
1

Advanced Algorithms

Problem solving Techniques.

Divide and Conquer

 הפרד ומשול

2

Divide and Conquer

• A method of designing algorithms that
(informally) proceeds as follows:

• Given an instance of the problem to be solved,
split it into several, smaller, sub-instances (of
the same problem);
independently solve each of the sub-instances
and then combine the sub-instance solutions so
as to yield a solution for the original instance.

3

Divide and Conquer
Question: By what methods the sub-instances

are independently solved ?

Answer: By the same method, till we have a

constant size problem that can be solved in
constant time.

This simple answer is central to the concept of

Divide-&-Conquer algorithms, and is a key
factor in measuring their efficiency.

4

Divide and Conquer: Outline

• Divide the problem into a number of sub-
problems (similar to the original problem but
smaller);

• Conquer the sub-problems by solving them
recursively (if a sub-problem is small enough,
just solve it in a straightforward manner).

• Combine the solutions for the sub-problems
into a solution for the original problem

5

Example 1: Binary Search

• A directory contains a set of names and a telephone
number is associated with each name.

• The directory is sorted by alphabetical order of
names. It contains n entries each having the form
[name, number]

• Given a name and the value n, the problem is to find
the number associated with the name

• We assume that any given input name actually does
occur in the directory.

6

Binary Search

The Divide & Conquer algorithm for this problem is
based on the following:

Given a name, say X, there are 3 possibilities:

X occurs in the middle of the names array

 Or

X occurs in the first half of the names array.

 Or

X occurs in the second half of the names array.

7

Binary Search

function binsearch (X : name; start, finish : int)

begin middle := (start+finish)/2;

 if name(middle)=x return number(middle);

 else if X < name(middle) return
binsearch(X,start,middle-1);

 else [X > name(middle)] return
binsearch(X,middle+1,finish);

 end if;

end search;
middle

region of answer

8

Binary Search
• Divide the n-element array into a middle element

and two sub-arrays of n/2 (-1) elements.

• Conquer: Consider the middle element, if name
not found, ignore one sub-array, and solve the
problem for the other sub-array using Binary
search

• Combine: Empty.

9

Binary Search - Performance Analysis

• T(1) = c1 (constant time)

• for n > 1, we have

2cT(n/2)T(n) 








2

1

cT(n/2)

c
T(n)

if n = 1

if n > 1

10

Example 2: Merge Sort

• Sorting problem: Given an array, order
the elements according to some order
(say increasing value)

• Merge sort: A sort algorithm that splits
the elements to be sorted into two
groups, recursively sorts each group, and
merges them into a final, sorted
sequence.

11

Merge Sort
• Divide the n-element sequence to be sorted into

two subsequences of n/2 elements each

• Conquer: Sort the two subsequences recursively
using merge sort

• Combine: merge the two sorted subsequences to
produce the sorted answer

• recursion base case: if the subsequence has only
one element, then do nothing.

12

Merge-Sort(A,p,r)
sorts the elements in the sub-array A[p..r] using divide

and conquer

• Merge-Sort(A,p,r)
– if p  r, do nothing

– if p < r then

• Merge-Sort(A,p,q)

• Merge-Sort(A,q+1,r)

• Merge(A,p,q,r)

• Start by calling Merge-Sort(A,1,n)

• Do we need an example?

 r)/2(pq 

13

Performance Analysis

Known: two sorted arrays of sizes n1 and n2 can
be merged in time c(n1+n2).

Let T(n) denote the time it takes to sort an n-
elements array.

• T(1) = O(1)

• for n > 1,

cn2T(n/2)T(n) 








cn2T(n/2)

O(1)
T(n)

if n = 1

if n > 1

Merging
time

14

• Music site tries to match your song preferences with
others.

– You rank n songs.

– Music site consults database to find people with
similar tastes.

• Similarity metric: number of inversions between two
rankings.

– My rank: 1, 2, …, n. Your rank: a1, a2, …, an.

– Songs i and j inverted if i < j, but ai > aj.

• Brute force: check all (n2) pairs i and j.

Example 3: Counting Inversions

You

Me

1 4 3 2 5

1 3 2 4 5

A B C D E

Songs

Inversions

3-2, 4-2

16

Counting Inversions:
Divide-and-Conquer

– Divide: separate list into two pieces.

– Conquer: recursively count inversions in each half.

– Combine: count inversions where ai and aj are in different
halves, and return sum of three quantities.

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

Combine: ??? 9 blue-green inversions

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

17

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine

• Combine: count blue-green inversions
– Assume each half is sorted.

– Count inversions where ai and aj are in different
halves.

– Merge two sorted halves into sorted whole.

•

Count: O(n)

Merge: O(n)

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 25 16 17

     )(2/2/)(nOnTnTnT 

6 3 2 2 0 0

Merge-
and-
Count

18

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

auxiliary array

Total:

i = 6

19

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

i = 6

two sorted halves

2 auxiliary array

Total: 6

6

20

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

2 auxiliary array

i = 6

Total: 6

6

21

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

2 3 auxiliary array

i = 6

Total: 6

6

22

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

2 3 auxiliary array

i = 5

Total: 6

6

23

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 2 3 auxiliary array

i = 5

Total: 6

6

24

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 2 3 auxiliary array

i = 4

Total: 6

6

25

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 2 3 auxiliary array

i = 4

Total: 6

6

26

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 2 3 auxiliary array

i = 3

Total: 6

6

27

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 2 3 auxiliary array

i = 3

Total: 6 + 3

6 3

28

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 2 3 auxiliary array

i = 3

Total: 6 + 3

6 3

29

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 14 2 3 auxiliary array

i = 3

Total: 6 + 3

6 3

30

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 14 2 3 auxiliary array

i = 2

Total: 6 + 3

6 3

31

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 14 2 3 16 auxiliary array

i = 2

Total: 6 + 3 + 2

6 3 2

32

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 14 2 3 16 auxiliary array

i = 2

Total: 6 + 3 + 2

6 3 2

33

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 14 2 3 16 17 auxiliary array

i = 2

Total: 6 + 3 + 2 + 2

6 3 2 2

34

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 14 2 3 16 17 auxiliary array

i = 2

Total: 6 + 3 + 2 + 2

6 3 2 2

35

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 14 2 3 18 16 17 auxiliary array

i = 2

Total: 6 + 3 + 2 + 2

6 3 2 2

36

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 14 2 3 18 16 17 auxiliary array

i = 1

Total: 6 + 3 + 2 + 2

6 3 2 2

37

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 14 2 3 18 19 16 17 auxiliary array

i = 1

Total: 6 + 3 + 2 + 2

6 3 2 2

38

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 14 2 3 18 19 16 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2

first half exhausted

6 3 2 2

39

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 14 2 3 18 19 23 16 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2 + 0

6 3 2 2 0

40

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 14 2 3 18 19 23 16 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2 + 0

6 3 2 2 0

41

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 14 2 3 18 19 23 25 16 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2 + 0 + 0

6 3 2 2 0 0

42

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

Merge and count step.

 Given two sorted halves, count number of inversions where ai and aj are in

different halves.

 Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 14 2 3 18 19 23 25 16 17 auxiliary array

i = 0

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13

6 3 2 2 0 0

43

Counting Inversions: Implementation

• Pre-condition of [Merge-and-Count]: A and B are
sorted.

• Post-condition of [Sort-and-Count]: L is sorted.

Sort-and-Count(L) {

 if list L has one element

 return 0 and the list L

 Divide the list into two halves A and B

 (rA, A)  Sort-and-Count(A)

 (rB, B)  Sort-and-Count(B)

 (r, L)  Merge-and-Count(A, B)

 return r = rA + rB + r and the sorted list L

}

44

D&C Performance Analysis

The running time of a Divide & Conquer algorithm
is affected by 3 criteria:

1. The number of sub-instances (a) into which a
problem is split.

2. The ratio of initial problem size to sub-
problem size (b).

3. The number of steps required to divide the
instance (D(n)), and to combine sub-solutions
(C(n)).

45

General Recurrence for
Divide-and-Conquer

• If a divide and conquer scheme divides a problem of
size n into a sub-problems of size at most n/b.
Suppose the time for Divide is D(n) and time for
Combination is C(n), then

• How do we bound T(n)?








C(n)D(n)aT(n/b)

Θ(1)
T(n)

if n < c

if n  c

46

The Master Theorem

• Let

 where a  1 and b  1

• we will ignore ceilings and floors (all
absorbed in the O or  notation)








f(n)aT(n/b)

Θ(1)
T(n)

if n < c

if n  c

47

The Master Theorem:
A relaxed version for f(n)= (nk)

• As special cases, when f(n)= (nk) we get the

following:

• If a>bk then

• If a=bk then

• If a<bk then

)Θ(nT(n) alogb

logn)Θ(nT(n) k

)Θ(nT(n) k

48

The Master Theorem

Examples (in class)

1. T(n) = T(2n/3) + 1 then T(n) = (log n)

2. T(n) = 9T(n/3) + n, then T(n) = (n2)

More examples: Back to merge sort and
binary search:

• MS:

• BS: T(n)= T(n/2) + c

cn2T(n/2)T(n) 

49

Figure 4.7 in CLRS

Counting…..

• num. of nodes at depth i is 𝑎𝑖

• depth of tree is log𝑏 𝑛

• num. of leaves: 𝑎log𝑏 𝑛 = 2
log 𝑎

log 𝑛

log 𝑏 = 𝑛log𝑏 𝑎

• so 𝑇 𝑛 = 𝜃 𝑛log𝑏 𝑎 + 𝑎𝑗𝑓(𝑛 𝑏𝑗)𝑗

50

51

The Master Theorem (general f)

• If for some constant  > 0

 then

• If then

• If for some constant  > 0 and if

af(n/b)  cf(n) for some constant c < 1 and all

sufficiently large n, then T(n) =(f(n))

)O(nf(n) εalogb 


)Θ(nT(n) alogb

)Θ(nf(n) alogb logn)Θ(nT(n) alogb

)(nf(n) εalogb 


Intuition: Compare f(n) to nlogba

52

Example 4: Integer Multiplication

• Used extensively in Cryptography:
– public-key encryption/decryption uses multiplication of huge

numbers

• Standard multiplication
on two n-bit numbers takes
(n2) operations.

• Note: standard addition
takes O(n)

 ************

53

Can We do Better?

• Divide and Conquer (assume X,Y given in binary)

c d

a b X =

Y =

bdbc)2(adac2XY

dc2Y b,a2X
n/2n

n/2n/2





• MULT(X,Y)

– if |X| = |Y| = 1 then return XY

– else return

  d)MULT(b, 2c)MULT(b, d)MULT(a, c)2MULT(a, n/2n 

54

Complexity

• By the Master Theorem:

• Not an improvement over standard
multiplication.








Θ(n)4T(n/2)

1
T(n)

if n = 1

if n > 1

 2nΘT(n) 

55

Can we do better?
(Karatsuba 1962)

• Gauss Equation
bdacd)b)(c(abcad 

• MULT(X,Y)

– if |X| = |Y| = 1 then return XY

– else
• A1 = MULT(a,c);

• A2 = MULT(b,d);

• A3 = MULT((a+b),(c+d));

• Return   2
n/2

213
n

1 A 2AAA 2A 

bdbc)2(adac2XY n/2n 

:Recall

56

Complexity

• By the Master Theorem:








Θ(n)3T(n/2)

1
T(n)

if n = 1

if n > 1

   1.583log nΘnΘT(n) 2 

57

• Dot product: Given two length n vectors a and b, compute
c = a  b.

• Grade-school: (n) arithmetic operations.

• Remark: Grade-school dot product algorithm is optimal.

Example 5: Matrix Multiplication



a  b  a
i
b
i

i1

n





a  .70 .20 .10 

b  .30 .40 .30 

a  b  (.70  .30)  (.20  .40)  (.10  .30)  .32

Section 28.2 (or 4.2) in CLRS

58

• Given two n-by-n matrices A and B, compute C = AB.
• Grade-school: (n3) arithmetic operations.

• Q. Is grade-school matrix multiplication algorithm
optimal?

Matrix Multiplication



cij  a
ik
b
kj

k1

n





c
11

c
12

c
1n

c
21

c
22

c
2n

c
n1

c
n2

c
nn





















a
11

a
12

a
1n

a
21

a
22

a
2n

a
n1

a
n2

a
nn





















b
11

b
12

b
1n

b
21

b
22

b
2n

b
n1

b
n2

b
nn





















.59 .32 .41

.31 .36 .25

.45 .31 .42



















.70 .20 .10

.30 .60 .10

.50 .10 .40

















 

.80 .30 .50

.10 .40 .10

.10 .30 .40

















59

Block Matrix Multiplication



C
11

  A11 B11  A12 B21 
0 1

4 5









 

16 17

20 21









 

2 3

6 7









 

24 25

28 29









 

152 158

504 526













152 158 164 170

504 526 548 570

856 894 932 970

1208 1262 1316 1370



















 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15



















 

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31



















C11
A11 A12 B11

B21

60

Matrix Multiplication: Warmup

• To multiply two n-by-n matrices A and B:

– Divide: partition A and B into ½n-by-½n blocks.

– Conquer: multiply 8 pairs of ½n-by-½n matrices,
recursively.

– Combine: add appropriate products using 4 matrix
additions.



C11  A11  B11   A12  B21 
C12  A11  B12   A12  B22 
C21  A21  B11   A22  B21 
C22  A21  B12   A22  B22 



C11 C12

C21 C22









 

A11 A12

A21 A22









 

B11 B12

B21 B22













T (n)  8T n /2 
recursive calls

  (n2)

add, form submatrices

 T (n) (n3)

61

Fast Matrix Multiplication

• Key idea. multiply 2-by-2 blocks with only 7
multiplications.

– 7 multiplications, 14 2-by-2 elements.

– 18 = 8 + 10 additions and subtractions.



P1  A11  (B12  B22)

P2  (A11  A12)  B22

P3  (A21  A22)  B11

P4  A22  (B21  B11)

P5  (A11  A22)  (B11  B22)

P6  (A12  A22)  (B21  B22)

P7  (A11  A21)  (B11  B12)



C11  P5  P4  P2  P6

C12  P1 P2

C21  P3  P4

C22  P5  P1 P3  P7



C11 C12

C21 C22









 

A11 A12

A21 A22









 

B11 B12

B21 B22











62

Fast Matrix Multiplication

• To multiply two n-by-n matrices A and B: [Strassen 1969]

– Divide: partition A and B into ½n-by-½n blocks.

– Compute: 14 ½n-by-½n matrices via 10 matrix additions.

– Conquer: multiply 7 pairs of ½n-by-½n matrices, recursively.

– Combine: 7 products into 4 terms using 8 matrix additions.

• Analysis.

– Assume n is a power of 2.

– T(n) = # arithmetic operations.



T (n)  7T n /2 
recursive calls

 (n2)

add, subtract

 T (n) (nlog2 7) O(n2.81)

63

Fast Matrix Multiplication: Practice

• Implementation issues.
– Sparsity.
– Caching effects.
– Numerical stability.
– Odd matrix dimensions.
– Crossover to classical algorithm around n = 128.

• Common misperception. “Strassen is only a theoretical
curiosity.”
– Apple reports 8x speedup on G4 Velocity Engine when n
 2,500.

– Range of instances where it's useful is a subject of
controversy.

64

Fast Matrix Multiplication: Theory
Q. Multiply two 2-by-2 matrices with 7 scalar mult?



(nlog3 21) O(n 2.77)



O(n 2.7801)



(n log2 6) O(n 2.59)

(nlog2 7) O(n 2.807)A. Yes! [Strassen 1969]

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
 A. Impossible. [Hopcroft and Kerr 1971]

Q. Two 3-by-3 matrices with 21 scalar multiplications?
 A. Also impossible.

  Two 48-by-48 matrices with 47,217 scalar mult.

  December, 1979.



O(n 2.521813)



O(n 2.521801)  January, 1980.

 A year later.



O(n 2.7799)

  Two 20-by-20 matrices with 4,460 scalar mult.



O(n 2.805)

• Best Known: O(n2.373) [Vassilevska Williams, 2011]

• Conjecture: O(n2+) for any  > 0.

 Record holder 1987-2010: O(n2.376) [Coppersmith-Winograd, 1987].

65

Example 6: Finding the Convex Hull of a
set of points (2-dim).

• Given a set A of n points in the plane, the convex hull of A
is the smallest convex polygon that contains all the points
in A.

• For simplicity, assume no two points have the same x or y
coordinate. (otherwise rotate a bit..)

• The output: set of CH vertices in clockwise order.

A set S of points is
convex if for any two
points x,y∈S, any point
on the line connecting
x and y is also in S.

66

Example 6: Finding the Convex Hull of a
set of points.

Intuition:
• Each point is a nail sticking out from a board.
• Take a rubber band and lower it over the nails, so as to

completely encompass the set of nails.
• Let the rubber band naturally contract.
• The rubber band gives the edges of the convex hull of the

set of points.
• Nails corresponding to a change in slope of the rubberband

represent the extreme points of the convex hull.

67

Convex Hull – D&C algorithm.

Let A = {p1, p2, . . . , pn}. Denote the convex hull of A by

CH(A).

1. Sort the points of A by x-coordinate.

2. If n3, solve the problem directly. Otherwise, apply

divide-and-conquer as follows.

3. Divide A into two subsets: A = L  R.

4. Find CH(L), the convex hull of L.

5. Find CH(R), the convex hull of R.

6. Combine the two convex hulls.

68

Convex Hull – Divide & Conquer

 Split set into two, compute convex hull of both, combine.

69

Convex Hull – Divide & Conquer

70

Convex Hull – Divide & Conquer

71

Convex Hull – Divide & Conquer

72

Convex Hull – Divide & Conquer

1 2 4 5 8 9 11 12
Solution

order:

73

Convex Hull – Divide & Conquer

10 3 13 6

74

Convex Hull – Divide & Conquer

14 7

75

Convex Hull – Divide & Conquer

15

76

Combine CH(B) and CH(C) to get
CH(A)

1. We need to find the “upper bridge” and the “lower
bridge” that connect the two convex hulls.

2. The lower bridge is the edge vw, where v CH(L) and
wCH(R), such that all other vertices in CH(L) and in
CH(R) are above vw.

3. Suffices to check if both neighbors of v in CH(L) and
both neighbors of w in CH(R) are all above vw.

77

Combine CH(B) and CH(C) to get
CH(A)

4. Find the lower bridge as follows:

 (a) v = the rightmost point in CH(B);

 w = the leftmost point in CH(C).

 (b) Loop

 if counterclockwise neighbor(w) lies below the line vw
 then w = counterclockwise neighbor(w)

 else if clockwise neighbor(v) lies below the line vw
 then v = clockwise neighbor(v)

 (c) vw is the upper bridge.

5. Find the upper bridge similarly.

78

Convex Hull – Divide & Conquer

Combine two convex hulls: Finding the lower bridge.

v

w

79

Convex Hull – Divide & Conquer

v

w

80

Convex Hull – Divide & Conquer

v

w

81

Convex Hull – Divide & Conquer

v

w

82

Convex Hull – Divide & Conquer

v
w

83

Convex Hull – Divide & Conquer

v
w

84

Convex Hull – Divide & Conquer

v

w

85

Convex Hull – Divide & Conquer

v

w

86

Convex Hull – Divide & Conquer

v

w

87

Convex Hull – D&C algorithm.

Analysis:

1. Preprocessing: O(n log n)

2. Recursion: Each of the Divide and Combine steps takes

O(n): When calculating the bridges, each point is

considered at most once, O(1) for each point.

Therefore:

Implying T(n)=O(n log n) (like mergesort)

Can we do better? Maybe not by D&C?








cn2T(n/2)

O(1)
T(n)

n  3

n > 3

88

Convex Hull – lower bound.
Theorem: Any algorithm for calculating convex hull takes

(n log n) time.

Proof: Given n positive numbers, x1 x2 ..., xn, correspond to
each number xi the point (xi , xi

2), and find a convex hull
of the n points.

These points all lie on the parabola y = x 2. The convex hull
of this set consists of a list of the points sorted by x-
coordinate.

Therefore, if we could find a convex hull in time T(n) then
we could sort in time T(n)+O(n).

It is known that sorting takes (n log n), therefore, this
lower bound applies also to finding the convex hull.

89

Example 7: Closest Pair Problems

• Input:
– A set of points P = {p1,…, pn} in two dimensions

• Output:
– The pair of points pi, pj with minimal Euclidean

distance between them.

90

Euclidean Distances

1x 2x

2y

1y  11, yx

 22 , yx

       221

2

212211 ,, yyxxyxyx 

91

Closest Pair Problem



92

Closest Pair Problem

• O(n2) time algorithm is easy
• Assumptions:

– No two points have the same x-coordinates
– No two points have the same y-coordinates
(otherwise rotate a bit)

• How do we solve this problem in one-dimension (this is
very easy)?
– Sort the numbers and scan from left to right looking

for the minimum gap
• Let’s apply divide-and-conquer to the 1-dim problem:

93

D&C for 1-dim closest pair

– Divide
• t = n/2

– Conquer
• 1 = Closest-Pair(A,1,t)

• 2 = Closest-Pair(A,t+1,n)

– Combine
• Return min(1, 2, A[t+1]-A[t])

Time: T(n)=2T(n/2)+c  T(n)=(n)

94

Divide and Conquer: 2-dim

• We will do better than O(n2).

• Intuitively, there is no need to really compare
each pair.

• Divide and conquer can avoid it.

95

Divide and Conquer for the Closest
Pair Problem

Divide by x-median

96

Divide

L R

Divide by x-median

97

Conquer

Conquer: Recursively solve L and R

L R

1

2

98

Combine I

Take the smaller one of 1 , 2 :  = min(1 , 2)

L R



2

99

Combine II
but maybe there is a point in L and a point in R whose distance is

smaller than ?

Take the smaller one of 1 , 2 :  = min(1 , 2)

L R



2

100

Combine II

• If the answer is “no” then we are done.

• If the answer is “yes” then the closest such
pair forms the closest pair for the entire set

• How do we determine this?

101

Combine II
Is there a point in L and a point in R whose distance is smaller than ?

L R



 

102

Combine II
Is there a point in L and a point in R whose distance is smaller than 

?

We need to
consider only
the 2-narrow
band. We will
show that it can
be done in O(n)
time.

L R

 

Denote this set by S.
Assume Sy is a sorted list of

S by y-coordinate.

103

Combine II

• There exists a point in L and a point in R whose
distance is less than  if and only if there exist
two points in S whose distance is less than 
(why?).

• If S is the whole thing, did we gain anything?

• Amazing claim: If s and t in S have the property
that ||s-t|| < , then s and t are within 8
positions of each other in the sorted list Sy.

105

Combine II
Is there a pair of points, one in L and one in R, whose distance is

smaller than ?

L R

2/

There is at most one
point in each box.

Top half of circle
intersects 8 boxes.

In fact, can prove less
than 8.

2/

106

D&C Algorithms for Closest-Pair
– Preprocessing:

• Construct Px and Py as sorted-list by x- and y-coordinates

– Divide
• Construct L, Lx , Ly and R, Rx , Ry

– Conquer
• Let 1= Closest-Pair(L, Lx , Ly)

• Let 2= Closest-Pair(R, Rx , Ry)

– Combine
• Let  = min(1 , 2)

• Construct S and Sy

• For each point in Sy, check each of the next 8 points in Sy.

• If the distance is less than , then update  to be the new
distance

107

Closest-Pair - Time Analysis

• Preprocessing: O(n log n) time

• Divide: O(n)

• Conquer: 2T(n/2)

• Combine: O(n)

T(n)=2T(n/2)+O(n)  O(n log n) time

