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Solving NP-hard Problems on 
Special Instances 

I can’t 

You can assume 

the input is xxxxx 

Solve it in 

poly- time 

 

No Problem, here is a 

poly-time algorithm 
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Solving NP-hard Problems on 
Special Instances 

We are going to see that some problems 
that are NP-hard on general 
instances, can be solved efficiently 
when the instance has some special 
characteristics.  

Similarly, some problems that are hard 
to approximate, can be approximated 
with better ratio for some instances. 



3 

Solving NP-hard Problems on 
Special Instances 

Special instance =>    
 
Structural properties => 
 
Can be exploited to solve the problem 
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Trees 
• An undirected graph is a tree if it is 

connected and contains no cycles. 
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Alternative Definitions of 
Undirected Trees 

a. G is a tree (connected and contains no cycles). 

b. G is cycles-free, but if any new edge is added to G, a 
circuit is formed. 

c. For every two vertices there is a unique simple path 
connecting them. 

d. G is connected, but if any edge is deleted from G, G 
becomes diconnected. 
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Solving NP-hard Problems on Trees 

Some NP-hard problems can be solved in 
linear time on trees. 

Intuition: if we consider a subtree of the 
input, rooted at v, the solution to the 
problem restricted to this subtree only 
interacts with the rest of the graph 
through v.  

v 
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Solving Maximum Independent Set on 
Trees 

• Input: A tree T=(V,E) 

• Problem: What is the maximum size subset S  V  
such that no pair of vertices in S is connected by 
an edge. 

For general graphs, this is an NP-hard problem. 
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Solving MIS on Trees 

• Idea: Consider an edge e=(u,v) in G. In any 
independent set S of G, at most one of u 
and v is in S. In trees, for some edges, it 
will be easy to determine which of the two 
endpoints will be placed in the IS. 
 

• A leaf in a tree is a node with degree 1.  
• Property: Every tree has at least one leaf. 

(why?) 



9 

Structural Property of  
MIS on Trees 

• Claim: If T=(V,E) is a tree and v is a leaf of 
the tree, then there exists a maximum-size 
independent set that contains v. 

• Proof: In Class. 

 

• The algorithm is based on that claim: 
Repeatedly identify a leaf, add it to the IS, 
remove it and the vertex adjacent to it (+ 
incident edges) from the tree (in fact, it 
might become a forest).  



10 

Maximum Weighted IS on Trees. 

Assume each vertex has a positive weight wv 
The goal is to find an independent set S such that 

the total weight vS wv is maximized. 
When for all v, wv=1, we get the regular MIS 

problem. 

For arbitrary weights this is a different problem.  
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center is optimal. 
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Maximum Weighted IS on Trees. 

In particular, it is not ‘safe’ anymore to include a 
leaf in the solution. 

 

Let e=(u,v) be an edge such that v is a leaf. If wv ≥ 
wu, then it is safe to include it, but if wv < wu 

then by including u we gain more weight but we 
block other vertices (neighbors of u) from 
entering the MIS. 

 
We will see a polynomial time   

 algorithm for trees,    
 based on dynamic programming. 

2 2 5 

v 
u 
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Dynamic Programming 
 

•A strategy for designing algorithms.  

•A technique, not an algorithm. 

•The word “programming” is historical and 
predates computer programming. 

•Use when problem breaks down into 
recurring small sub-problems. 
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Recursive Solutions 

• Divide a problem into smaller subproblems 

• Recursively solve subproblems 

• Combine solutions of subproblems to get 
solution to original problem. 

 

•In some cases, the same subproblems are 
repeated, (as subproblems of more than 
one bigger problem). 
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Recursive Solutions  
 

• Occasionally, straightforward recursive solution 
takes too much time 

•Solving the same subproblems over and over again 

•Example: Fibonacci Numbers 

F(0) = 1 ; F(1) = 1 

F(n) = F(n − 1) + F(n − 2) 

 

             fib(n) 

      if (n < 2)  return 1 

       return fib(n-1) + fib(n-2) 

 

How much time does this take?  

 

 

Exponential! 
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Recursive Solutions  
 

• But how many different subproblems are there, for  
finding fib(n) ?  

• The recursion takes so much time because we are 
recalculating solutions to subproblems again and again. 

•What if we store solutions to subproblems in a table, 
and only recalculated if the values are not in the table? 

 

 Fibonacci(n) 

 A[0] = 1; A[1] = 1 

 for i = 2 to n do A[i] = A[i-1] + A[i-2] 

 return A[n] 

 

1 1 2 3 5 8 … 

Only n-1 
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Dynamic Programming 

* Simple, recursive solution to a problem. 

* Straightforward implementation of recursion 
leads to exponential behavior, because of 
repeated subproblems. 

* Create a table of solutions to subproblems. 

* Fill in the table, in an order that guarantees 
that each time you need to fill in an entry, the 
values of the required subproblems have already 
been filled in. 
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Example: Most Profitable Tour 

• Assume that you need to travel from the bottom 
row of a chessboard to the top row. You can 
select your initial and final locations (anywhere 
on the bottom and top rows) 

• On each square (i,j) there are c(i,j) dollar-coins. 
 

4 3 12 7 1 

7 4 1 3 8 

3 18 4 7 13 

8 4 1 2 5 

6 9 5 3 4 

c(row, col) 

c(2,4)=2 

c(5,2)=3 

Start anywhere here 

stop anywhere here 
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Example: Most Profitable Tour 

• Whenever you visit a square you can pick up the 
money on it. 

• The amounts c(i,j) are known in advance.  
• From each square you can advance to the next row 

in all three directions (diagonally left, diagonally 
right, or straight forward)  

• You want to maximize your profit.    

 
4 3 12 7 1 

7 4 1 3 8 

3 18 4 7 13 

8 4 1 2 5 

6 9 5 3 4 

A possible tour. 
Profit = 40 
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Most Profitable Tour 

• Define q(i,j) as the maximum possible 
profit to reach square (i,j). 

• For any column j, q(1,j)=c(1,j). 

• For any column j  and i>1, 
q(i,j) = c(i,j)+max{q(i-1,j-1), q(i-1,j), q(i-1,j+1)}  

• Make sure you don’t leave the board: 
– if j<1 or j>n then q(i,j)= 0. 

• The goal: find maxj q(n,j) 
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Most Profitable Tour - 
Recursive solution: 

 main() 

    for j =1 to n 

    q[j]= maxProfit(n, j)  

return maxj q[j]. 

 

maxProfit(i, j)  

if j < 1 or j > n return 0  

if i = 1 return c(1, j)  

return max(maxProfit(i-1, j-1), maxProfit(i-1, j), 
maxProfit(i-1, j+1) ) + c(i,j) . 

 

• Time complexity: Exponential. 
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Most Profitable Tour: DP solution 

4 3 12 7 1 

7 4 1 3 8 

3 18 4 7 13 

8 4 1 2 5 

6 9 5 3 4 
17 13 10 7 9 

6 9 5 3 4 

20 35 17 17 22 

42 39 36 25 30 

46 45 51 43 31 

Input: Output: 

Time complexity: O(board size) 
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Dynamic Programming works! 

function maxProfit( )  //for the whole table! 
for j= 1 to n  
    q[1, j] = c(1, j)  
for i=1 to n  
   q[i, 0] = 0  
   q[i, n + 1] = 0  
for i=2 to n  
   for j= 1 to n  
      m = max(q[i-1, j-1], q[i-1, j], q[i-1, j+1])  
      q[i, j] = m + c(i, j)  
 

main() 
    maxProfit()  
return maxj q[n,j]. 
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Most Profitable Tour: DP solution 

Finding the actual path: 
• For each table (i,j) cell, remember which 

of the 3 cells (i-1,j-1), (i-1,j) , (i-1,j+1) 
contributed the maximum value 
 
 
 
 

 

46 45 51 43 31 

42 39 36 25 30 

20 35 17 17 22 

17 13 10 7 9 

6 9 5 3 4 

4 3 12 7 1 

7 4 1 3 8 

3 18 4 7 13 

8 4 1 2 5 

6 9 5 3 4 
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Example: Knapsack with bounded 
item values 

• Define A[i,p] = minimum weight of a subset 
of items 1,…,i whose total value is exactly p. 
(A[i,p] = ∞ if no such subset) 
i=1,…,n ; p=1, …, nB 
 

• Dynamic programming solution: 
– A[1,p] is easy to compute for all p. 

– A[i+1,p] = minimum of A[i,p] and  wi+1 + A[i,p-bi+1] 

• OPT = maximum p for which A[n,p] ≤ W 

• Running time?  
Number of cells in table A O(n2B) 
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Maximum Weighted IS on Trees. 

Assume each vertex has a positive weight wv 
The goal is to find an independent set S such that 

the total weight vS wv is maximized. 
When for all v, wv=1, we get the regular MIS 

problem. 

For arbitrary weights this is a different problem.  
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Picking the 
center is optimal. 
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Maximum Weighted IS on Trees. 

We will see a polynomial time algorithm for 
finding a MWIS on trees, based on 
dynamic programming. 

 What are the subproblems? 
 
We will construct subproblems by rooting the 

tree T at an arbitrary node r 
 

For a root r and any u r , parent(u) is the 
vertex preceding u on the path from r to u. 
The other neighbors of u are its children. 
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Maximum Weighted IS on Trees. 

* 

* 

r 

* 

The subproblems will be the problems on each of the 
subtrees rooted at children(r). 
Let Tu be the subtree of T rooted at u. 
The tree Tr is our original problem. 
If ur is a leaf then Tu consists of a single vertex. 
 

 

* = children(r) 
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Maximum Weighted IS on Trees. 

For each vertex u, we keep two values: 
 
Mout[u]: The maximum weight of an IS that does 
    not include u in the subtree Tu. 
 

Min[u]: The maximum weight of an IS that    
   includes u in the subtree Tu. 
 
Base case: For a leaf u, the subtree rooted at u 
contains the single vertex u, therefore: 
Mout[u] = 0 
Min[u] = wu 
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Maximum Weighted IS on Trees. 

For each vertex u that has children, the following 

recurrence defines the values of Mout[u] and Min[u]:  

Mout[u] = vchildren(u) max(Mout[v],Min[v]); 

Min[u] = wu + vchildren(u) Mout[v]; 

 

* 

* 

u 

* 

If u is out then 
the *’s can be in 
or out. If u is 
in, all *’s must 
be out. 

r 
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Maximum Weighted IS on Trees. 

The complete algorithm: 

Root the tree at a vertex r. 

For all vertices u of T in post-order 

    If u is a leaf: 
 Mout[u] = 0 
 Min[u] = wu 

    else 

 Mout[u] = vchildren(u) max(Mout[v],Min[v]); 

 Min[u] = wu + vchildren(u) Mout[v]; 

Return max(Mout[r],Min[r]); 

In post-order, a node 
is processed after all 
its children. 
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Maximum Weighted IS on Trees. 

2 
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Running example: 

Assume g is the 
root 
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a b c d e f g h i j k 
order 

Min 

Mout 
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Facility Location 

The location of a set of facilities should be 
determined. These facilities serve clients and we 
want them to be as close as possible to the 
clients. 

facilities can be… 

• factories, warehouse, retailers, servers, antennas. 

  objective: min sum (or average) of distances. 

• hospitals, police stations, fire-stations 

   objective: min maximal distance. 
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Facility Location 

Various questions: 

• Where should a facility be? 

• How many facilities should we build? 

• How should demand be allocated? 

Problems can be more complex (adding constraints) 

• warehouse capacities 

• each client can be allocated to only one warehouse 

• different costs (transportation, holding, operating, 
set-up) 

• distance / service time 
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FL Network Problems 

1. Covering: how many facilities should be built so 
that each customer is within a given distance 
from its nearest facility? 

 Example: fire stations. 
2. Center Models (k-center problem) 
    Where to build k facilities so as to minimize the 

max distance between facilities and a customer 
(between a customer and its nearest facility). 

3. Median Models: (k-median problem) 
   Minimize the sum of distances between customers 

and their nearest facility. 
   Example: warehouse problem 
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Covering a Network 

Covering: how many facilities should be built so that 
each customer is within a given distance from its 
nearest facility? 

Possible problems: 

- Each client has its own requirement, or all clients 
have the same requirement. 

- Facilities can be located only on vertices or any 
point in the network. 

Theorem: The network covering problem is NP-hard. 

Proof: In class. 
4 
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Covering a tree using a minimal 
number of facilities 

a 

f b 

e 

d 

c 

20 

14 

18 
12 

10 

When the network is a tree there is a simple algorithm 
to find an optimal solution to the covering problem.  

Input: A weighted tree, each vertex i needs to be 
within some distance si from a center. sa=10 ; sb=5 ; 
sc=3 ; sd=14 ; se=15 ; sf=8 
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Covering a tree. 

a 

f b 

e 

d 

c 

20 

14 

18 
12 

10 

Output: location of centers. Centers can be opened 
anywhere on the tree (also on edges). 

Goal: A cover with minimal number of centers. 

sa=10  
sb=5  
sc=3 
sd=14  
se=15 
sf=8 
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Covering a tree. 

a 

f b 

e 

d 

c 

20 

14 

18 
12 

10 

Output: location of centers. Centers can be opened 
anywhere on the tree (also on edges). 

Goal: A cover with minimal number of centers. 

sa=10  
sb=5  
sc=3 
sd=14  
se=15 
sf=8 

Step 1: attach a "string" of length si to vertex i. 

Mark all the vertices as non-processed (green). 

10 

5 

8 

15 

14 
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Covering a tree. 

a 

f b 

e 

d 

c 

20 

14 

18 
12 

10 

Example: select d for active leaf. Stretch the 
string towards f. Excess=4, update sf =14-10=4. 

sa=10  
sb=5  
sc=3 
sd=14  
se=15 
sf=8 

Step 2: pick an arbitrary leaf v, ‘stretch’ its string 
towards its neighboring vertex u. If it reaches u, 
su = min (su, excess). If it doesn’t reach u, add a 
facility. 

10 

5 

8 

5 3 

14 



40 

Covering a tree. 

a 

f b 

e c 

20 

14 

18 
12 

Step 3: remove v and the edge (u,v) from the graph 
(color them gray). 

If the graph is not empty, go to step 2. 

 

10 

5 

15 3 

4 

d 
10 
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Covering a tree. 

a 

f b 

c 

20 

14 

18 

10 

5 

3 

3 

v=e,  se=15,  Excess=3 

e 

12 

d 
10 

sf is reduced from 4 to 3 

15 
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Covering a tree. 

a 

f b 

c 

20 

14 

18 

10 

5 

3 

v=f.  sf=3,  No Excess. 

Place a center along f-b. 3 units from f 

e 

12 

d 
10 

3 17 
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Covering a tree. 

a 

f b 

c 

20 

14 

18 

10 

5 

3 

v=a.  sa=10,  No Excess. 

Check if a is already covered by any center (no) 

Place a center along a-b. 

e 

12 

d 
10 
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Covering a tree. 

a 

f b 

c 

20 

14 

18 

5 

3 

v=b.  sb=5,  No Excess. 

Check if b is already covered by any center (yes!) 

e 

12 

d 
10 
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Covering a tree. 

a 

f b 

c 

20 

14 

18 

3 

v=c.  sc=3,  No active neighbor 
Check if c is already covered by any center (no) 

can place a center anywhere along (c-b) within 
distance 3 from c 

The whole graph is covered (gray) using 3 centers. 

e 

12 

d 
10 
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In class exercise: find an optimal 
covering. 

b 

f d 

h 

g 

c 

10 

14 

11 
3 

7 8 
3 

sa=18,  sb=5,  sc=10,  sd=2,  
se=5,  sf=4,  sg=10,  sh=6 

a 

e 
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Covering a tree. 

Theorem: The algorithm produces an optimal 
solution. I.e., it uses the minimal possible 
number of centers. 

Proof: In class. 
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Partition Problems 

The partition problem:  
Input: a set of n numbers, A ={a1, a2,…, an}, 
such that aA a = 2B. 
Output: Is there a subset S’ of A such that 
aA’ a= B?  
Example: A={5, 5, 7,3, 1, 9, 10};   B=20 
A possible partition:  
A’={10,5,5},  A-A’={7,3,1,9} 
 
The Partition Problem is NP-hard. 
But what if the numbers are powers of 2? 
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Solving Partition for power-of 2 
Instances. 

Input: a set of n numbers, all are of the form 
2c, for some integer c, such that aA a = 2B. 
 
Output: Is there a subset S’ of A such that 
aA’ a= B?  
 
Example: A={32, 16, 16,8,4,2,2};   B=40 
A possible partition:  
A’={32,8},  A-A’={16,16,4,2,2} 
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Solving Partition for power-of 2 
Instances. 

An Algorithm: 
Sort the items such that a1≥ a2 ≥… ≥ an 

S1 = S2 = ;  
s1=s2=0; 
for i = 1 to n 
 if s1>s2 add ai to S2, s2+=ai 
 else add ai to S1, s1+=ai.  
if s1=s2 output “Partition exists”   
else output “No Partition”. 
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Solving Partition for power-of 2 
Instances. 

Example: 
64,32,16,16,4,2,1 – No partition 
64,32,16,16,4,2,1,1 – Partition. 
 
Just to make sure, the same method 

doesn’t work for arbitrary instances: 
62,34,32,32,16,16,1 – Partition (but not 

by the algorithm). 
 
Time Complexity: O(n log n) – for sorting 
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Solving Partition for Power-of 2 
Instances- Correctness Proof 

Theorem: There is a partition if and only if the 
algorithm finds one. 

Proof: 
1. Clearly, if the algorithm produces a partition, it 

exists.  
2. We prove that if the algorithm does not produce 

a partition, then a partition does not exist. 
 
Claim (simple property): Let A1, A2 be two sets of 

power-2 integers, such that each integer is  2v.  
Then aA1 a - aA2 a is a multiple of 2v. 
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Solving Partition for Power-of 2 
Instances- Correctness Proof 

Let aA a = 2B. 
Assume that the algorithm does not find a partition. 
Then at some point, one set has volume at least B. 
Consider the time when a set is about to become 
larger than B. At this time, some item, of size 2v, is 
considered, and the remaining volume in both bins is 
less than 2v. 

S1 

S2 

<2v 

<2v 

2v 

B 
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Solving Partition for Power-of 2 
Instances- Correctness Proof 

Assume that a partition exists. Then we can exchange 
subsets A1S1, A2S2 to fix the partition produced by 
the algorithm. Since all integers so far are  2v , The 
difference |A1-A2| is at least 2v (it is a non-zero multiple 
of 2v). Therefore at least one of the sets overflows.  
A contradiction!  B 

S1 

S2 

<2v 

<2v 

A1 

A2 

S1 

S2 

<2v 

<2v 

|A1-A2|≥2v 

|A1-A2|≥2v 
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Interval Graphs 

• An Interval Graph is the intersection graph 
of a set of intervals on the real line.  
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Interval Graphs 

1 

2 

3 

5 

7 

8 

6 

4 

Many resource- allocation 
problems can be modeled 
as theoretical interval 
graph problems.  

Some Problems that are NP-hard on general graphs can 
be solved efficiently on interval graphs. 

1 

2 3 

4 

8 
7 

6 

5 

Vertices: Intervals 

Edges: between 
intersecting intervals 
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Maximum Independent Set 

• Problem: get your money’s worth out of a 
amusement park 
– Buy a wristband that lets you onto any ride 

– Lots of rides, each starting and ending at 
different times 

– Your goal: ride as many rides as possible 
• Another, alternative goal that we don’t solve here: 

maximize time spent on rides 

• Welcome to the activity selection problem 
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Activity-Selection 

• Formally: 
– Given a set S = {a1, a2,…,an} of n activities 
 si = start time of activity i 
 fi = finish time of activity i 
– Find max-size subset A of non-conflicting 

activities 
 

 Assume (w.l.o.g) that f1  f2  …  fn 

1 

2 

3 

5 

7 

8 

6 

4 9 
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Activity-Selection – A DP solution  

 

Try each possible activity k. 

Recursively find activities ending before k starts and 
after k ends. 

Turn this into a DP 

1 

2 

3 

5 

7 

8 

6 

4 9 
0 10 
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Activity-Selection – A DP solution  

Define: 

Sij = {k : fi  sk < fk  sj} 

The subset of activities that can start after ai 
finishes and finish before aj starts. 

Remark: we add ‘dummy activities’ a0 with f0=0 

And an+1 with sn+1= 

Examples: S2,9 = {4,6,7} ; S1,8 = {2,4} ; S0,10 = S 

1 

2 

3 

5 

7 

8 

6 

4 9 
0 10 
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Activity-Selection – A DP solution  

Define: 

C[i,j]= maximum number of activities from Sij that 
can be selected.  

   0                                   if Sij =  

   max {c[i,k] + c[k,j] + 1}   if Sij  
C[i,j] = 

kSij 

In words: if Sij is not empty, then for any activity k in 
Sij we check what is the best we can do if k is 
selected. 

Based on this formula we can write a DP whose time 
complexity is O(n3) 
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Greedy Choice Property 

• The activity selection problem exhibits the greedy 
choice property: 
– Locally optimal choice  globally optimal 

solution 

• Theorem: if S is an activity selection instance 
sorted by finish time, then there exists an optimal 
solution A  S such that {a1}  A 

• Proof: Given an optimal solution B that does not 
contain a1, replace the first activity in B with a1. 
The resulting solution is feasible (why?), it has the 
same number of activities as B, and it includes a1. 
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Activity Selection: 
A Greedy Algorithm 

• So actual algorithm is simple: 
– Sort the activities by finish time 
– Schedule the first activity 
– Then schedule the next activity in sorted list 

which starts after previous activity finishes 
– Repeat until no more activities 

• Time complexity: O(n log n) 
• Intuition is even more simple: 

– Always pick the earliest to finish ride available 
at the time. 
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Back to MIS in Interval Graphs 

Property: Any Interval graph has an interval 
representation in which all interval endpoints are 
distinct integers and this representation is 
computable in poly-time. 

Proof: Not Here 

Therefore: Activity selection = MIS: Given an 
instance of MIS in an interval graph: 
1. convert it into an interval representation 

2. solve the activity selection problem 

Note: An independent set in the graph is equivalent 
to a feasible set of activities. 
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Graph families 

• Trees 

• Intersection graphs 

• Chordal graphs 

• Planar graphs, surface embedded graphs 

• Random graphs 

• Serial-parallel 

• Many many more….. 

 



Generalization – graphs similar to 
trees 

• What does it mean for a graph to be similar to a 
tree? 

• Easier: what does it mean for a graph to be similar 
to a path? 

• Many possible answers. Here is one. 

66 



Path decomposition 

• We can build a path using the following operations: 

• Start with an empty graph 

• Introduce a vertex 

• Introduce an edge 

• Forget a vertex (forever) 
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a b c d 

a b 

Introduce a 

Introduce b 

Introduce ab 

Forget a Introduce c 

Introduce bc 

b c 

Forget b Introduce d 

Introduce cd 

c d 



Path decomposition 

• This is called a path decomposition 

• Two decompositions of the same path: 
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a b c d 

a b b c c d 

a b c d 



Pathwidth 

• The width of the decomposition is defined as 
one less than the size of the largest bin. 
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a b b c c d 

a b c d 

Width 1 

Width 3 



Pathwidth 

• The pathwidth of a graph G is the minimum width 
of a path decomposition of G. 
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pathwidth 1 a b c d 

a b c d 

e f g 

a b 

e 

b c 

f 

c d 

g 

pathwidth 2 



Tree decomposition 

• Same as path decomposition 
– Start with an empty graph 

– Introduce a vertex 

– introduce an edge 

– Forget a vertex 

• Also allow: 
– Join two bags together 
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a b c d 

a b b c 

c 

e f f c 

c 

c 

Forget b 

Forget f 

Join c d 



Alternative Definition 

• Path decomposition P of G : a path of bags s.t.: 
– Every vertex of G is in some bag. 

– Every edge of G is in some bag. 

– For every vertex v of G, the bags containing v are 
connected in P. 

72 

a b c d 

e f g 

a b 

e 

b c 

f 

c d 

g 

G 

P 



Alternative Definition 

• Tree decomposition T of G : a tree of bags s.t.: 
– Every vertex of G is in some bag. 

– Every edge of G is in some bag. 

– For every vertex v of G, the bags containing v are 
connected in P. 
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a b c d 

e f g 

a b 

e 

b c 

f 

c d 

g 

G 

T 



Smooth Decompositions 

• A width-k tree decomposition T of G is smooth if: 
– Every bag has k+1 vertices 

– The intersection of every pair of adjacent bags has size k 

 

• G has a tree decomposition of width k if and only if 
G has a smooth tree decomposition of width k 
(easy proof, not here) 

 

• Easier to work with smooth decompositions 
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Treewidth 

• The treewidth of G is the smallest width of a tree 
decomposition of G. 
 
 

• What is the treewidth of a tree? 

• What is the treewidth of a clique of size k? 

75 



76 

Remember? 
Maximum Weighted IS on Trees. 

* 

* 

r 

* 

* = children(r) 

Mout[u]: The maximum weight of an IS that does 
    not include u in the subtree Tu. 
 

Min[u]: The maximum weight of an IS that    
   includes u in the subtree Tu. 
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Maximum Weighted IS on a tree 
decomposition 

For every bag B and every subset U of the vertices of B: 
 
M[B,U] = size of max. IS in the subgraph induced by all 
vertices in all bags in TB such that all vertices of U are in 
the IS, and vertices in B-U are not in the IS. 

B1 B2 B3 

B4 

B5 
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Maximum Weighted IS on a graph 
with small treewidth 

To compute M[B,U]: 
- For a leaf B: 

 M[B,U] = w(U) if U is an IS in B. (-∞ otherwise) 
 

- For internal node B: 
- If U is not an IS in B,  -∞ 

-  𝑤 𝑈 +  max
 𝑌
{𝑀 𝐵𝑖 , 𝑌 } − 𝑤(𝑈 ∩ 𝑌)𝐵𝑖 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝐵 

 

 
where Y is a subset of Bi’s vertices that agrees with U  
(i.e., Y∩B = U ∩ Bi) 
 
Running time on graph with treewidth k: O(n∙k2∙4k) 
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Maximum Weighted IS on a graph 
with small treewidth 

- If U is not an IS in B,  -∞ 

-  𝑤 𝑈 +  max
 𝑌
{𝑀 𝐵𝑖 , 𝑌 } − 𝑤(𝑈 ∩ 𝑌)𝐵𝑖 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝐵 

 

 
where Y is a subset of Bi’s vertices that agrees with U  
(i.e., Y∩B = U ∩ Bi) 

 
 
 
Example:   
 
M[B,{t,u,w}] = w(t) + w(u) + w(w)  
          + max{M[B1,{u,w}], M[B1,{u,w,x}]} – w(u) – w(w) 
          + max{M[B2,{t,u}], M[B1,{t,u,z}]} – w(t) – w(u) 

u,v,w,x t,u,v,z 

t,u,v,w 
B 

B1 B2 
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Treewidth 

- Many NP-hard problems can be solved by DP on a tree 
decomposition in polynomial time in n, but exponential 
in treewidth. 

- Computing the treewidth of a graph is NP-copmlete 
(also pathwidth). 

- 𝑂( log 𝑛)-approximation exists. 

- Some hard problems are still hard on graphs with small 
treewidth. 

- There are many similar notions of width: branch-width, 
carving-width, clique-width. 

 



Parametrized Complexity 

If L is NP-hard then there is no algorithm 
which solves all instances of L in 
polynomial time. 

What about the easy instances? 

How do we capture easy? 

Based on slides by Daniel Lokshtanov 



Example: Vertex Cover 

Input: G, k 
Question: ∃𝑆 ⊆ 𝑉 𝐺 , 𝑆 ≤ k such that 
every edge in G has an endpoint in S? 



Algorithms for Vertex Cover 

How fast can you solve VC? 
 

Naive: O(nkm). 

 

Can we do it in linear time for k=10? 

Or linear time for any fixed integer k? 

 

 



Pre-processing for Vertex Cover 

If any vertex v has degree ≥ k+1 it 
must be a part of any vertex cover of 
size ≤ k  
 

 Pick it in to solution. 

 

 Remove v and decrease k by 1. 



Pre-processing 

If no vertices of degree ≥ k+1  and ≥ k2 edges 
left say NO. 
 
k2 edges left. Remove vertices of degree 0, 
then there are 2k2 vertices left. 

 
In linear time, we made n ≤ 2k2 and m ≤ k2. 
 
Brute force now takes time O((2k2)kk2) 



Running time 

Total running time is: O(n+m + (2k2)kk) 

Linear for any fixed k  

Pretty slow even for k = 10  



Parameterized Complexity 
 

Every instance comes with a parameter k. 

 

 

The problem is fixed parameter tractable 
(FPT) if exists algorithm with running 

time f(k)nc
. 

Often k is solution size, but could be many other things 

So Vertex Cover parameterized by solution size is  
fixed parameter tractable. 



Kernelization 

For vertex cover we first reduced the 
instance to size O(k2) in polynomial time, 
then we solved the instance. 

 

Let’s give this approach a name – 
kernelization. 



Kernels 
A f(k)-kernel is a polynomial time 

algorithm that takes an 
instance I with parameter k 
and outputs an equivalent 
instance I’ with parameter k’ 
such that:  

|I’| ≤ f(k) 

k’ ≤ f(k) (but typically k’ ≤ k) 



Kernelizable = FPT 

A problem Π is solvable in f(k)nc time for some f. 

⇔ 

Π is decidable and has a g(k) kernel for some g. 

 

 

  Kernelize in nc and solve in time that depends only 
on k. 

 If n ≤ f(k), done (problem size already ≤ f(k)).  
If n ≥ f(k) solve in time f(k)nc = O(nc+1) and output 
a fixed size equivalent instance. 



Kernel: Point-line cover 

 

Input: n points in the plane, integer k 

Question: Can you hit all the points 
with k straight lines? 

 

Fact: Point-Line cover is NP-Complete.  

 



Take them out 

with only 3 

shots? 
Alien invasion! 



Reduction rules 
R1: If some line covers k+1 points use it 

(and reduce k by one). (why?) 

 

R2: If no line covers n/k points, say NO. 

 

If neither R1 nor R2 can be applied then n 
≤ k2. 

Kernel with k2 points! 



Kernelization 

Initially thought of as a technique for 
designing FPT algorithms. 

 

Interesting in its own right, because it 
allows us to analyze polynomial time pre-
processing. 



Branching 

A simple and powerful technique for designing FPT algorithms. 



Vertex Cover (again) 
Let uv ∈ E G .  
 
At least one of u and v must be in the solution. 

G has a vertex cover of size ≤ k 

↔ 
G\u has a vertex  

cover of size ≤ k-1 

G\v has a vertex  

cover of size ≤ k-1 

Recursive algorithm! 

OR 



Running time 

k 

k-1 k-1 

k-2 k-2 

k-3 k-3 

... 

Total running time is O(2knc) 

O(n + m + 2kk2c) if we run kernel first. 



3-Hitting Set 

 

Input: Family S1...Sm of sets of size 3 
over a universe U = v1...vn, integer k. 

Question: Is there a set X ⊆ U such 
that |X|≤ k  and every set Si 
intersects with X? 

Parameter: k 

 



Branching for 3-Hitting Set 

Pick a set Si = {va,vb,vc}.  
 
At least one of them must be in the solution X. 
 
Branch on which one, decrease k by one. 
 
Remove all sets that are hit. 
 
Total running time: O(3k ⋅ (n+m)) 



Even Better Branching for Vertex 
Cover 

If all vertices have degree ≤ 2 then  
 
G is a set of paths and cycles,  
 
so we can solve Vertex Cover in polynomial 
time. 

(Going below 2k) 



Even Better Branching 
Let v ∈ V G , degree(v) ≥ 3.  
 
If v is not in the solution, then N(v) is. 

G has a vertex cover of size ≤ k 

↔ 
G\v has a vertex  

cover of size ≤ k-1 

G\N(v) has a vertex  

cover of size  
≤ k-degree(v) 

Recursive algorithm! 

OR 



Running time 
T(n, k) = Running time on a graph on at most n vertices  
  and parameter at most k. 

 

N(k) =  Number of nodes in a recursion tree if parameter 
  is at most k. 

 

L(k) =   Number of leaves in a recursion tree  if parameter 
  is at most k. 

 

T(n, k)   = O(N(k) ⋅ (n+m))  
  = O(L(k) ⋅ (n+m)) 



Recurrence 

L(k) ≤  
L(k-1) + L(k-3) 

1 

If exists vertex of degree ≥3. 

otherwise. 

Will prove L(k) ≤ 1.47k by 

induction. 

  
L(k)  ≤ L(k-1) + L(k-3) 

 ≤ 1.47k-1 + 1.47k-3 

 ≤ 1.47k ⋅ (1.47-1 + 1.47-3) 

 ≤ 1.47k 

(recurrence) 

(induction hypothesis) 

(choice of 1.47) 



Running time analysis 

Number of leaves in the recursion tree is at most 
1.47k, so total running time is O(1.47k(n+m)). 

Fastest known algorithm for Vertex Cover has  

running time ≈ 1.27k [Chen, Kanj, Xia, 2010]. 

Graphs with k=400 can be solved in practice using FPT  

branching techniques [Cheetham et al., 2003] 



Alternative Parameters 

 

So far we have only seen the solution 
size as the parameter.  

 

Often other parameters also make 
sense, or even make more sense than 
solution size. 

 



k-Coloring 

A valid k-coloring is a funcion f : V(G)  {1...k} such 
that no edge has same colored endpoints. 

 

Input: G, k 

Question: Does G have a valid k-coloring? 

Parameter: k 
 

Cannot have FPT algorithm – NP-hard for k=3! 



k-Coloring parameterized by VC 

 
Input: G, integer k, set X ⊆ V(G) such that X is a 
 vertex cover of G, integer x = |X|.  

Question: Does G have a proper k-coloring? 

Parameter: x 
 

FPT now means f(x)nO(1). 



k-Coloring parameterized by VC 

X 

I = V(G) \ X 

If x+1 ≤ k say YES 

Thus, assume k ≤ x. 

Branch on kx colorings of X. 

For each guess, color I greedily. 

Total running time: O(kx ⋅ (n+m)) = O(xx ⋅ (n+m)). 



Dynamic Programming 



Steiner Tree 

Input: Graph G, vertex set Q, integer k. 

Question: Is there a set S of size at 
most k such that Q ⊆ S and G[S] is 
connected? 

Parameter: |Q| 

Will see 3|Q|nO(1) time algorithm. 



DP for Steiner Tree 

T[v,p,Z] = 

⊆ Q 

≤ k, solution size 

True if there exists a set S of size at 

most p such that that Z ∪ {v}  ⊆ S and 

G[S] is connected. 

We want to know the minimum p such that 

T[v,p,Q] = true, for some v ∈ V(G) 

Table size is 2|Q|kn 

Vertex 



Recurrence for Steiner Tree 

v 

Z 

Z1 
Z \ Z1 



Recurrence for Steiner Tree 

T[v,p,Z] =   
T[v,p1,Z1]

+ T[v,p − p1 + 1,Z ∖ Z1]
∅⊂𝑍1⊂𝑍

 

1< 𝑝1<𝑝

 



Recurrence for Steiner Tree 

v 

Z 

v’ 



Recurrence for Steiner Tree 

T[v,p,Z] = 

  
T[v,p1,Z1]

+ T[v,p − p1 + 1,Z ∖ Z1]
∅⊂𝑍1⊂𝑍

 

1< 𝑝1<𝑝

 

 T[u,p−1,Z] 

u∈N(v)

 



Steiner Tree, Analysis 

Table size: 2|Q|nk 
 

Time to fill one entry: O(k2|Q| + n) 

 

Total time: O(4|Q|nk2 + 2|Q|n2k)  



Independent Set 

Is Independent Set FPT? With what parameter?  

 

Yes, we saw a O(4k∙n) time algorithm, k = treewidth.  
 

Many other problems are FPT in treewidth. 


