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Integer Programming (IP) 

• An LP problem with an additional constraint 
that variables will only get an integral 
value, maybe from some range. 

• BIP – binary integer programming: variables 
should be assigned only 0 or 1. 

• Can model many problems. 
• NP-hard to solve! 
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Example: Vertex Cover 

Variables: for each v�V, xv – is v in the cover? 
Minimize 6vxv   
Subject to:  xi + xj  t 1   �{i,j}� E   
    xv � {0,1} 
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 Weighted Vertex Cover 

Input: Graph G=(V,E) with non-negative 
weights w(v) on the vertices. 

Goal: Find a minimum-cost set of vertices S, 
such that all the edges are covered. An 
edge is covered iff at least one of its 
endpoints is in S. 

Recall: Vertex Cover is NP-complete.  
   The best known approximation factor is      
   2- (log log |V|/2 log|V|). 
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Weighted Vertex Cover 
Variables: for each v�V, x(v) – is v in the 

cover? 
 
Min  6v�V w(v)x(v) 
s.t. 
 x(v) + x(u) t 1,  �(u,v)�E   
 
 x(v) � {0,1}   �v�V 
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The LP Relaxation 

This is not a linear program: the constraints of type 
x(v) � {0,1} are not linear. We got an LP with integrality 

constraints on variables – an integer linear programs 
(IP) that is NP-hard to solve. 

 
However, if we replace the constraints x(v) � {0,1} 
by x(v)t 0 and x(v) d 1, we will get a linear program. 
 
The resulting LP is called a Linear Relaxation of 
IP, since we relax the integrality constraints. 
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LP Relaxation of Weighted Vertex 
Cover 

 
Min  6v�V w(v)x(v) 
s.t. 
 x(v) + x(u) t 1,  �(u,v)�E   
 
  x(v) t 0,  �v�V 
    x(v) d 1,  �v�V 
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LP Relaxation of Weighted Vertex 
Cover - example 

Consider the case of a 3-cycle in 
which all weights are 1. 

An optimal VC has cost 2 (any two 
vertices) 

An optimal relaxation has cost 3/2 
(for all three vertices x(v)=1/2)  

½ 

½ 

½ 
The LP and the IP are different 
problems. Can we still learn 
something about Integral VC? 
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Why LP Relaxation Is Useful ?  

The optimal value of LP-solution provides a 
bound on the optimal value of the original 
optimization problem. OPT(LP) is always 
better than OPT(IP) (why?) 

Therefore, if we find an integral solution 
within a factor r of OPTLP, it is also an r-
approximation of the original problem. 

It can be done by ‘wise’‛ rounding. 
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2-approx. for weighted VC  

1. Solve the LP-Relaxation. 

2. Let S be the set of all the vertices v with x(v) t 1/2. 
Output S as the solution. 

Analysis: The solution is feasible: for each edge e=(u,v), 
either x(v) t1/2 or x(u) t1/2 

The value of the solution is: 6v�s w(v) = 6{v|x(v) t1/2} w(v) d 
6v�V w(v)2x(v) =2OPTLP 

Since OPTLP d OPTVC, the cost of the solution is d 
2OPTVC. 
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LP Duality 
Consider LP: max cTx s.t. Ax d b, x t 0 
n variables, m constraints 
 
How large can the optimum cTx be? 
 
Consider a vector y of m variables.  
If we demand that y t 0     then yTAx d yTb 
If we demand that cT d yTA  then cTx d yTAx 
 
So cTx d yTAx d yTb 
How small can yTb be? 
 
minimize bTy s.t. ATy t c, y t 0  (called the dual LP) 
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Primal: maximize  cTx s.t.  Ax  d b, x t 0 
Dual:    minimize   bTy s.t. ATy t c, y t 0  
 
• In the primal, c is cost function and b was in the 

constraint. In the dual, their roles are swapped. 
• Inequality sign is changed and maximization turned 

to minimization. 
Dual:  
minimize 2x + 3y 
s.t  x   +  2y t 4,   
      2x +  5y t 1,  
      x   -  3y t 2,   
      x, y t 0 

Primal:  
maximize  4p +q + 2r     
 
s.t   p + 2q + r   d 2,  
      2p+ 5q - 3r d 3,   

      p,q,r t 0 

 

Duality 
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 Duality – general form 

Dual min bTy max cTx Primal  
t 0 d bi 

Variables d 0 t bi Constraints 
unconstrained = bi 

d ci d 0 
Constraints t ci t 0 Variables 

= ci unconstrained 

max cTx s.t. Ax d b, x t 0 
If y t 0  then yTAx d yTb 
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The Duality Theorem 

Let P,D be an LP and its dual. 
If one has optimal solution so does the 
other, and their values are the same. 
 
We only saw cTx d yTb     (weak duality) 
The duality thm: cTx = yTb (proof not here) 
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Simple Example 
• Diet problem:  minimize 2x + 3y 
     subject to x+2y t 4,   
     x t 0, y t 0 
• Dual problem: maximize    4p  
   subject to   p d 2,  
     2p d 3,  
     p t 0 
• Dual: the problem faced by a pharmacist who 

sells synthetic protein, trying to compete with 
peanut butter and steak 

Steak 

Peanut 
Butter 
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Simple Example 
• The pharmacist wants to maximize the price p, 

subject to constraints: 
– synthetic protein must not cost more than protein 

available in foods. 
– price must be non-negative  
– revenue to druggist will be 4p 

• Solution:  p = 3/2  Æ  objective value = 4p = 6 
• Not coincidence that it’‛s equal the minimal 

cost in original problem.   
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What’‛s going on? 
• Notice: feasible sets completely different for 

primal and dual, but nonetheless an important 
relation between them. 

• Duality theorem says that in the competition 
between the grocery and the pharmacy the result is 
always a tie. 

• Optimal solution to primal tells consumer what to do. 
• Optimal solution to dual fixes the natural prices at 

which economy should run. 
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Duality Theorem 
Druggist’‛s max revenue = Consumers min cost 
 
Practical Use of Duality: 
• Sometimes simplex algorithm (or other 

algorithms) will run faster on the dual than 
on the primal. 

• Can be used to bound how far you are from 
optimal solution. 

• Interplay between primal and dual can be 
used in designing algorithms 

• Important implications for economists. 
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Max Flow LP and its dual 
Consider the max st-flow LP (add an arc from t to s): 

 
max   𝑓௧௦     𝑠. 𝑡. 
 
𝑓௨௩ ≤ 𝑐௨௩        ∀𝑢𝑣 ∈ 𝐸 
 
෍ 𝑓௨௩
௨௩∈ா

− ෍ 𝑓௩௨
௩௨∈ா

≤ 0        ∀𝑣 ∈ 𝑉 

 
𝑓௨௩ ≥ 0 
 
 

 

min   ෍ 𝑐௨௩𝑑௨௩
௨௩∈ா

    𝑠. 𝑡. 

 
𝑑௨௩ − 𝑝௨ + 𝑝௩ ≥ 0        ∀𝑢𝑣 ∈ 𝐸 

 
𝑝௦ − 𝑝௧ ≥ 1 

 
𝑑௨௩ ≥ 0  , 𝑝௨ ≥ 0 
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IP version of dual = min st-cut 

min   ෍ 𝑐௨௩𝑑௨௩
௨௩∈ா

    𝑠. 𝑡. 

 
𝑑௨௩ − 𝑝௨ + 𝑝௩ ≥ 0        ∀𝑢𝑣 ∈ 𝐸 

 
𝑝௦ − 𝑝௧ ≥ 1 

 
𝑑௨௩ ∈ 0,1 , 𝑝௨ ∈ {0,1} 

Consider optimal solution 𝑑∗, 𝑝∗ : 𝑝௦∗ = 1, 𝑝௧∗ = 0 
𝑝∗ naturally defines a cut: 𝑆 = {𝑣:   𝑝௩∗ = 1}, 𝑇 = {𝑣:   𝑝௩∗ = 0} 
For 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇:            𝑑௨௩∗ = 1 for other u𝑣 can have 𝑑௨௩∗ = 0 
So objective function is capacity of an st-cut! 
Minimum achieved at the minimum st-cut. 
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Back to LP Dual – still min-cut? 
min   ෍ 𝑐௨௩𝑑௨௩

௨௩∈ா

    𝑠. 𝑡. 

 
𝑑௨௩ − 𝑝௨ + 𝑝௩ ≥ 0        ∀𝑢𝑣 ∈ 𝐸 

 
𝑝௦ − 𝑝௧ ≥ 1 

 
0 ≤ 𝑑௨௩ ≤ 1, 0 ≤ 𝑝௨ ≤ 1 

Dropping the upper bounds 𝑑௨௩ ≤ 1, 𝑝௨ ≤ 1 cannot increase the objective  
value. We’‛re back at the dual of the max-flow LP. 
 
Can the objective function be improved when dropping  
the integrality constraints? In general – yes.  
This specific matrix has a special property called total unimodularity 
Such LPs have integral optimal solutions. 
So optimum of dual LP remains value of min st-cut 
By duality theorem: max-flow = min-cut 
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Primal: max  ∑ 𝑐௝ ∙ 𝑥௝௡
௝ୀଵ         𝑠. 𝑡.       ∀𝑖     ∑ 𝐴௜௝ ∙ 𝑥௝௡

௝ୀଵ ≤ 𝑏௜, 𝑥 ≥ 0 

Dual:    min  ∑ 𝑏௜ ∙ 𝑦௜௠
௜ୀଵ         𝑠. 𝑡.       ∀𝑗     ∑ 𝐴௜௝ ∙ 𝑦௜௠

௜ୀଵ ≥ 𝑐௝, 𝑦 ≥ 0 
 
so ∀𝑗  𝑐௝𝑥௝ ≤ 𝐴்𝑦 ௝𝑥௝ and ∀𝑖  𝑏௜𝑦௜ ≥ 𝐴𝑥 ௜𝑦௜ 

for optimal solutions 𝑐்𝑥⋆ = 𝑏்𝑦⋆ so 
∑ 𝑐௝ ∙ 𝑥௝⋆௡
௝ୀଵ = ∑ ∑ 𝐴௜௝ ∙ 𝑦௜⋆௠

௜ୀଵ ∙ 𝑥௝⋆௡
௝ୀଵ =   ∑ ∑ 𝐴௜௝ ∙ 𝑥௝⋆௡

௝ୀଵ ∙ 𝑦௜⋆௠
௜ୀଵ = ∑ 𝑏௜ ∙ 𝑦௜⋆௠

௜ୀଵ  

so ∀𝑗  𝑐௝𝑥௝⋆ = 𝐴்𝑦 ௝𝑥௝⋆ and ∀𝑖  𝑏௜𝑦௜⋆ = 𝐴𝑥 ௜𝑦௜⋆ 

hence, ∀𝑗 either 𝑥௝⋆ = 0 or ∑ 𝐴௜௝ ∙ 𝑦௜⋆௠
௜ୀଵ = 𝑐௝ and 

              ∀𝑖 either 𝑦௜⋆ = 0 or ∑ 𝐴௜௝ ∙ 𝑥௝⋆௡
௝ୀଵ = 𝑏௜  

either a variable is zero or the corresponding 
constraint in the dual is tight. 
 
 

Complementary Slackness 
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Weighted Vertex Cover (again) 
 
Min  6v�V wv ∙  xv 
s.t. 
 xv + xu t 1,  �(u,v)�E   
 
  xv t 0,  �v�V 
     xv d 1,  �v�V 

 
Max  6(u,v)�E 1 ∙  yuv 
s.t. 
  6u:(u,v)�E yuv d wv    �v�V   
 
  ye t 0,  �e�E 

Solve the relaxed dual problem. Let y* be the solution. 
Complementary slackness tells us that if a dual 
constraint is not tight then corresponding xv is zero. 
So set xv to 0 unless constraint is tight. 

Define 𝑥௩ =    ൜1  if   ∑ 𝑦௨௩∗ = 𝑤௩                                        ௨,௩ ∈ா
0  otherwise                                                                              
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Weighted Vertex Cover (analysis) 

𝑥௩ =   ቐ
1  if   ෍ 𝑦௨௩∗ = 𝑤௩                                              

௨,௩ ∈ா
0  otherwise                                                                              

 

 
Does the vector 𝑥 define a vertex cover? 
 
Suppose not. Then xs=xt=0 for some edge (s,t). 
Then ∑ 𝑦௨௦∗ < 𝑤௦  ௨,௦ ∈ா and ∑ 𝑦௨௧∗ < 𝑤௧  ௨,௧ ∈ா . 
But 𝑦௦௧∗  only appears in these two constraints, so we can 
increase 𝑦௦௧∗  without violating any constraint, 
contradicting optimality of 𝑦∗. 
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Weighted Vertex Cover (analysis) 

𝑥௩ =   ቐ
1  if   ෍ 𝑦௨௩∗ = 𝑤௩                                              

௨,௩ ∈ா
0  otherwise                                                                              

 

 
෍𝑤௩𝑥௩  
௩∈௏

≤ ෍ ෍ 𝑦௨௩∗
௨,௩ ∈ா

  
௩∈௏

= 2 ෍ 𝑦௨௩∗
௨,௩ ∈ா

= 2𝑂𝑃𝑇௅௉ ≤ 2𝑂𝑃𝑇 

 
 Every edge counted twice 

Y* is optimal solution to dual  
problem. Dual objective is 6(u,v)�E 1 ∙  yuv 
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Linear Programming -Summary 
• Of great practical importance: 

– LPs model important practical problems 
• production, manufacturing, network design, flow 

control, resource allocation. 
– solving an LP is often an important component 

of solving or approximating the solution to an 
integer linear programming problem. 

• Can be solved in poly-time, the simplex 
algorithm works very well in practice.  

• Use packages, you really do not want to roll 
your own code here. 



Randomized Algorithms 

 
Textbook: 
 
Randomized Algorithms, by Rajeev Motwani and 
Prabhakar Raghavan. 

1 



Randomized Algorithms 

• A Randomized Algorithm uses a random 
number generator. 
– its behavior is determined not only by its 

input but also by the values chosen by RNG. 
– It is impossible to predict the output of the 

algorithm. 
– Two executions can produce different 

outputs. 

2 



Why Randomized Algorithms? 

• Efficiency 
• Simplicity 
• Reduction of the impact of bad cases! 
• Fighting an adversary. 

 

3 



Types of Randomized Algorithms 

• Las Vegas algorithms 
– Answers are always correct, 

running time is random 
– In analysis: bound expected running time 

• Monte Carlo algorithms 
– Running time is fixed,  

answers may be incorrect 
– In analysis: bound error probabilities 

4 



Randomized Algorithms 
• Where do random numbers come from? 

– Sources of Entropy: physical phenomena, user’‛s mouse 
movements, keystrokes, atmospheric noise, lava lamps. 

• Pseudo-random generators: take a few “good” random 
bits and generate a lot of “fake” random bits. 
– Most often used in practice 
– Output of pseudorandom generator should be 

“indistinguishable” from true random 

5 



We will see  
(up to random decisions): 

1. A randomized approximation Algorithm for 
determining the value of 3. 

2. A Randomized algorithm for the selection 
problem. 

3. A randomized data structure. 
4. Analysis of random walk on a graph. 
5. A randomized graph algorithm. 

6 6 



Determining S 
0,1 1,1 

1,0 0,0 

Square area = 1 
Circle area = S/4 

The probability 
that a random 
point in the 
square is in the 
circle = S/4 

S = 4 * points in circle/points 7 



Determining S 
def findPi (points): 
    incircle = 0 
 
    for i in 1 to points: 
        x = random() // float in [0,1] 
        y = random() 
        if (x - ½)2 + (y - ½)2 < 0.25)  
     incircle = incircle + 1 
 
    return 4.0 * incircle / points 

Note  :  a  point  is  in  the  circle  if  its  distance  from  (½,  ½)      <  r 
8 



Determining S  - Results 

1      0.0 
2      4.0 
4      3.0 
64     3.0625 
1024   3.1640625 
16384  3.1279296 
131072      3.1376647 
1048576  3.1411247 

If we wait long 
enough will it produce 
an arbitrarily 
accurate value? 

n                 Output S Real S = 3.14159265 

9 



Basic Probability Theory 
(a short recap) 

• Sample Space Ω:  
– Set of possible outcome points 

• Event A�Ω:   
– A subset of outcomes 

• Pr[A]: probability of an event  
– For every event A: Pr[A]�[0,1] 
– If A�B=� then Pr[A�B]=Pr[A]+Pr[B] 
– Pr[Ω]=1 

Sample 
space 

0.1 0.1 
0.1 

0.3 

0.2 

0.05 

0.1 

0.05 
0 

0.35 
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Basic Probability Theory 
(a short recap) 

• Random Variable X:  
– Function from event space to ℝ 

• Example: 
• Ω={v=(g1,g2,…gn) | gi�[0,100]} 

– Events: 
• A={v=(g1,g2,…gn) | �i: gi�[60,100]} 
• B={v=(g1,g2,…gn) | �i,j,k : gi,gj,gk �[60,100]} 

– Random variables 
• Xi – 1 if student i passed, 0 if not 
• X=X1+…+Xn – number of passing students  
• Y – Average grade 

 

Possible grades 
for entire class 

Everyone 
passed 

At least three 
passed 
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