi=1|Xj=1]=Pr[Xi=1]

– Denote 𝜇 = 𝐸 𝑋 /𝑛

• When satisfied, sum converges

exponentially fast !

Pr
𝑋

𝑛
− 𝜇 ≥ 𝛿𝜇 ≤ 2𝑒−

𝑛𝛿2𝜇
3

18

Using Chernoff to estimate accuracy

• Recall:
– Xi=1 iff the ith point is in the circle

– E[Xi]=Pr[Xi=1]=/4

– E[X1+…+Xn]=E[X1]+…+E[Xn]=n/4

– µ = /4
0,1 1,1

1,0 0,0

19

Using Chernoff to estimate accuracy

• Using Chernoff:

 Pr
𝑋

𝑛
− 𝜇 ≥ 𝛿𝜇 ≤2𝑒−

𝑛𝛿2𝜇
3 ⇔ Pr

𝑋

𝑛
− 𝜇 ≥ 𝛿 ≤2𝑒

−
𝑛𝛿2

3𝜇

• To get close within 𝛿 with error prob. 𝜖:

2𝑒
−
𝑛𝛿2

3𝜇 < 𝜖 ⇔ 𝑛 >
3𝜇 ln 2/𝜖

𝛿2
=
3𝜋 ln 2/𝜖

4𝛿2

• E.g.: to get 0.01 accuracy with 95% success:

𝜖 = 0.05, 𝛿 = 0.01 ⇒ 𝑛 >
3𝜋 ln 40

4 ⋅ 0.0001
≈ 86917

20

The Selection Problem

• Input: Array A[1...n] of elements in an arbitrary order,
and an index i.

• Output: the i-th smallest element in A[1..n].
• If i = 1, we are looking for the smallest element.
• If i = n, we are looking for the largest element.

• If i = n/2, we are looking for the median.

• Possible algorithm: Sort and return the i-th element.
 Complexity: At least (n log n)
• We will see a practical randomized algorithm with O(n)

expected running time

21

In class example: i=4

A = {7, 3, 2, 1, 5, 9, 8};

Randomized Selection

• Key idea: similar to quicksort

• Choose a random element q

• partition the array into small (<q) and big (>q)
elements.

• Keep searching in the appropriate side.

<q >q q

22

Randomized Selection

Select(A,i)

• If array A is of size 1 – trivial

• Randomly partition A with pivot q.

• Suppose q was the k’th smallest element

• If i=k, answer is q

• If i<k, recursively select i’th element in left
subarray

• If i>k, recursively find (i-k)’th element in right
subarray

<q >q q

23
k

Randomized Selection

RandSelect(A, p, r, i)

 if (p == r) then return A[p];

 q = RandPartition(A, p, r)

 k = q - p + 1;

 if (i == k) then return A[q];

 if (i < k) then

 return RandSelect(A,p,q-1,i);

 else

 return RandSelect(A,q+1,r,i-k);

 A[q]  A[q]

k

q p r
24

How to partition?

We choose a random element q and want to move all
elements smaller than q before q. and all elements
greater than q after q.

• Keep two indices, one running from left and the
other from right.

• Move each index until points to an element that
belongs to the other side

• swap the two elements and repeat.

• Stop when indices cross each other.

Running time?

25

O(n)

RandPartition In Words

• RandPartition(A, p, r):

– Select at random an element to act as
the “pivot”

– Grow two regions, A[p..i] and A[j..r]
• All elements in A[p..i] ≤ pivot

• All elements in A[j..r] ≥ pivot

– Increment i until A[i] ≥ pivot

– Decrement j until A[j] ≤ pivot

– Swap A[i] and A[j]

– Repeat until i >= j

– Return j

In class example:

p=1, r=7

A = {7, 3, 2, 1, 5, 9, 8};

Partition Code

RandPartition(A, p, r)

 x = A[random integer in p..r];

 i = p - 1;

 j = r + 1;

 while (TRUE)

 repeat

 j--;

 until A[j] <= x;

 repeat

 i++;

 until A[i] >= x;

 if (i < j)

 Swap(A, i, j);

 else

 return j;

What is the running time of

RandPartition()?

27

Randomized Selection

• Analysis:
– Worst case: partition always 0:n-1

T(n) = T(n-1) + O(n)

 = O(n2) (arithmetic series)

• Worse than sorting!

– “Best” case: suppose an n : (1-)n
partition for some fraction .
T(n) = T(n) + O(n)

 = O(n) (Master Theorem, case 3)

• Better than sorting!

a=1, b=1/

f(n)=Ω(nlogb(a)+ε)

28

Randomized Selection

• Average case
– For upper bound, assume i-th element

always falls in larger side of partition:

– We show that E[T(n)] = O(n) by induction

        

    















1n

n/2k

1n

0k

nΘkTE
n

2

nΘ1knk,maxTE
n

1
nTE

Pr[pivot is kth element]

29

Randomized Selection

• Assume E[T(k)]  ck for some const. c (and k<n) :

The recurrence we start with

Inductive assumption

Arithmetic series

For large enough c

30

𝐸 𝑇 𝑛 ≤
2

𝑛
 𝐸 𝑇 𝑘

𝑛−1

𝑘=
𝑛
2

+ 𝜃 𝑛

 ≤
2

𝑛
 𝑐𝑘

𝑛−1

𝑘=
𝑛
2

+ 𝜃 𝑛

 ≤ 𝑐
2

𝑛
⋅
1

2

𝑛

2
+ 𝑛
𝑛

2
+ 𝜃 𝑛

≤
3

4
𝑐𝑛 + 𝜃 𝑛

≤ 𝑐𝑛

Randomized Selection

• We got a randomized selectio algorithm
that runs in expected linear time.

• Is this Monte Carlo or Las vegas?

31

Skip lists – a randomized data
structure

Review:
• Sorted Linked List

What is the worst case performance of find(),
insert()?

• Sorted Array
 What is the worst case performance of find(),

insert()?

3 9 12 18 29 35 37

3 9 12 18 29 35 37
32

An Alternative Sorted Linked List

• What if you skip every other node?

– Every other node has a pointer to the next and the
one after that

• Find :

– follow “skip” pointer until pass target

• Resources

– Additional storage

• Performance of find()?

33

Skipping every 2nd node

The value stored in each node is shown below the node and
corresponds to the the position of the node in the list.

It’s clear that find() does not need to examine every
node. It can skip over every other node, then do a final
examination at the end. The number of nodes examined is
no more than n/2 + 1.

For example the nodes examined finding the value 15
would be
 2, 4, 6, 8, 10, 12, 14, 16, 15 -- a total of 16/2 + 1 = 9.

34

Skipping every 2nd and 4th node

The find operation can now make bigger skips than the
previous example. Every 4th node is skipped until the
search is confined between two nodes. At this point as
many as three nodes may need to be scanned. The
number of nodes examined is no more than n / 4 + 3.

Again, look at the nodes examined when searching for
15

35

Skipping every 2i-th node

Add hierarchy of skip pointers
every 2i-th node points 2i nodes ahead
For example, every 2nd node has a reference 2
nodes ahead; every 8th node has a reference 8
nodes ahead

We can now search just as binary search in an array.

The max number of nodes examined is O(log n).
36

Some serious problems

• what happens when we insert or remove a value
from the list?
Reorganizing the list is θ(n).

• E.g., removing the first element in the list
elements that were in odd positions (only at lowest
level) are now at even positions and vice versa.

37

A Probabilistic Skip Lists

• Concept: A skip list that maintains the same
distribution of nodes, but without the
requirement for the rigid pattern of node sizes

• On average, 1/2 have 1 pointer

• On average, 1/4 have 2 pointers

• …

• On average, 1/2i have i pointers

• It’s no longer necessary to maintain the rigid
pattern by moving values around for insert and
remove. This gives us a high probability of still
having O(log n) performance. The probability
that a skip list will behave badly is very small.

38

A Probabilistic Skip List

The number of forward reference pointers a node
has is its “size”

The distribution of node sizes is exactly the same
as the previous figure, the nodes just occur in a
different pattern.

39

Skip List Search

• To search for an element with a given key:

– Find location in top list

• Top list has O(1) elements (with high
probability).

• Location in this list defines a range of
items in next list

– Drop down a level and recurse

• O(1) time per level on average

• O(log n) levels with high probability

• Total expected time: O(log n)
40

Skip List Insert

1. Perform a search for that key

2. Insert element in bottom-level list

3. With probability p, recurse to insert in
upper level (note: p does not have to be 1/2)

– Expected number of occurances = 1+ p + p2 + … =
 = 1/(1-p) = O(1) if p is constant

– Total time = Search + O(1) = O(log n) expected

Skip list delete: O(1) (assuming a pointer to the
element is given)

41

Probabilistic Skip Lists - summary

• O(log n) expected time for find, insert

• O(n) time worst case (Why?)
– But random, and probability of getting worst-

case behavior is extremely small

• O(n) expected storage requirements
(Why?)

• Easy to code

42

-

Random Walks on Graphs

At any node, go to one of the neighbors of
the node with equal probability

Slides on Random Walks are based on

slides by Prof. Steven Rudich (CMU) 43

-

Random Walks on Graphs

At any node, go to one of the neighbors of
the node with equal probability

44

-

Random Walks on Graphs

At any node, go to one of the neighbors of
the node with equal probability

45

-

Random Walks on Graphs

At any node, go to one of the neighbors of
the node with equal probability

46

-

Random Walks on Graphs

At any node, go to one of the neighbors of
the node with equal probability

47

0 n

k

Random Walk on a Line

You go into a casino with $k, and at each time
step, you bet $1 on a fair game

You leave when you are broke or have $n

Question 1: what is your expected amount
of money at time t?

Let Xt be a R.V. for the amount of $ at time t

48

0 n

k

You go into a casino with $k, and at each time
step, you bet $1 on a fair game

You leave when you are broke or have $n

Xt = k + d1 + d2 + ... + dt,

 (di is RV for change in your money at time i)

So, E[Xt] = k

E[di] = 0

Random Walk on a Line

49

Question 2: what is the probability that you leave
with $n?

E[Xt] = k

E[Xt] = E[Xt| Xt = 0] × Pr(Xt = 0)

 + E[Xt | Xt = n] × Pr(Xt = n)

 + E[Xt | neither] × Pr(neither)

As t ∞, Pr(neither)  0, also somethingt < n
 Hence Pr(Xt = n)  k/n

 k = n × Pr(Xt = n)

 + (somethingt) × Pr(neither)

0

k

n

probability
that you hit
green before
you hit red

Random Walk on a Line

50

Getting Back Home

-

Lost in a city, you want to get back to your hotel
How should you do this?

Requires a good memory or a piece of chalk

Depth First Search!

51

Getting Back Home

-

How about walking randomly?

52

Will this work?

When will I get home?

Is Pr[reach home] = 1?

What is
E[time to reach home]?

Pr[will reach home] = 1

53

We Will Eventually Get Home

Look at the first n steps

There is a non-zero chance p1 that we get home

Also, p1 ≥ (1/n)n

Suppose we fail

Then, wherever we are, there is a chance p2 ≥
(1/n)n that we hit home in the next n steps
from there

Probability of failing to reach home by time kn

 = (1 – p1)(1 – p2) … (1 – pk)  0 as k  ∞
54

Furthermore:

If the graph has
n nodes and m edges, then

E[time to visit all nodes]
≤ 2m × (n-1)

55

Cover Times

Cover time (from u)
Cu = E [time to visit all vertices | start at u]

Cover time of the graph

(worst case expected time to see all vertices)

C(G) = maxu { Cu }

56

Cover Time Theorem

If the graph G has
n nodes and m edges, then

the cover time of G is

C(G) ≤ 2m (n – 1)

Any graph on n vertices has < n2/2 edges

Hence C(G) < n3 for all graphs G
57

Actually, we get home
pretty fast…

Chance that we don’t hit home by

(2k)2m(n-1) steps is (½)k

Why?

58

Random Walks are useful

• Efficient sampling from complicated
distributions

• Ranking (search results, web pages, friend
suggestions, spam detection)

• Clustering

• Design and analysis of random data
structures and algorithms

• Applications in physics, economics, biology…

• Much more…..

59

Cut Problems

• Definition: A Cut S in the graph G(V; E) is
a vertex partitioning into two sets: S and
S’ such that S S’= V .

• The edges in the cut (S;S’) are those
connecting a vertex in S and a vertex in S’.

S S’

The cut defined by S 60

Minimum Cut Problem
• Input: an undirected, connected graph G =

(V,E)

• Output: A cut (V1,V2 where V1V2 = V and
V1  V2 = ) such that number of edges
between V1 and V2 is the fewest possible.

Equivalent problem: find the fewest edges
that can be removed to disconnect G.

A deterministic algorithm: Run max-flow algorithm n2
times (for all possible s-t pairs).

Resulting complexity: O(n3m2(
61

Maximum Cut Problem

• Input: an undirected, connected graph G =
(V,E)

• Output: A cut (V1,V2 where V1V2 = V and
V1  V2 = ) such that number of edges
between V1 and V2 is the largest possible.

Equivalent problem: find the largest set of

edges that can be removed without
disconnecting G.

Min cut is polynomially solvable

Max Cut is NP-hard.
62

A randomized 2-approx algorithm
for max-cut

• Weights may be assigned to the edges (and
the goal is to find the heaviest cut).

• Algorithm: Independently for every vertex
v, chose randomly with probability ½
whether v belongs to S.

• Analysis: Consider an edge e. The
probability that it is in the cut is ½ (why?).
So the expected weight of the cut is
½ew(e)  ½ OPTCUT.

63

A randomized 2-approx algorithm
for max-cut

Remarks:

• We can run the algorithm a few times to
improve its performance – getting closer
to guaranteeing 2-approx.

• Corollary: There exists a cut having weight
at least ½ew(e).

64

Minimum Cut Problem in a multigraph

MultiGraph: A graph that may contain
multiple edges between any pair of vertices.

 Min-Cut

 some cut

G

65

Minimum Cut

A

B

C

D

Size of the min cut
is not larger
than the smallest
node degree in graph

E

G

F

H

A

B

C

D

But can be much smaller… 66

An Algorithm for min-cut

1. While the number of nodes in G is more
than 2

 1.1. Choose an edge e not in the min-cut

 1.2. contract e

2. MinCut  edges connecting the last two
remaining vertices.

67

Contract e = merge the two nodes connected by e

An Algorithm for min-cut

1. While the number of nodes in G is more
than 2

 1.1. Choose an edge e not in the min-cut

 1.2. contract e

2. MinCut  edges connecting the last two
remaining vertices.

68

randomly

A Randomized Algorithm for min-cut

1. While the number of nodes in G is more
than 2

 1.1. Choose a random edge.

 1.2. Merge the two nodes connected by that
edge.

2. MinCut  edges connecting the last two
remaining vertices. Notice that these
edges are actually all the edges
connecting nodes contracted to one of the
remaining nodes with nodes contracted to
the other remaining node.

69

Running example

1
2

3 4

5

1
2

,43

5

Iteration 1: Iteration 2:

70

Running example (cont’)

1,2

,43

5

,431,2,

5

G
1

2

3 4

5

stop: the cut
separates the
vertices sets {5}
and {1,2,3,4}

Iteration 3: Iteration 4: Output:

71

Min-Cut algorithm analysis

Will this algorithm return the Min-Cut?

Let C be a particular Min-Cut. Let k be size of C.

The algorithm will return C if it never contracts any
edge of C.

We need to estimate the probability that in each
iteration it chooses an edge not from C.

72

Min-Cut algorithm analysis (cont’)

• The probability of picking at each iteration an edge
from C is k/|E|, where |E| is the number of edges
still in G.

• There is no vertex with degree less than k (we
already mentioned that k ≤ minimal degree)

• So |E| = (sum of degrees)/2 ≥ kn/2

• Therefore, the probability of choosing an edge from
C in iteration i is at most

1in

2

2
k1)i(n

k






Note: In
iteration i
there are
n-i+1 nodes.

73

Min-Cut algorithm analysis (cont’)

• Define ei to be the event of not choosing an edge

from C in iteration i.

•The probability of not choosing an edge from C in

iteration i (assuming not chosen earlier) is at least

• The probability of not choosing an edge from C at

all is:

1

2
1




in

 
n

2
1Pr 1 e

Pr 𝜀𝑖

𝑛−2

𝑖=1

 ≥ 1−
2

𝑛 − 𝑖 + 1
=

𝑛−2

𝑖=1

 (𝑛 − 𝑗 + 1)𝑛
𝑗=3

 (𝑛 − 𝑖 + 1)𝑛−2
𝑖=1

=
2

𝑛(𝑛 − 1)

74

Is this good enough? How can we
improve it?

• The probability that the algorithm will not
find the Min-Cut is:

•To improve the performance we repeat the
algorithm n2/2 times, making independent
random choices each time.

• This way, the probability that the algorithm
will not find the Min-Cut is reduced to

en

n

12
1

2

2

2











2

2
1

)1(

2
1

nnn





Recall: x≥1: (1 – 1/x)x ≤ 1/e

75

Primality Testing
• Public-Key Cryptography needs large prime

numbers

• How can you tell if p is prime?
– Try dividing p by all smaller integers

• Exponential in |p|
(number of bits to represent p)

– Improvement: try only smaller primes
• Still exponential

• Until 2002 no deterministic Poly-time test
was known!
– Agrawal-Kayal-Saxena showed (inefficient) test

– Much more efficient randomized tests exist. 76

Fermat’s (little) Theorem

• If p is a prime then for all a,
𝑎𝑝−1 ≡ 1 mod 𝑝

• Randomized test for a number n:
– Choose a random a between 1 and n-1

– Check if 𝑎𝑛−1 ≡ 1 mod 𝑛

– If not, n is definitely not prime

• What is the probability of error?
77

Fermat Primality Test
• If 𝑎𝑛−1 ≢ 1 mod 𝑛 we call a a “Fermat

Witness” for the compositeness of n

• For composite n, if 𝑏𝑛−1 ≡ 1 mod 𝑛 (b≠1)
we call b a “Fermat Liar”

• Claim: if a is a Fermat witness for n, then
at least half the a’s are Fermat witnesses

• Proof: Let b1,…,bk be Fermat liars. Then
(𝑎 ⋅ 𝑏𝑖)

𝑛−1≡ 𝑎𝑛−1𝑏𝑖
𝑛−1 ≡ 𝑎𝑛−1 ⋅ 1 ≢ 1 mod 𝑛

– So ab1,…,abk are all Fermat witnesses!

78

Fermat Primality Test
• So, error probability at most ½?

• No: we assumed there exists a Fermat witness.

– There is an infinite sequence of composites
that have no Fermat witnesses at all:
the Carmichael Numbers

• Fermat primality test will always fail for
Carmichael numbers.

– They are rarer than primes, but still a problem.

• Slightly more complex test (Rabin-Miller) always
works

79

