
Parameterized Complexity 
 
Every instance comes with a parameter k. 
 
 
The problem is fixed parameter tractable 

(FPT) if exists algorithm with running 
time f(k)nc

. 

Often k is solution size, but could be many other things 

So Vertex Cover parameterized by solution size is  
fixed parameter tractable. 



Alternative Parameters 

 
So far we have only seen the solution 
size as the parameter.  
 
Often other parameters also make 
sense, or even make more sense than 
solution size. 
 



k-Coloring 

A valid k-coloring is a funcion f : V(G) Æ {1...k} such 
that no edge has same colored endpoints. 

 

Input: G, k 
Question: Does G have a valid k-coloring? 

Parameter: k 
 
Cannot have FPT algorithm – NP-hard for k=3! 



k-Coloring parameterized by VC 

 
Input: G, integer k, set X ⊆ V(G) such that X is a 
 vertex cover of G, integer x = |X|.  
Question: Does G have a proper k-coloring? 
Parameter: x 
 
FPT now means f(x)nO(1). 



k-Coloring parameterized by VC 

X 

I = V(G) \ X 

If x+1 ≤ k say YES 

Thus, assume k ≤ x. 

Branch on kx colorings of X. 

For each guess, color I greedily. 

Total running time: O(kx ⋅  (n+m)) = O(xx ⋅  (n+m)). 



Dynamic Programming 



Steiner Tree 
Input: Graph G, vertex set Q, integer k. 
Question: Is there a set S of size at 
most k such that Q ⊆ S and G[S] is 
connected? 
Parameter: |Q| 

Will see 4|Q|nO(1) time algorithm. 



DP for Steiner Tree 

T[v,p,Z] = 

⊆ Q 

≤ k, solution size 

True if there exists a set S of size at 
most p such that that Z ∪ {v}  ⊆ S and 
G[S] is connected. 

We want to know the minimum p such that 
T[v,p,Q] = true, for some v ∈ V(G) 

Table size is 2|Q|kn 

vertex 



Recurrence for Steiner Tree 
v 

Z 

Z1 
Z \ Z1 



Recurrence for Steiner Tree 

T[v,p,Z] = ሧ ሧ
T[v,pଵ,Zଵ]

+  T[v,p − pଵ + 1,Z ∖ Zଵ]
∅⊂భ⊂

  
ଵஸ  భஸ

 



Recurrence for Steiner Tree 
v 

Z 

v’ 



Recurrence for Steiner Tree 

T[v,p,Z] = 

ሧ ሧ
T[v,pଵ,Zଵ]

+  T[v,p − pଵ + 1,Z ∖ Zଵ]
∅⊂భ⊂

  
ଵஸభஸ

 

ሧ T[u,p−1,Z]  
୳∈(୴)

 



Steiner Tree, Analysis 

Table size: 2|Q|nk 
 
Time to fill one entry: O(k2|Q| + n) 
 
Total time: O(4|Q|nk2 + 2|Q|n2k)  



Treewidth as parameter 

We saw a O(4k∙n) time algorithm for max. independent set 
in treewidth k graphs 
 
This is an example for a very broad situation: 
Croucelle’‛s theorem: any graph property expressible in 
monadic second order logic is FPT with treewidth as the 
parameter (by DP) 
 
Monadic second order logic: 
• Quantification over vertices, sets of vertices, edges, sets of 

edges. 
• Adjacency and incidence checks 
• Or, and, not 
 



Example MSO2: 

3 coloring: 
 
∃X⊆V,Y⊆V s.t.  
[ (∀ x ∈ X x ∉ Y)        X,Y are disjoint 
  ∧ ∀u,v: 
     { (u,v) ∈ E ⇒  [  (u∈X ⇒ v∉X)   endpoints of an edge 
                            ∧  (u∈Y ⇒ v∉Y)   do not have same color 
                            ∧ (u∈V-(X∪Y) ⇒ v∉V-(X∪Y) 
                         ] 
    } 
] 
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Advanced Algorithms 
Linear Programming 

Reading: 
CLRS, Chapter29 (2nd ed. onward). 
“Linear Algebra and Its Applications”, by Gilbert 
Strang, chapter 8 
“Linear Programming”, by Vasek Chvatal 
“Introduction to Linear Optimization”, by Dimitris 
Bertsimas and John Tsitsiklis 
•Lecture notes by John W. Chinneck: 
http://www.sce.carleton.ca/faculty/chinneck/po.html 

http://www.sce.carleton.ca/faculty/chinneck/po.html
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An Example: The Diet Problem 
• A student is trying to decide on lowest cost diet 

that provides sufficient amount of protein, with two 
choices: 
– steak: 2 units of protein/kg, $3/kg 
– peanut butter: 1 unit of protein/kg, $2/kg 

• In proper diet, need 4 units protein/day. 
Let x  = # kgs peanut butter/day in the diet. 
Let y  = # kgs steak/day in the diet.   

Goal:  minimize  2x + 3y (total cost) 
subject to constraints: 
   x + 2y t 4 
   x t 0,  y t 0 

This is an LP- formulation 
of our problem 
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An Example: The Diet Problem 

• This is an optimization problem. 
• Any solution meeting the nutritional demands is 

called a feasible solution 
• A feasible solution of minimum cost is called the 

optimal solution. 

Goal:  minimize  2x + 3y (total cost) 
subject to constraints: 
   x + 2y t 4 
   x t 0,  y t 0 
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Linear Programming 

• The process of optimizing a linear objective 
function subject to a finite number of linear 
constraints. 

• The word “programming” is historical and predates 
computer programming. 

• Example applications: 
– airline crew scheduling 
– manufacturing and production planning 
– telecommunications network design 

• “Few problems studied in computer science have 
greater application in the real world.” 
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Linear Program - Definition 
A linear program is a problem with n variables 

x1,…,xn, that has: 
1. A linear objective function, which must be 
      minimized/maximized. Looks like: 
          min (max) c1x1+c2x2+… +cnxn 
2. A set of m linear constraints. A constraint  

looks like:  
           ai1x1 + ai2x2 + … + ainxn d bi (or t or =) 
 
Note: the values of the coefficients ci, ai,j are 

given in the problem input. 
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LP – Matrix form 
max cTx  s.t. 
      Ax ≤ b 
 
x – vector of n variables 
c – vector of n objective function coefficients 
A – m-by-n matrix 
b – vector of dimension m 
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Geometric intuition 
x= peanut butter, y = steak 

x+2y=4 

y=0 

x=0 

feasible set 

min  2x + 3y s.t. 
   x + 2y t 4 
   x t 0,  y t 0 
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Feasible Set 
• Each linear inequality divides n-dimensional 

space into two halfspaces, one where the 
inequality is satisfied, and one where it’‛s 
not. 

• Feasible Set : solutions to a family of 
linear inequalities. 
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Feasible Set 
• Each linear inequality divides n-dimensional space into 

two halfspaces, one where the inequality is satisfied, 
and one where it’‛s not. 
 

• The feasible set is the intersection of the halfspaces 
where all inequalities are satisfied. 
 

• An intersection of halfspaces is called a convex 
polyhedron. So the feasible set is a convex polyhedron. 
 

• Fact: every point 𝑝 in a convex polytope can be 
represented as a convex combination of the vertices 𝑣 
of the polyhedron. 

𝑝 =   ∑ 𝜆𝑣         (0 ≤ 𝜆 ≤ 1  ;   ∑𝜆= 1) 
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Feasible set! 

x 

y 

feasible set 

An Example 
with 6 

constraints. 

Feasible set 
is bounded 
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The Feasible Set 
• Feasible set is a convex polyhedron.  
• A bounded and nonempty polyhedron is called a 

convex polytope. 

There are 3 cases: 
• feasible set is empty (problem is not feasible) 
• Feasible set is unbounded 
• Feasible set is bounded and nonepmty (a polytope) 

 
 

• First two cases very uncommon for real problems in 
economics and engineering. 



12 

Lines of constant  
objective function 

x+2y=4 

x 

y 

feasible set 

2x+3y=6 
2x+3y=0 

Opt: 
x=0,y=2 

Minimal price of 
daily amount of 
protein unit = 6 

2x+3y=15 

min  2x + 3y s.t. 
   x + 2y t 4 
   x t 0,  y t 0 
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The optimal objective value 
There are 3 cases: 
• feasible set is empty (problem is not feasible) 

 
• cost function is unbounded on feasible set. 

 
• cost has a minimum (or maximum) on feasible set. 
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Optimal value occurs at some 
vertex of the feasible set! 

x 

y 

feasible set 

(if problem is bounded) 
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Optimal solution always at a vertex  
The linear cost function defines a family of parallel 
hyperplanes (lines in 2D, planes in 3D, etc.).  
 
Want to find one of minimum cost. 
 
If exists, must occur at a vertex of the feasible set. 
 
Proof: Let p be any point in the feasible set. 
Write 𝑝 =   ∑ 𝜆𝑣         (0 ≤ 𝜆 ≤ 1  ;   ∑𝜆= 1) 
By linearity of the objective function z,  
z 𝑝 =   ∑ 𝜆𝑧(𝑣) ≤ 𝑧 𝑣௫ , where 𝑣௫ is the vertex 
that maximizes z.  
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Standard Form of a Linear 
Program. 

max cTx     s.t. 
      Ax ≤  b 
         x ≥  0 

maximize          𝑐𝑥



ୀଵ

   

subject  to: 
 
    ∑ 𝑎𝑥

ୀଵ ≤ 𝑏          𝑖 = 1…𝑚   
                                          𝑥≥ 0                𝑗 = 1…𝑛    
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Converting to Standard Form 

minimize          𝑐𝑥



ୀଵ

   

subject  to: 
 
    ∑ 𝑎ଵ𝑥

ୀଵ ≥ 𝑏ଵ         
 
    ∑ 𝑎ଶ𝑥

ୀଵ = 𝑏ଶ   
 
    
 

maximize          −𝑐𝑥



ୀଵ

   

subject  to: 
 
    ∑ −𝑎ଵ𝑥

ୀଵ ≤ −𝑏ଵ         
 
    ∑ 𝑎ଶ𝑥

ୀଵ ≤ 𝑏ଶ   
 
    ∑ −𝑎ଶ𝑥

ୀଵ ≤ −𝑏ଶ   
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Solving LP 
• There are several algorithms that solve any 

linear program optimally. 
¾The Simplex method (to be discussed) 
¾The Ellipsoid method 
¾The interior point method 

• These algorithms can be implemented in 
various ways. 

• There are many existing software packages 
for LP. 

• LP can be used as a “black box” for solving 
various optimization problems. 
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LP formulation: another example 

Bob’‛s bakery sells bagels and muffins. 
To bake a dozen bagels Bob needs 5 cups of 

flour, 2 eggs, and one cup of sugar. 
To bake a dozen muffins Bob needs 4 cups of 

flour, 4 eggs and two cups of sugar. 
Bob can sell bagels for 10$/dozen and muffins 

for 12$/dozen. 
Bob has 50 cups of flour, 30 eggs and 20 cups 

of sugar. 
How many bagels and muffins should Bob bake 

in order to maximize his revenue? 
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LP formulation: Bob’‛s bakery 

Maximize cT�x 
s.t.    Ax d b 
         x t 0. 

           Bagels  Muffins   
Flour      5           4                            
Eggs       2           4 
Sugar     1           2 
 
 
 

       5   4 

      A =     2  4 

       1   2 

Revenue  10        12 

Avail. 
50 
30 
20 

Maximize 10x1+12x2 

s.t.    5x1+4x2 d 50 
         2x1+4x2 d 30 
          x1+2x2 d 20 
         x1 t 0, x2 t 0 

c= 10
12  b=

50
30
20
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In class exercise: 
Write the maximum flow problem an LP 

 
Input: directed graph G=(V,E) with non-negative arc 

 capacities c(e),  
  source and sink vertices s,t 

 
Output: maximum flow from s to t in G. 
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Towards the Simplex Method 
The Toy Factory Problem (TFP): 
A toy factory produces dolls and cars. 
Danny, a new employee, is hired. He can produce 2 cars 

and 3 dolls a day. However, the packaging machine 
can only pack 4 items a day. The company’‛s profit 
from each doll is 10$ and from each car is 15$. What 
should Danny be asked to do? 

Step 1: Describe the problem as an LP problem. 
Let x1,x2 denote the number of cars and dolls produced 

by Danny. 

http://images.google.co.il/imgres?imgurl=http://all-bratz-stuff.onlineenterprise.net/images/bratz-sweet-dreamz-yasmin.jpg&imgrefurl=http://www.all-bratz-stuff.com/&h=215&w=215&sz=9&hl=en&start=13&tbnid=gB1AU1bWS6_eNM:&tbnh=106&tbnw=106&prev=/images?q=bratz&svnum=10&hl=en&lr=&rls=GGLJ,GGLJ:2006-31,GGLJ:en&sa=N
http://images.google.co.il/imgres?imgurl=http://shop.sproutsoup.com/products/wooden-toy-zoom3.jpg&imgrefurl=http://shop.sproutsoup.com/wooden-toy-car.cfm&h=151&w=300&sz=14&hl=en&start=14&tbnid=p1GgXSYTMJwSgM:&tbnh=58&tbnw=116&prev=/images?q=toy+car&svnum=10&hl=en&lr=&rls=GGLJ,GGLJ:2006-31,GGLJ:en
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The Toy Factory Problem 
Let x1,x2 denote the number of cars and dolls produced 

by Danny. 
Objective:  
 Max z=15x1+10x2 

s.t           x1 d 2 
            x2 d 3 
        x1+x2 d 4 
        x1 t 0 
                x2 t 0  

Feasible 
region x1+x2=4 

x1 

x1=2 

x2=3 

x2 
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The Toy Factory Problem 

Feasible 
region 

x1+x2=4 

x1 

x1=2 

x2=3 

x2 Constant profit 
lines –  They 
are always 
parallel to each 
other.  
We are looking 
for the best 
one that still 
‘touches’‛ the 
feasible region. 

z=15 

z=30 z=40 
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Important Observations: 

Feasible 
region 

x1+x2=4 

x1 

x1=2 

x2=3 

x2 

1. We already know that the optimum occurs at a 
vertex 

z=50 

It might be that the 
objective line is parallel 
to a constraint.  
(e.g. z=15x1+15x2). 
 
In this case there are 
many optimal solutions, 
in particular there is 
one at a vertex.  
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Important Observations: 

2. If the objective function at a vertex is not 
smaller than that of any of its adjacent vertices, 
then it is optimal. (i.e., local optimum is also global) 

Feasible 
region 

x1+x2=4 

x1 

x1=2 

x2=3 

x2 

z=50 

3.  There is a finite number of vertices. 

The Simplex method: 
Travel along the 
vertices till a local 
maximum!!! 
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The Simplex Method 

Phase 1 (start-up): Find Any vertex. In standard 
LPs the origin can serve as the start-up vertex. 
(why?) 

Phase 2 (iterate): Repeatedly move to a better 
adjacent vertex until no further better adjacent 
vertex can be found. The optimum is at the final 
vertex. 
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Example: The Toy Factory Problem 

Phase 1: start at (0,0) 
Objective value = Z(0,0)=0 
Iteration 1: Move to (2,0). 
Z(2,0)=30. An Improvement 
Iteration 2: Move to (2,2) 
Z(2,2)=50. An Improvement 
Iteration 3: Consider moving 

to (1,3), Z(1,3)=45 < 50. 
Conclude that (2,2) is 
optimum! 

Feasible 
region 

x1+x2=4 

x1 

x1=2 

x2=3 

x2 

(0,0) (2,0) 

(2,2) 

(1,3) 

Objective: z=15x1+10x2 
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Finding CornerPoints Algebraically 

The simplex method is easy to follow graphically. But 
how is it implemented in practice? 

Notes:  
• At a vertex a subset of the inequalities are 

equalities. 
• It is easy to find the intersection of linear 

equalities (solutio to a system of equations). 
• We will add slack variables – to determine which 

inequality is active and which is not active  
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Adding Slack Variables 
Let s1,s2,s3 be the slack variables 
 
Objective:  Max z=15x1+10x2 
s.t           x1+s1 = 2 
            x2 +s2 = 3 
        x1+x2 +s3 = 4 
 x1, x2, s1, s2, s3 t 0 
                 
n – number of (original) variables 
m – number of inequalities 
Number of slack variables is m (one for each inequality) 

 
M equations, n+m variables. Setting n vars uniquely 

determines the values of the other variables. 
A vertex: n variables (slack or original) are zero. 
 

Feasible 
region x1+x2=4 

x1 

x1=2 

x2=3 

x2 
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Adding Slack Variables 

Feasible 
region x1+x2=4 

x1 

x1=2 

x2=3 

x2 

x1=0 
x2=0 

x1=0 
s2=0 

s2=0 
s3=0 

s1=0 
s3=0 

s1=0 
x2=0 

x1 + s1 = 2 
x2 + s2 = 3 
x1+x2 +s3 = 4 
x1, x2, s1, s2, s3 t 0 
 
Moving along 
vertices: Decide 
which two variables 
are set to zero. 
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The Simplex Method - Definitions 

Nonbasic variable: a variable currently set to zero by 
the simplex method. 
Basic variable: a variable that is not currently set to 
zero by the simplex method. 
The values of basic variable is determined by the 
nonbasic variables 
A basis: The current set of basic variables. 
 
If a slack variable is nonbasic (i.e., is set to zero), 
the corresponding constraint is active. 
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The Simplex Method 
In two adjacent vertices, the basis is identical 
except for one member. 
Example: 

Feasible 
region x1+x2=4 

x1 

x1=2 

x2=3 

x2 Nonbasic 
set: {s1,s3} 

Basic set: 
{x1,x2,s2} 
 

Nonbasic 
set: {s2,s3} 

Basic set: 
{x1,x2,s1} 
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The Simplex Method 
At each step - swap a pair of basic and nonbasic variables 
 
The variable that enters the basic set is the one that 
yields the greatest improvement to the objective function. 

Feasible 
region x1+x2=4 

x1 

x1=2 

x2=3 

x2 Moving to a 
new vertex:  
x1 enters the 
basic set, s1 
leaves the 
basic set 
 

Current 
vertex 

Objective: z=15x1+10x2 



35 

The Simplex Method – more details 
Phase 1 (start-up): Initial vertex.  

Phase 2 (iterate):  

1. Can the current objective value be improved by 
swapping a basic variable? If not - stop. 

2. Select nonbasic variable to enter basic set:  
choose the nonbasic variable that gives the fastest 
rate of increase in the objective function value. 

3. Select the leaving basic variable – as we increase 
the chosen nonbasic variable, the value of the basic 
variables changes. Move the first one to become 
zero to the nonbasic set. (aka minimum ratio test). 

4. Update the equations to reflect the new basic 
feasible solution. 


