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Advanced Algorithms 
 

Problem solving Techniques. 

Divide and Conquer 

 הפרד ומשול
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Divide and Conquer 

• A method of designing algorithms that 
(informally) proceeds as follows:  

• Given an instance of the problem to be solved, 
split it into several, smaller, sub-instances (of 
the same problem);  
independently solve each of the sub-instances 
and then combine the sub-instance solutions so 
as to yield a solution for the original instance.  
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Divide and Conquer 
Question: By what methods the sub-instances 

are independently solved ?  
 
Answer: By the same method, till we have a 

constant size problem that can be solved in 
constant time. 

 
This simple answer is central to the concept of 

Divide-&-Conquer algorithms, and  is a key 
factor in measuring their efficiency.  
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Divide and Conquer: Outline 

• Divide the problem into a number of      sub-
problems (similar to the original problem but 
smaller); 

• Conquer the sub-problems by solving them 
recursively (if a sub-problem is small enough, 
just solve it in a straightforward manner). 

• Combine the solutions for the sub-problems 
into a solution for the original problem 
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Example 1: Binary Search 

• A directory contains a set of names and a telephone 
number is associated with each name.  

• The directory is sorted by alphabetical order of 
names. It contains n entries each having the form 
[name, number]  

• Given a name and the value n, the problem is to find 
the number associated with the name 

• We assume that any given input name actually does 
occur in the directory. 
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Binary Search 

The Divide & Conquer algorithm for this problem is 
based on the following: 

Given a name, say X, there are 3 possibilities: 
 

X  occurs in the middle of the names array  

     Or  

X  occurs in the first half of the names array.  

     Or  

X occurs in the second half of the names array.  
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Binary Search 

function binsearch (X : name; start, finish : int)  

begin middle := (start+finish)/2;  

 if name(middle)=x  return number(middle);  

 else if X < name(middle) return     
binsearch(X,start,middle-1);  

     else [X > name(middle)] return 
binsearch(X,middle+1,finish);  

 end if;  

end search;  
middle 

region of answer 
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Binary Search 
• Divide the n-element array into a middle element 

and two sub-arrays of n/2 (-1) elements. 

• Conquer: Consider the middle element, if name 
not found, ignore one sub-array, and solve the 
problem for the other sub-array using Binary 
search 

• Combine: Empty. 
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Binary Search - Performance Analysis 

• T(1) = c1 (constant time) 

• for n > 1, we have  
 

2cT(n/2)T(n) 








2

1

cT(n/2)

c
T(n)

if n = 1 

if n  > 1 
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Example 2: Merge Sort 

• Sorting problem: Given an array, order 
the elements according to some order 
(say increasing value) 

• Merge sort: A sort algorithm that splits 
the elements to be sorted into two 
groups, recursively sorts each group, and 
merges them into a final, sorted 
sequence.  
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Merge Sort 
• Divide the n-element sequence to be sorted into 

two subsequences of n/2 elements each 

• Conquer: Sort the two subsequences recursively 
using merge sort 

• Combine: merge the two sorted subsequences to 
produce the sorted answer 

• recursion base case: if the subsequence has only 
one element, then do nothing. 
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Merge-Sort(A,p,r) 
sorts the elements in the sub-array A[p..r] using divide 

and conquer 

• Merge-Sort(A,p,r) 
– if p  r, do nothing 

– if p < r then  

• Merge-Sort(A,p,q) 

• Merge-Sort(A,q+1,r) 

• Merge(A,p,q,r) 

 

• Start by calling Merge-Sort(A,1,n) 

• Do we need an example? 

 r)/2(pq 
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Performance Analysis 

Known: two sorted arrays of sizes n1 and n2 can 
be merged in time c(n1+n2). 

Let T(n) denote the time it takes to sort an n-
elements array. 

• T(1) = O(1) 

• for n > 1,  
 

cn2T(n/2)T(n) 








cn2T(n/2)

O(1)
T(n)

if n = 1 

if n  > 1 

Merging 
time 
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• Music site tries to match your song preferences with 
others. 

– You rank n songs. 

– Music site consults database to find people with 
similar tastes. 

• Similarity metric:  number of inversions between two 
rankings. 

 

 

 

– My rank:  1, 2, …, n. Your rank:  a1, a2, …, an. 

– Songs i and j inverted if i < j, but ai > aj. 

• Brute force:  check all (n2) pairs i and j. 

Example 3: Counting Inversions 

You 

Me 

1 4 3 2 5 

1 3 2 4 5 

A B C D E 

Songs 

Inversions 

3-2, 4-2 
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Counting Inversions:   
Divide-and-Conquer 

– Divide:  separate list into two pieces. 

– Conquer: recursively count inversions in each half. 

– Combine: count inversions where ai and aj are in different 
halves, and return sum of three quantities. 

 

4 8 10 2 1 5 12 11 3 7 6 9 

4 8 10 2 1 5 12 11 3 7 6 9 

5 blue-blue inversions 8 green-green inversions 

Divide:  O(1). 

Conquer:  2T(n / 2) 

Combine:  ??? 9 blue-green inversions 

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7 

Total = 5 + 8 + 9 = 22. 



17 

13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0  

Counting Inversions:  Combine 

• Combine:  count blue-green inversions  
– Assume each half is sorted. 

– Count inversions where ai and aj are in different 
halves.  

– Merge two sorted halves into sorted whole. 

•   

Count:  O(n) 

Merge:  O(n) 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 18 19 23 25 16 17 

      )(2/2/ )( nOnTnTnT 

6 3 2 2 0 0 

Merge-
and-
Count 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

auxiliary array 

Total:   

i = 6 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

i = 6 

two sorted halves 

2 auxiliary array 

Total:  6   

6 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

2 auxiliary array 

i = 6 

Total:  6   

6 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

2 3 auxiliary array 

i = 6 

Total:  6    

6 



22 

10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

2 3 auxiliary array 

i = 5 

Total:  6   

6 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 2 3 auxiliary array 

i = 5 

Total:  6   

6 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 2 3 auxiliary array 

i = 4 

Total:  6   

6 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 2 3 auxiliary array 

i = 4 

Total:  6 

6 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 2 3 auxiliary array 

i = 3 

Total:  6 

6 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 2 3 auxiliary array 

i = 3 

Total:  6 + 3 

6 3 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 2 3 auxiliary array 

i = 3 

Total:  6 + 3 

6 3 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 14 2 3 auxiliary array 

i = 3 

Total:  6 + 3 

6 3 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 14 2 3 auxiliary array 

i = 2 

Total:  6 + 3 

6 3 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 14 2 3 16 auxiliary array 

i = 2 

Total:  6 + 3 + 2 

6 3 2 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 14 2 3 16 auxiliary array 

i = 2 

Total:  6 + 3 + 2 

6 3 2 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 14 2 3 16 17 auxiliary array 

i = 2 

Total:  6 + 3 + 2 + 2 

6 3 2 2 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 14 2 3 16 17 auxiliary array 

i = 2 

Total:  6 + 3 + 2 + 2 

6 3 2 2 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 14 2 3 18 16 17 auxiliary array 

i = 2 

Total:  6 + 3 + 2 + 2 

6 3 2 2 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 14 2 3 18 16 17 auxiliary array 

i = 1 

Total:  6 + 3 + 2 + 2 

6 3 2 2 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 14 2 3 18 19 16 17 auxiliary array 

i = 1 

Total:  6 + 3 + 2 + 2 

6 3 2 2 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 14 2 3 18 19 16 17 auxiliary array 

i = 0 

Total:  6 + 3 + 2 + 2 

first half exhausted 

6 3 2 2 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 14 2 3 18 19 23 16 17 auxiliary array 

i = 0 

Total:  6 + 3 + 2 + 2 + 0 

6 3 2 2 0 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 14 2 3 18 19 23 16 17 auxiliary array 

i = 0 

Total:  6 + 3 + 2 + 2 + 0 

6 3 2 2 0 
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10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 14 2 3 18 19 23 25 16 17 auxiliary array 

i = 0 

Total:  6 + 3 + 2 + 2 + 0 + 0 

6 3 2 2 0 0 



42 

10 14 18 19 3 7 16 17 23 25 2 11 

Merge and Count 

Merge and count step.  

 Given two sorted halves, count number of inversions where ai and aj are in 

different halves. 

 Combine two sorted halves into sorted whole. 

two sorted halves 

7 10 11 14 2 3 18 19 23 25 16 17 auxiliary array 

i = 0 

Total:  6 + 3 + 2 + 2 + 0 + 0 = 13 

6 3 2 2 0 0 
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Counting Inversions: Implementation 

• Pre-condition of [Merge-and-Count]:  A and B are 
sorted. 

• Post-condition of  [Sort-and-Count]:  L is sorted. 

Sort-and-Count(L) { 

   if list L has one element 

      return 0 and the list L 

    

   Divide the list into two halves A and B 

   (rA, A)  Sort-and-Count(A) 

   (rB, B)  Sort-and-Count(B) 

   (r, L)  Merge-and-Count(A, B) 

 

   return r = rA + rB + r and the sorted list L 

} 
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D&C Performance Analysis  

The running time of a Divide & Conquer algorithm 
is affected by 3 criteria:  

1. The number of sub-instances (a) into which a 
problem is split.  

2. The ratio of initial problem size to sub-
problem size (b).  

3. The number of steps required to divide the 
instance (D(n)), and to combine sub-solutions 
(C(n)).  
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General Recurrence for   
Divide-and-Conquer 

• If a divide and conquer scheme divides a problem of 
size n into a sub-problems of size at most n/b. 
Suppose the time for Divide is D(n) and time for 
Combination is C(n), then 

 

 

 
• How do we bound T(n)? 








C(n)D(n)aT(n/b)

Θ(1)
T(n)

if n < c 

if n  c 
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The Master Theorem 

• Let  

 

 

 

    where a  1 and b  1 

• we will ignore ceilings and floors (all 
absorbed in the O or  notation) 








f(n)aT(n/b)

Θ(1)
T(n)

if n < c 

if n   c 
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The Master Theorem:  
A relaxed version for f(n)= (nk) 

• As special cases, when f(n)= (nk) we get the 

following: 

 

• If  a>bk    then 

• If  a=bk    then   

• If  a<bk    then 

)Θ(nT(n) alogb

logn)Θ(nT(n) k

)Θ(nT(n) k
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The Master Theorem 

Examples (in class) 

1. T(n) = T(2n/3) + 1 then T(n) = (log n) 

2. T(n) = 9T(n/3) + n, then  T(n) = (n2) 

 

More examples: Back to merge sort and 
binary search: 

• MS: 

• BS: T(n)= T(n/2) + c   

cn2T(n/2)T(n) 
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Figure 4.7 in CLRS 



Counting….. 

• num. of nodes at depth i is 𝑎𝑖  

• depth of tree is log𝑏 𝑛 

• num. of leaves: 𝑎log𝑏 𝑛 = 2
log 𝑎

log 𝑛

log 𝑏 = 𝑛log𝑏 𝑎 

• so  𝑇 𝑛 =  𝜃 𝑛log𝑏 𝑎 +  𝑎𝑗𝑓(𝑛 𝑏𝑗 )𝑗  
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The Master Theorem (general f) 

• If                               for some constant  > 0 

   then 

• If                             then   

• If                                for some constant  > 0 and if  

af(n/b)  cf(n) for some constant c < 1 and all 

sufficiently large n, then T(n) =(f(n)) 

)O(nf(n) εalogb 


)Θ(nT(n) alogb

)Θ(nf(n) alogb logn)Θ(nT(n) alogb

)(nf(n) εalogb 


Intuition: Compare f(n) to nlogba 
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Example 4: Integer Multiplication 

• Used extensively in Cryptography: 
– public-key encryption/decryption uses multiplication of huge 

numbers 

 

 

• Standard multiplication 
on two n-bit numbers takes  
(n2) operations. 
 

• Note: standard addition  
takes O(n) 

                           ************ 
                           ************ 

                           ************ 
                         ************ 
                       ************ 
                     ************ 
                   ************ 
                 ************ 
               ************ 
              ************ 
            ************ 
          ************ 
        ************ 
      ************ 
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Can We do Better? 

• Divide and Conquer (assume X,Y given in binary) 

c d 

a b X = 

Y = 

bdbc)2(adac2XY

dc2Y  b,a2X
n/2n

n/2n/2





• MULT(X,Y) 

– if |X| = |Y| = 1 then return XY 

– else return 

  d)MULT(b, 2c)MULT(b, d)MULT(a, c)2MULT(a, n/2n 
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Complexity 

• By the Master Theorem: 

• Not an improvement over standard 
multiplication. 

 

 

 

 








Θ(n)4T(n/2)

1
T(n)

if n = 1 

if n  > 1 

 2nΘT(n) 
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Can we do better? 
(Karatsuba 1962) 

• Gauss Equation 
bdacd)b)(c(abcad 

• MULT(X,Y) 

– if |X| = |Y| = 1 then return XY 

– else  
• A1 = MULT(a,c);  

• A2 = MULT(b,d); 

• A3 = MULT((a+b),(c+d)); 

• Return   2
n/2

213
n

1 A 2AAA 2A 

bdbc)2(adac2XY n/2n 

:Recall
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Complexity 

• By the Master Theorem: 

 

 

 

 








Θ(n)3T(n/2)

1
T(n)

if n = 1 

if n  > 1 

   1.583log nΘnΘT(n) 2 
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• Dot product:  Given two length n vectors a and b, compute 
c = a  b. 

 

• Grade-school:   (n) arithmetic operations. 

 

 

 

 

 

 

• Remark:  Grade-school dot product algorithm is optimal. 

Example 5: Matrix Multiplication 



a  b  a
i
b
i

i1

n





a   .70 .20 .10 

b   .30 .40 .30 

a    b    (.70  .30)    (.20  .40)    (.10  .30)    .32

Section 28.2 (or 4.2) in CLRS 
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• Given two n-by-n matrices A and B, compute C = AB. 
• Grade-school:   (n3) arithmetic operations. 

 
 
 
 
 
 
 
 
 

• Q.  Is grade-school matrix multiplication algorithm 
optimal? 

Matrix Multiplication 



cij  a
ik
b
kj

k1

n



  



c
11

c
12

c
1n

c
21

c
22

c
2n

c
n1

c
n2

c
nn





















a
11

a
12

a
1n

a
21

a
22

a
2n

a
n1

a
n2

a
nn





















b
11

b
12

b
1n

b
21

b
22

b
2n

b
n1

b
n2

b
nn





















.59 .32 .41

.31 .36 .25

.45 .31 .42



















.70 .20 .10

.30 .60 .10

.50 .10 .40

















       

.80 .30 .50

.10 .40 .10

.10 .30 .40
















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Block Matrix Multiplication 



C
11

    A11 B11    A12 B21     
0 1

4 5









   

16 17

20 21









     

2 3

6 7









   

24 25

28 29









     

152 158

504 526













152 158 164 170

504 526 548 570

856 894 932 970

1208 1262 1316 1370



















   

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15



















   

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31



















C11 
A11 A12 B11 

B21 
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Matrix Multiplication:  Warmup 

• To multiply two n-by-n matrices A and B: 

– Divide:  partition A and B into ½n-by-½n blocks. 

– Conquer:  multiply 8 pairs of ½n-by-½n matrices, 
recursively. 

– Combine:  add appropriate products using 4 matrix 
additions. 

 

 

 

 

 

  



C11  A11  B11    A12  B21 
C12  A11  B12    A12  B22 
C21  A21  B11    A22  B21 
C22  A21  B12    A22  B22 

  



C11 C12

C21 C22









   

A11 A12

A21 A22









   

B11 B12

B21 B22













T (n)  8T n /2 
recursive calls

   (n2 )

add, form submatrices

 T (n) (n3)
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Fast Matrix Multiplication 

• Key idea.  multiply 2-by-2 blocks with only 7 
multiplications. 

 

 

 

 

 

 

 

 

– 7 multiplications, 14 2-by-2 elements. 

– 18 = 8 + 10 additions and subtractions. 

  



P1  A11  (B12  B22 )

P2  ( A11  A12 )  B22

P3  ( A21  A22 )  B11

P4  A22  (B21  B11)

P5  ( A11  A22 )  (B11  B22 )

P6  ( A12  A22 )  (B21  B22 )

P7  ( A11  A21)  (B11  B12 )  



C11  P5  P4  P2  P6

C12  P1 P2

C21  P3  P4

C22  P5  P1 P3  P7

  



C11 C12

C21 C22









   

A11 A12

A21 A22









   

B11 B12

B21 B22










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Fast Matrix Multiplication 

• To multiply two n-by-n matrices A and B:  [Strassen 1969] 

– Divide:  partition A and B into ½n-by-½n blocks. 

– Compute: 14 ½n-by-½n matrices via 10 matrix additions. 

– Conquer:  multiply 7 pairs of ½n-by-½n matrices, recursively. 

– Combine:  7 products into 4 terms using 8 matrix additions.  

• Analysis. 

– Assume n is a power of 2. 

– T(n) = # arithmetic operations. 



T (n)  7T n /2 
recursive calls

 (n2 )

add, subtract

 T (n) (nlog2 7 ) O(n2.81)
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Fast Matrix Multiplication:  Practice 

• Implementation issues. 
– Sparsity. 
– Caching effects. 
– Numerical stability. 
– Odd matrix dimensions. 
– Crossover to classical algorithm around n = 128.  

 
• Common misperception.  “Strassen is only a theoretical 
curiosity.” 
– Apple reports 8x speedup on G4 Velocity Engine when n 
 2,500. 

– Range of instances where it's useful is a subject of 
controversy. 
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Fast Matrix Multiplication:  Theory 
Q.  Multiply two 2-by-2 matrices with 7 scalar mult? 
 

  



(nlog3 21) O(n 2.77)



O(n 2.7801)

  



(n log2 6) O(n 2.59)

(nlog2 7) O(n 2.807)A.  Yes!   [Strassen 1969] 
 

Q.  Multiply two 2-by-2 matrices with 6 scalar multiplications? 
 A.  Impossible.  [Hopcroft and Kerr 1971] 

 
Q.  Two 3-by-3 matrices with 21 scalar multiplications? 
 A.  Also impossible. 
 

      Two 48-by-48 matrices with 47,217 scalar mult. 

      December, 1979. 



O(n 2.521813)



O(n 2.521801)      January, 1980. 

 A year later. 



O(n 2.7799)

      Two 20-by-20 matrices with 4,460 scalar mult. 



O(n 2.805)

• Best Known:  O(n2.373) [Vassilevska Williams, 2011] 
 

• Conjecture:  O(n2+) for any  > 0.  

     Record holder 1987-2010: O(n2.376) [Coppersmith-Winograd, 1987]. 
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Example 6: Finding the Convex Hull of a 
set of points (2-dim). 

• Given a set A of n points in the plane, the convex hull of A 
is the smallest convex polygon that contains all the points 
in A. 

• For simplicity, assume no two points have the same x or y 
coordinate. (otherwise rotate a bit..) 

• The output: set of CH vertices in clockwise order. 

 
A set S of points is 
convex if for any two 
points x,y∈S, any point 
on the line connecting 
x and y is also in S. 
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Example 6: Finding the Convex Hull of a 
set of points. 

Intuition:  
• Each point is a nail sticking out from a board.  
• Take a rubber band and lower it over the nails, so as to 

completely encompass the set of nails. 
• Let the rubber band naturally contract. 
• The rubber band gives the edges of the convex hull of the 

set of points. 
• Nails corresponding to a change in slope of the rubberband 

represent the extreme points of the convex hull. 
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Convex Hull – D&C algorithm. 

Let A = {p1, p2, . . . , pn}. Denote the convex hull of A by 

CH(A). 

1. Sort the points of A by x-coordinate. 

2. If n3, solve the problem directly. Otherwise, apply 

divide-and-conquer as follows. 

3. Divide A into two subsets: A = L  R. 

4. Find CH(L), the convex hull of L. 

5. Find CH(R), the convex hull of R. 

6. Combine the two convex hulls. 
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Convex Hull – Divide & Conquer 

 Split set into two, compute convex hull of both, combine. 
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Convex Hull – Divide & Conquer 
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Convex Hull – Divide & Conquer 
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Convex Hull – Divide & Conquer 



72 

Convex Hull – Divide & Conquer 

1 2 4 5 8 9 11 12 
Solution 

order: 
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Convex Hull – Divide & Conquer 

10 3 13 6 
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Convex Hull – Divide & Conquer 

14 7 
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Convex Hull – Divide & Conquer 

15 
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Combine CH(B) and CH(C) to get 
CH(A) 

1. We need to find the “upper bridge” and the “lower 
bridge” that connect the two convex hulls. 

2. The lower bridge is the edge vw, where v CH(L) and 
wCH(R), such that all other vertices in CH(L) and in 
CH(R) are above vw. 

3. Suffices to check if both neighbors of v in CH(L) and 
both neighbors of w in CH(R) are all above vw. 
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Combine CH(B) and CH(C) to get 
CH(A)  

4. Find the lower bridge as follows: 

    (a) v = the rightmost point in CH(B); 

         w = the leftmost point in CH(C). 

    (b) Loop 

        if counterclockwise neighbor(w) lies below the line vw  
  then w = counterclockwise neighbor(w) 

        else if clockwise neighbor(v) lies below the line vw 
  then v = clockwise neighbor(v) 

    (c) vw is the upper bridge. 

 

5. Find the upper bridge similarly. 
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Convex Hull – Divide & Conquer 

Combine two convex hulls: Finding the lower bridge. 

v 

w 



79 

Convex Hull – Divide & Conquer 

v 

w 
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Convex Hull – Divide & Conquer 

v 

w 
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Convex Hull – Divide & Conquer 

v 

w 
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Convex Hull – Divide & Conquer 

v 
w 



83 

Convex Hull – Divide & Conquer 

v 
w 
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Convex Hull – Divide & Conquer 

v 

w 
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Convex Hull – Divide & Conquer 

v 

w 
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Convex Hull – Divide & Conquer 

v 

w 
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Convex Hull – D&C algorithm. 

Analysis: 

1. Preprocessing: O(n log n) 

2. Recursion: Each of the Divide and Combine steps takes 

O(n): When calculating the bridges, each point is 

considered at most once,  O(1) for each point. 

Therefore:  

 

Implying T(n)=O(n log n)   (like mergesort) 

Can we do better? Maybe not by D&C? 








cn2T(n/2)

O(1)
T(n)

n  3 

n > 3 



88 

Convex Hull – lower bound. 
Theorem: Any algorithm for calculating convex hull takes 

(n log n) time.  

Proof: Given n positive numbers, x1 x2 ..., xn, correspond to 
each number xi the point (xi , xi

2 ), and find a convex hull 
of the n points. 

These points all lie on the parabola y = x 2. The convex hull 
of this set consists of a list of the points sorted by x-
coordinate. 

Therefore, if we could find a convex hull in time T(n) then 
we could sort in time T(n)+O(n).  

It is known that sorting takes (n log n), therefore, this 
lower bound applies also to finding the convex hull. 
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Example 7: Closest Pair Problems 

• Input:  
– A set of points P = {p1,…, pn} in two dimensions 

• Output: 
– The pair of points pi, pj with minimal Euclidean 

distance between them. 
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Euclidean Distances 

1x 2x

2y

1y  11, yx

 22 , yx

       221

2

212211 ,, yyxxyxyx 
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Closest Pair Problem 


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Closest Pair Problem 

• O(n2) time algorithm is easy 
• Assumptions: 

– No two points have the same x-coordinates 
– No two points have the same y-coordinates 
(otherwise rotate a bit) 

• How do we solve this problem in one-dimension (this is 
very easy)? 
– Sort the numbers and scan from left to right looking 

for the minimum gap 
• Let’s apply divide-and-conquer to the 1-dim problem: 
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D&C for 1-dim closest pair 

– Divide 
•  t = n/2 

– Conquer 
•  1 = Closest-Pair(A,1,t) 

•  2 = Closest-Pair(A,t+1,n) 

– Combine 
• Return min(1, 2, A[t+1]-A[t]) 

 

Time: T(n)=2T(n/2)+c    T(n)=(n) 
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Divide and Conquer: 2-dim 

• We will do better than O(n2). 

• Intuitively, there is no need to really compare 
each pair. 

• Divide and conquer can avoid it. 
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Divide and Conquer for the Closest 
Pair Problem 

Divide by x-median 
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Divide 

L R 

Divide by x-median 
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Conquer 

Conquer: Recursively solve L and R 

L R 

1

2
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Combine I 

Take the smaller one of 1 , 2 :  = min(1 , 2 ) 

L R 



2 
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Combine II 
but maybe there is a point in L and a point in R whose distance is 

smaller than ? 

Take the smaller one of 1 , 2 :  = min(1 , 2 ) 

L R 



2 
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Combine II 

• If the answer is “no” then we are done. 

• If the answer is “yes” then the closest such 
pair forms the closest pair for the entire set  

• How do we determine this? 
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Combine II 
Is there a point in L and a point in R whose distance is smaller than ? 

L R 



 
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Combine II 
Is there a point in L and a point in R whose distance is smaller than 

? 

We need to 
consider only 
the 2-narrow 
band. We will 
show that it can 
be done in O(n) 
time. 

L R 

 

Denote this set by S.  
Assume Sy is a sorted list of 

S by y-coordinate.  
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Combine II 

• There exists a point in L and a point in R whose 
distance is less than  if and only if there exist 
two points in S  whose distance is less than 
(why?). 

• If S is the whole thing, did we gain anything? 

• Amazing claim: If s and t in S  have the property 
that ||s-t|| < , then s and t are within 8 
positions of each other in the sorted list Sy. 
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Combine II 
Is there a pair of points, one in L and one in R, whose distance is 

smaller than ? 

L R 

2/

There is at most one 
point in each box. 
 
Top half of circle 
intersects 8 boxes. 
 
In fact, can prove less 
than 8. 

2/
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D&C Algorithms for Closest-Pair 
– Preprocessing:  

• Construct Px and Py as sorted-list by x- and y-coordinates 

– Divide 
•  Construct L, Lx , Ly and R, Rx , Ry   

– Conquer 
• Let 1= Closest-Pair(L, Lx , Ly ) 

• Let 2= Closest-Pair(R, Rx , Ry ) 

– Combine 
• Let  = min(1 , 2 ) 

• Construct S and Sy  

• For each point in Sy, check each of the next 8 points in Sy. 

• If the distance is less than , then update  to be the new  
distance 
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Closest-Pair  - Time Analysis 

• Preprocessing: O(n log n) time 

• Divide: O(n)  

• Conquer: 2T(n/2)  

• Combine: O(n)  

 

T(n)=2T(n/2)+O(n)  O(n log n) time 


