
Shortest Paths in Directed Planar Graphs with Negative Lengths:
a Linear-Space O(n log2 n)-Time Algorithm

Philip Klein1, Shay Mozes1 and Oren Weimann2

1 Department of Computer Science, Brown University, Providence RI 02912-1910, USA
{klein,shay}@cs.brown.edu

Supported by NSF Grant CCF-0635089. Work done while Klein was visiting MIT.
2 Massachusetts Institute of Technology, Cambridge, MA 02139, USA. oweimann@mit.edu

Abstract. We give an O(n log2 n)-time, linear-space algorithm that, given a directed planar graph
with positive and negative arc-lengths, and given a node s, finds the distances from s to all nodes. The
best previously known algorithm requires O(n log3 n) time and O(n logn) space.

1 Introduction

The problem of directed shortest paths with negative lengths is as follows: Given a directed graph G
with positive and negative arc-lengths containing no negative cycles,3 and given a source node s,
find the distances from s to all the nodes in the graph. This is a classical problem in combinatorial
optimization. For general graphs, the Bellman-Ford algorithm solves the problem in O(mn) time,
where m is the number of arcs and n is the number of nodes. For integer lengths whose absolute
values are bounded by N , the algorithm of Gabow and Tarjan [7] takes O(

√
nm log(nN)). For

integer lengths exceeding −N , the algorithm of Goldberg [8] takes O(
√
nm logN) time. For non-

negative lengths, the problem is easier and can be solved using Dijkstra’s algorithm inO((n+m) lg n)
time if elementary data structures are used [12], and in O(n log n + m) time when implemented
with Fibonacci heaps [6].

For planar graphs, there has been a series of results yielding progressively better bounds. The
first algorithm that exploited planarity was due to Lipton, Rose, and Tarjan [15], who gave an
O(n3/2) algorithm. Henzinger et al. [9] gave an O(n4/3 log2/3D) algorithm where D is the sum
of the absolute values of the lengths. Fakcharoenphol and Rao [5] gave an algorithm requiring
O(n log3 n) time and O(n log n) space. Our result is as follows:

Theorem 1. There is an O(n log2 n)-time, linear-space algorithm to find shortest paths in planar
directed graphs with negative lengths.

Applications

In addition to being a fundamental problem in combinatorial optimization, shortest paths in planar
graphs with negative lengths arises in solving other problems. Miller and Naor [18] show that, by
using planar duality, the following problem can be reduced to shortest paths in a planar directed
graph:

Feasible circulation: Given a directed planar graph with upper and lower arc-capacities, find
an assignment of flow to the arcs so that each arc’s flow is between the arc’s lower and upper
capacities, and, for each node, the flow into the node equals the flow out.

They further show that the following problem can in turn be reduced to feasible circulation:

Feasible flow: Given a directed planar graph with arc-capacities and node-demands, find an
assignment of flow that respects the arc-capacities and such that, for each node, the flow
into the node minus the flow out equals the node’s demand.

For integer-valued capacities and demands, the solutions obtained to the above problems are integer-
valued. Consequently, as Miller and Naor point out, the problem of finding a perfect matching in a
bipartite planar graph can be solved using an algorithm for feasible flow.

Our new shortest-path algorithm thus gives O(n log2 n) algorithms for bipartite planar perfect
matching, feasible flow, and feasible circulation.

Several techniques for computer vision, including image segmentation algorithms by Cox, Rao,
and Zhong [3] and by Jermyn and Ishikawa [11, 10], and a stereo matching technique due to Vek-
sler [20], involve finding negative-length cycles in graphs that are essentially planar. Thus our
algorithm can be used to implement these techniques.

3 Algorithms for this problem can also be used to detect negative cycles.

1

Summary of the Algorithm

Like the other planarity-exploiting algorithms for this problem, our algorithm uses planar sepa-
rators [16, 17]. Given an n-node planar embedded directed graph G with arc-lengths, and given a
source node s, the algorithm first finds a Jordan curve C that passes through O(

√
n) nodes (and

no arcs) such that between n/3 and 2n/3 nodes are enclosed by C.
A node through which C passes is called a boundary node. Cutting the planar embedding along

C and duplicating the boundary nodes yields two subgraphs G0 and G1 such that, for i = 0, 1, in
Gi the boundary nodes lie on the boundary of a single face Fi. Refer to Fig. 1 for an illustration.
Let r be an arbitrary boundary node.

r

v

G0

G1

Fig. 1. A graph G and a decomposition using a Jordan
curve into an external subgraph G0 (in gray) and an in-
ternal subgraph G1 (in white). Only boundary nodes are
shown. r and v are boundary nodes. The double-lined blue
path is an r-to-v shortest path in G1. The dashed red path
is an r-to-v shortest path in G0.

P2

P4

P1

r

v

G0

G1
P3

Fig. 2. The solid blue path is an r-to-v shortest path in G.
It can be decomposed into four subpaths. The subpaths P1

and P3 are shortest paths in G1 between boundary nodes.
The subpaths P2 and P4 are shortest paths in G0 between
boundary nodes. The r-to-v shortest paths in G0 and G1

can be seen in gray in the background.

Our algorithm consists of five stages. The first four stages alternate between working with negative
lengths and working with only positive lengths.

Recursive call: The first stage recursively computes the distances from r within Gi for i = 0, 1.
The remaining stages use these distances in the computation of the distances in G.

Intra-part boundary-distances: For each graph Gi we use a method due to Klein [14] to com-
pute all distances in Gi between boundary nodes. This takes O(n log n) time.

Single-source inter-part boundary distances: A shortest path in G passes back and forth
between G0 and G1. Refer to Fig. 1 and Fig. 2 for an illustration. We use a variant of Bellman-
Ford to compute the distances in G from r to all the boundary nodes. Alternating iterations
use the all-boundary-distances in G0 and G1. Because the distances have a Monge [19] property
(discussed later), each iteration can be implemented by two executions of an algorithm due to
Klawe and Kleitman [13] for finding row minima in a special kind of matrix. Each iteration
is performed in O(

√
nα(n)), where α(n) is the inverse Ackerman function. The number of

iterations is O(
√
n), so the overall time for this stage is O(nα(n)).

Single-source inter-part distances: The distances computed in the previous stages are used,
together with a Dijkstra computation within a modified version of each Gi, to compute the
distances in G from r to all the nodes. Dijkstra’s algorithm requires the lengths in Gi to be
non-negative, but we can use the recursively computed distances to transform the lengths in

2

Gi into non-negative lengths without changing the shortest paths. This stage takes O(n log n)
time.

Rerooting single-source distances: The algorithm has obtained distances in G from r. In the
last stage these distances are used to transform the lengths in G into nonnegative lengths, and
again uses Dijkstra’s algorithm, this time to compute distances from s. This stage also requires
O(n log n) time.

Relation to Previous Work

All known planarity-exploiting algorithms for this problem, starting with that of Lipton, Rose,
and Tarjan [15], use planar separators, and use Bellman-Ford on a dense graph whose nodes are
those comprising a planar separator. The algorithm of Henzinger et al. [9] achieved an improve-
ment by using a multi-part decomposition based on planar separators. Fakcharoenphol and Rao’s
algorithm [5] introduced several innovations. Among these is the exploitation of a Monge property
of the boundary-to-boundary distances to enable fast implementation of an iteration of Bellman-
Ford. We use this idea in our algorithm as well, although we exploit it using a different approach.
Another key ingredient of Fakcharoenphol and Rao is an ingenious data structure to implement a
version of Dijkstra’s algorithm, where each node is processed O(log n) times (rather than once, as
in Dijkstra’s algorithm) and many arcs can be relaxed at once.

A central concept of the algorithm of Fakcharoenphol and Rao is the dense distance graph.
This consists of a recursive decomposition of a graph using separators, together with a table for
each subgraph arising in the decomposition giving the distances between all boundary nodes for
that subgraph. This structure has size Ω(n log n) for an n-node graph. The first phase of their
algorithm computes this structure in O(n log3 n) time. The second phase uses the structure to
compute distances from a node to all other nodes, also in O(n log3 n) time.

The structure of our algorithm is different—it is a simple divide-and-conquer, in which the
recursive problem is the same as the original problem, single-source shortest-path distances. In
addition, we require no data structures aside from the dynamic-tree data structure used in [14] and
a basic priority queue for implementing Dijkstra’s algorithm.4

The Replacement-Paths Problem

We note that the algorithm of Klawe and Kleitman [13] that we use in our algorithm is useful in
addressing other problems in planar graphs. Consider the replacement-paths problem: we are given
a directed graph with non-negative arc lengths and two nodes s and t. We are required to compute,
for every arc e in the shortest path between s and t, the length of an s-to-t shortest path that
avoids e.

Emek et al. [4] give an O(n log3 n)-time algorithm for solving the replacement-paths problem
in a directed planar graph. Procedure District in Section 4 of their paper solves a problem that
can be viewed as finding the row minima of a certain matrix (defined formally in the appendix)
which has the Monge property. By using [13], we obtain an O(n log2 nα(n))-time algorithm. Details
appear in the appendix.

Theorem 2. There is an O(n log2 nα(n))-time algorithm for solving the replacement-paths problem
in a directed planar graph.

4 In planar graphs there is no need for Fibonacci heaps as m = O(n).

3

2 Preliminaries

2.1 Jordan Separators for Planar Graphs

Miller [17] gave a linear-time algorithm that, given a triangulated two-connected n-node planar
embedded graph, finds a simple cycle separator consisting of at most 2

√
2
√
n nodes, such that at

most 2n/3 nodes are strictly enclosed by the cycle, and at most 2n/3 nodes are not enclosed.
For an n-node planar embedded graph G that is not necessarily triangulated or two-connected,

we define a Jordan separator to be a Jordan curve C that intersects the embedding of the graph only
at nodes such that at most 2n/3 nodes are strictly enclosed by the curve and at most 2n/3 nodes
are not enclosed. The nodes intersected by the curve are called boundary nodes and denoted Vc. To
find a Jordan separator with at most 2

√
2
√
n boundary nodes, add artificial edges to triangulate

the graph and make it two-connected, then apply Miller’s algorithm.
The internal part of G with respect to C is the subgraph consisting of the nodes and edges

enclosed by C, i.e. including the nodes intersected by C. Similarly, the external part of G with
respect to C is the subgraph consisting of the nodes and edges not strictly enclosed by C, i.e. again
including the nodes intersected by C.

In the internal part of G with respect to C, every edge is enclosed by C, so C is contained by
some face. Since every boundary node is intersected by C, it follows that all boundary nodes lie
on the boundary of a single face of the internal part of G. Similarly, in the external part of G with
respect to C, all boundary nodes lie on the boundary of a single face.

2.2 Monotonicity, Monge and Matrix Searching

A matrix M = (Mij) is totally monotone if for every i, i′, j, j′ such that i < i′, j < j′, and
Mij ≤ Mij′ , we have Mi′j ≤ Mi′j′ . Totally monotone matrices were introduced by Aggarwal et al.
in [2], who showed that a wide variety of problems in computational geometry could be reduced to
the problem of finding row-maxima or row-minima in totally monotone matrices. Aggarwal et al.
also give a clever algorithm, nicknamed SMAWK, that, given a totally monotone n×m matrix M ,
finds all row-maxima of M in just O(n+m) time. It is easy to see that by negating each element
of M and reversing the order of its columns, SMAWK can be used to find the row minima of M as
well.

A matrix M = (Mij) is Monge if for every i, i′, j, j′ such that i < i′, j < j′, we have Mij+Mi′j′ ≥
Mij′ + Mi′j . It is immediate that if M is Monge then it is totally monotone. It is also easy to see
that the matrix obtained by transposing M and then reversing the order of the columns is also
totally monotone. Therefore finding the column minima and maxima of a Monge matrix is as easy
as finding its row maxima.

In [13] Klawe and Kleitman define a falling staircase matrix to be a lower triangular fragment of
a totally monotone matrix. More precisely, (M, {f(i)}0≤i≤n+1) is an n×m falling staircase matrix
if

1. for i = 0, . . . , n+ 1, f(i) is an integer with 0 = f(0) < f(1) ≤ f(2) ≤ · · · ≤ f(n) < f(n+ 1) =
m+ 1.

2. Mij , is a real number if and only if 1 ≤ i ≤ n and 1 ≤ j ≤ f(i). Otherwise, Mij is blank.
3. for i < k, j < l ≤ f(i), and Mij ≤Mil, we have Mkj ≤Mkl.

Finding the row maxima in a falling staircase matrix can be easily done using SMAWK in
O(n+m) time after replacing the blanks with sufficiently small numbers so that the resulting matrix
is totally monotone. However, this trick does not work for finding the row minima. Aggarwal and

4

Klawe [1] give an O(m log log n) time algorithm for finding row-minima in falling staircase matrices
of size n ×m. Klawe and Kleitman give in [13] a more complicated algorithm that computes the
row-minima of an n×m falling staircase matrix in O(mα(n) + n) time, where α(n) is the inverse
Ackerman function. Again, it is not hard to see that both these algorithms can be used to find the
column minima, by transposing and then reversing the order of the columns, as above.

2.3 Price Functions and Reduced Lengths

For a directed graph G with arc-lengths `(·), a price function is a function φ from the nodes of G
to the reals. For an arc uv, the reduced length with respect to φ is `φ(uv) = `(uv) + φ(u)− φ(v). A
feasible price function is a price function that induces nonnegative reduced lengths on all arcs of G.

Feasible price functions are useful in transforming a shortest-path problem involving positive
and negative lengths into one involving only nonnegative lengths, which can then be solved using
Dijkstra’s algorithm. For any nodes s and t, for any s-to-t path P , `φ(P) = `(P) + φ(s) − φ(t).
This shows that an s-to-t path is shortest with respect to `φ(·) iff it is shortest with respect to `(·).
Moreover, the s-to-t distance with respect to the original lengths `(·) can be recovered by adding
φ(t)− φ(s) to the s-to-t distance with respect to `φ(·).

Suppose φ is a feasible price function. Running Dijkstra’s algorithm with the reduced lengths
and modifying the distances thereby computed to obtain distances with respect to the original
lengths will be called running Dijkstra with φ.

An example of a feasible price function comes from single-source distances. Suppose that, for
some node r of G, for every node v of G, φ(v) is the r-to-v distance in G with respect to `(·). Then
for every edge uv, φ(v) ≤ φ(u) + `(uv), so `φ(uv) ≥ 0.

2.4 Multiple-Source Shortest Paths: Computing Boundary-to-Boundary Distances

Klein [14] gives a multiple-source shortest-path algorithm with the following properties. The input
consists of a directed planar embedded graph G with non-negative arc-lengths, and a face f . For
each node u in turn on the boundary of f , the algorithm computes (an implicit representation of)
the shortest-path tree rooted at u. The basic algorithm takes O(n log n) time and O(n) space on an
n-node input graph. In addition, given a set of pairs (u, v) of nodes of G where u is on the boundary
of f , the algorithm computes the u-to-v distances. The time per distance computed is O(log n).
In particular, given a set S of O(

√
n) nodes on the boundary of a single face, the algorithm can

compute all S-to-S distances in O(n log n) time.
For graphs with negative arc-lengths, given a node r and the distances d(v) from r to all nodes

v in G, we can use d to compute the reduced lengths and then run Klein’s algorithm on these
non-negative lengths. Given d, running Klein’s algorithm with these reduced lengths will be called
running the multiple-source shortest paths algorithm with input d.

3 The Algorithm

The high-level description of the algorithm appears in Figure 3. After finding a Jordan separator
and selecting a boundary node as a temporary source node, the algorithm consists of five major
steps. The recursive call step is straightforward. Computing intra-part boundary distances uses
the algorithm described in Section 2.4. Computing single-source inter-part boundary distances is
described in Section 4; it is based on the Bellman-Ford algorithm. Single-source inter-part distances
is described in Section 5, and is based on Dijkstra’s algorithm. It yields distances to all nodes from

5

procedure shortest-paths(G, s)
input: a directed embedded planar graph G with arc-lengths, and a node s of G
output: a table d giving distances in G from s to all nodes of G

0 if G has ≤ 2 nodes, the problem is trivial; return the result
1 find a Jordan separator C of G with O(

√
n) boundary nodes

2 let G0,G1 be the external and internal parts of G with respect to C
3 let r be a boundary node

Recursive call 4 for i = 0, 1: let di = shortest-paths(Gi, r)

intra-part 5 for i = 0, 1: use di as input to the multiple-source shortest-path algorithm
boundary to compute a table δi such that δi[u, v] is the u-to-v distance in Gi for
distances every pair u, v of boundary nodes

single-source

inter-part 6 use δ0 and δ1 to compute a table B such that
boundary B[v] is the r-to-v distance in G for every boundary node v
distances

single-source 7 for i = 0, 1: use table B and Dijkstra’s algorithm to compute a table d′i
inter-part such that d′i[v] is the r-to-v distance in G for every node v of Gi
distances

rerooting 8 define a price function φ for G such that φ[v] is the r-to-v distance in G:
single-

source
φ[v] =

{
d′0[v] if v belongs to G0

d′1[v] otherwise
distances 9 use Dijkstra’s algorithm with price function φ to compute a table d

such that d[v] is the s-to-v distance in G for every node v of G

10 return d

Fig. 3. The shortest-path algorithm

the temporary source node. These distances constitute a feasible price function, as described in
Section 2.3, that enables us, in rerooting single-source distances, to use Dijkstra’s algorithm once
more to finally compute distances from the given source.

4 Computing Single-Source Inter-Part Boundary Distances

In this section we describe how to efficiently compute the distances in G from r to all boundary
nodes (i.e., the nodes of Vc). This is done using δ0 and δ1, the all-pairs distances in G0 and in G1

between nodes in Vc which were computed in the previous stage. The following structural lemma
stands in the core of the computation. The same lemma has been implicitly used by previous
planarity-exploiting algorithms. The proof is given in the appendix.

6

Lemma 1. Let P be a simple r-to-v shortest path in G, where v ∈ Vc. Then P can be decomposed
into at most |Vc| subpaths P = P1P2P3 . . . , where the endpoints of each subpath Pi are boundary
nodes, and Pi is a shortest path in Gi mod 2.

Lemma 1 gives rise to a dynamic programming solution for calculating the from-r distances
to nodes of C, which resembles the Bellman-Ford algorithm. The pseudocode is given in Fig. 4.
Note that, at this level of abstraction, there is nothing novel about this dynamic program. Our
contribution is in an efficient implementation of Step 4.

The algorithm consists of |Vc| iterations. On odd iterations, it uses the boundary-to-boundary
distances in G1, and on even iterations it uses the boundary-to-boundary distances in G0.

1: e0[v] =∞ for all v ∈ Vc
2: e0[r] = 0
3: for j = 1, 2, 3, . . . , |Vc|

4: ej [v] =
{

minw∈Vc{ej−1[w] + δ1[w, v]}, if j is odd
minw∈Vc{ej−1[w] + δ0[w, v]}, if j is even

}
, ∀v ∈ Vc

5: B[v]← e|Vc|[v] for all v ∈ Vc

Fig. 4. Pseudocode for the single-source inter-part boundary distances stage for calculating shortest-path distances
in G from r to all nodes in Vc using just δ0 and δ1.

Lemma 2. After the table ej is updated by the algorithm, ej [v] is the length of a shortest path in G
from r to v that can be decomposed into at most j subpaths P = P1P2P3 . . . Pj, where the endpoints
of each subpath Pi are boundary nodes, and Pi is a shortest path in Gi mod 2.

Proof. By induction on j. For the base case, e0 is initialized to be infinity for all nodes other than
r, trivially satisfying the lemma. For j > 0, assume that the lemma holds for j − 1, and let P
be a shortest path in G that can be decomposed into P1P2 . . . Pj as above. Consider the prefix P ′

P ′ = P1P2 . . . Pj−1. P ′ is a shortest r-to-w path in G for some boundary node w. Hence, by the
inductive hypothesis, when ej is updated in Line 4, ej−1[w] already stores the length of P ′. Thus
ej [v] is updated in line 4 to be at most ej−1[w] + δj mod 2[w, v]. Since, by definition, δj mod 2[w, v] is
the length of the shortest path in Gj mod 2 from w to v, it follows that ej+1[v] is at most the length
of P . For the opposite direction, since for any boundary node w, ej [w] is the length of some path
that can be decomposed into at most j − 1 subpaths as above, ej [v] is updated in Line 4 to the
length of some path that can be decomposed into at most j subpaths as above. Hence, since P is
the shortest such path, ej [v] is at least the length of P . ut

From Lemma 1 and Lemma 2, it immediately follows that the table e|Vc| stores the from-r
shortest path distances in G, so the assignment in Line 5 is justified, and the table B also stores
these distances.

We now show how to perform all the minimizations in the jth iteration of Line 4 in O(|Vc|α(|Vc|))
time. Let i = j mod 2, so this iteration uses distances in Gi. Since all boundary nodes lie on the
boundary of a single face of Gi, there is a natural cyclic clockwise order v1, v2, . . . , v|Vc| on the nodes
in Vc. Define a |Vc| × |Vc| matrix A with elements Ak` = di−1(vk) + δ1(vk, v`). Note that computing
all minima in Line 4 is equivalent to finding the column-minima of A. We define the upper triangle
of A to be the elements of A on or above the main diagonal. More precisely, the upper triangle of
A is the portion {Ak` : k ≤ `} of A. Similarly, the lower triangle of A consists of all the elements
on or below the main diagonal of A.

7

Lemma 3. For any four indices k, k′, `, `′ such that either Ak`, Ak`′ , Ak′` and Ak′`′ are all in A’s
upper triangle, or are all in A’s lower triangle (i.e., either 1 ≤ k ≤ k′ ≤ ` ≤ `′ ≤ |Vc| or 1 ≤ ` ≤
`′ ≤ k ≤ k′ ≤ |Vc|), the Monge property holds:

Ak` +Ak′`′ ≥ Ak`′ +Ak′`.

Proof. Consider the case 1 ≤ k ≤ k′ ≤ ` ≤ `′ ≤ |Vc|, as in Fig. 5. Since Gi is planar, any pair of
paths in Gi from k to ` and from k′ to `′ must cross at some node w of Gi. Let bk = dj−1(vk) and
let bk′ = dj−1(vk′). Let ∆(u, v) denote the u-to-v distance in Gi for any nodes u, v of Gi. Note that
∆(u, v) = δi(u, v) for u, v ∈ Vc. We have

Ak,` +Ak′,`′ = (bk +∆(vk, w) +∆(w, v`)) + (bk′ +∆(vk′ , w) +∆(w, v`′))
= (bk +∆(vk, w) +∆(w, v`′)) + (bk′ +∆(vk′ , w) +∆(w, v`))
≥ (bk +∆(vk, v`′)) + (bk′ +∆(vk′ , v`))
= (bk + δi(vk, v`′)) + (bk′ + δi(vk′ , v`)) = Ak,`′ +Ak′,`

The second case (1 ≤ ` ≤ `′ ≤ k ≤ k′ ≤ |Vc|) is similar. ut

l' k

k'
l

w

Fig. 5. Nodes k < k′ < l < l′ in clockwise order on the boundary nodes. Paths from k to l and from k′ to l′ must
cross at some node w. This is true both in the internal and the external subgraphs of G

Lemma 4. A single iteration of the dynamic program can be computed in O(|Vc|α(|Vc|)) time.

Proof. We need to show how to find the column minima of the matrix A. It follows directly from
Lemma 3 that the lower triangle of A is a falling staircase matrix. By [13], its column minima can
be computed in O(|Vc|α(|Vc|)) time. Another consequence of Lemma 3 is that the column-minima
of the upper triangle of A may also be computed using the algorithm in [13]. To see this consider
a counterclockwise ordering of the nodes of |Vc| v′1, v′2, . . . , v′|Vc| such that v′k = v|Vc|+1−k. With this
order, the upper triangle of A is in fact a falling staircase matrix.

Finally, we obtain A’s column minima by comparing the two minima obtained for each column
in each of the two triangular portions of A. We thus conclude that A’s column minima can be
computed in O(2|Vc| · α(|Vc|) + |Vc|) = O(|Vc| · α(|Vc|)) time. ut

Hence the time it takes to compute the distances between r and all nodes of Vc is O(|Vc|2 ·α(|Vc|).
The choice of separator ensures |Vc| = O(

√
n), so this computation is performed in O(nα(n)) time.

8

5 Computing Single-Source Inter-Part Distances

In the previous section we showed how to compute a table B that stores the distances from r to
all the boundary nodes in G. In this section we describe how to compute the distances from r to
all other nodes of G. We do so by computing tables d′0 and d′1 where d′i[v] is the r-to-v distance in
G for every node v of Gi. Recall that we have already computed the table di that stores the r-to-v
distance in Gi for every node v of Gi.

The pseudocode given in Fig. 6 describes how to compute d′i. The idea is to use di and B in
order to construct a modified version of Gi, denoted G′i, so that the from-r distances in G′i are the
same as the from-r distances in G. We then construct a feasible price function φi for G′i and use
Dijkstra’s algorithm on G′i with the price function φi in order to compute these from-r distances.

1: let G′i be the graph obtained from Gi by removing arcs entering r,
and adding an arc ru of length B[u] for every boundary node u

2: let pi = max{B[u]− di[u] : u a boundary node}
3: define a price function φi for G′i:

φi[v] =
{
pi if v = r
di[v] otherwise

4: use Dijkstra’s algorithm with price function φi to compute a table d′i such that
d′i[v] is the r-to-v distance in G′i for every node v of G′i

Fig. 6. Pseudocode for the single-source intra-part distances stage for computing the shortest path distances from r
to all nodes.

The following two lemmas motivate the definition of G′i and show that it captures the true
from-r distances in G. The proof of Lemma 5 is given in the appendix.

Lemma 5. Let P be an r-to-v shortest path in G, where v ∈ Gi. Then P can be expressed as
P = P1P2, where P1 is a (possibly empty) shortest path from r to a node u ∈ Vc, and P2 is a
(possibly empty) shortest path from u to v that visits only nodes of Gi.

Lemma 6. The from-r distances in G′i are equal to the from-r distance in G.

Proof. Distances in G′i are not shorter than in G since each arc of G′i corresponds to some path
in G. To prove the opposite direction, consider the distance from r to v in G. Let P1, P2, u be as
in Lemma 5. P1 is a shortest path in G from r to some u ∈ Vc. By definition of G′i, the length of
the new arc ru in G′i is equal to the length of P1 in G. Furthermore, P2 is a path in G′i since it
only consists of arcs in Gi. Since the shortest r-to-v path is simple, non of these arcs enters r, and
therefore all of them are in G′i. Hence the path in G′i that consists of the new arc ru followed by
P2 has the same length as the path P in G. ut

Since G′i contains arcs not in Gi, we cannot use the from-r distances in di as a feasible price
function. We slightly modify them to ensure non-negativity as shown by the following lemma.

Lemma 7. φi is a feasible price function for G′i.

9

Proof. Let uv be an arc of G′i. If uv is an arc of Gi, then di[v] ≤ di[u] + `[uv], so `φi
[uv] ≥ 0.

Otherwise, u = r and

`φi
[rv] = φi[r] +B[v]− φi[v]

= pi +B[v]− di[u] by definition of φi
≥ 0 by definition of pi

ut

Computing the auxiliary graphs G′i and the price functions φi can be easily done in linear time.
Therefore, the time required for this stage is dominated by the O(n log n) running time of Dijkstra’s
algorithm. We note that one may use the algorithm of Henzinger et al. [9] instead of Dijkstra to
obtain a linear running time for this stage. This however does not change the overall running time
of our algorithm.

6 Correctness and Analysis

We will show that at each stage of our algorithm, the necessary information has been correctly
computed and stored. The recursive call in Line 4 computes and stores the from-r distances in
Gi. The conditions for applying Klein’s algorithm in Line 5 hold since all boundary nodes lie on
the boundary of a single face of Gi and since the from-r distances in Gi constitute a feasible price
function for Gi. The correctness of the single-source inter-part boundary distances stage in Line 6
and of the single-source inter-part distances stage in Line 7 was proved in Sections 4 and 5. Thus,
the r-to-v distances in G for all nodes v of G are stored in d′0 for v ∈ G0 and in d′1 for v ∈ G1.
Note that d′0 and d′1 agree on distances from r to boundary nodes. Therefore, the price function φ
defined in Line 8 is feasible for G, so the conditions to run Dijkstra’s algorithm in Line 9 hold, and
the from-s distances in G are correctly computed. We have thus established the correctness of our
algorithm.

To bound the running time of the algorithm we bound the time it takes to complete one
recursive call to shortest-paths. Let |G| denote the number of nodes in the input graph G, and let
|Gi| denote the number of nodes in each of its subgraphs. Computing the intra-subgraph boundary-
to-boundary distances using Klein’s algorithm takes O(|Gi| log(|Gi|) for each of the two subgraphs,
which is in O(|G| log |G|). Computing the single-source distances in G to the boundary nodes is
done in O(|G|α(|G|)), as we explain in Section 4. The extension to all nodes of G is again done in
O(|Gi| log |Gi|) for each subgraph. Distances from the given source are computed in an additional
O(|G| log |G|) time. Thus the total running time of one invocation is O(|G| log |G|). Therefore the
running time of the entire algorithm is given by

T (|G|) = T (|G0|) + T (|G1|) +O(|G| log |G|)
= O(|G| log2 |G|).

Here we used the properties of the separator, namely that |Gi| ≤ 2|G|/3 for i = 0, 1, and that
|G0|+ |G1| = |G|+O(

√
|G|). The complete proof of this recurrence is given in the appendix. Thus,

the total running time of our algorithm is O(n log2 n).
We turn to the space bound. The space required for one invocation is O(|G|). The same storage

can be used for the two recursive calls, so the space is given by

S(|G|) = max{S(|G0|), S(|G1|}+O(|G|)
= O(|G|) because max{|G0|, |G1|} ≤ 2|G|/3

We have proved Theorem 1.

10

References

1. A. Aggarwal and M. M. Klawe. Applications of generalized matrix searching to geometric algorithms. Discrete
Applied Mathematics, 27(1-2):3–23, 1990.

2. A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applications of a matrix-searching
algorithm. Algorithmica, 2(1):195–208, 1987.

3. I. Cox, S. Rao, and Y. Zhong. Ratio regions: A technique for image segmentation. International Conference on
Pattern Recognition, 02:557, 1996.

4. Y. Emek, D. Peleg, and L. Roditty. A near-linear time algorithm for computing replacement paths in pla-
nar directed graphs. In SODA ’08: Proceedings of the Nineteenth Annual ACM-SIAM symposium on Discrete
Algorithms, pages 428–435, Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

5. J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths, and near linear time. J.
Comput. Syst. Sci., 72(5):868–889, 2006.

6. M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms.
J. ACM, 34(3):596–615, 1987.

7. H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems. SIAM Journal on Computing,
18(5):1013–1036, 1989.

8. A. V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM J. Comput., 24(3):494–504, 1995.
9. M. R. Henzinger, P. N. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for planar graphs.

Journal of Computer and System Sciences, 55(1):3–23, 1997.
10. H. Ishikawa and I. Jermyn. Region extraction from multiple images. In 8th IEEE International Conference on

Computer Vision, pages 509–516, Los Alamitos, CA, USA, 2001. IEEE Computer Society.
11. I. H. Jermyn and H. Ishikawa. Globally optimal regions and boundaries as minimum ratio weight cycles. IEEE

Trans. Pattern Anal. Mach. Intell., 23(10):1075–1088, 2001.
12. D. B. Johnson. Efficient algorithms for shortest paths in sparse graphs. Journal of the ACM, 24:1–13, 1977.
13. M. M. Klawe and D. J. Kleitman. An almost linear time algorithm for generalized matrix searching. SIAM

Journal On Discrete Math, 3(1):81–97, 1990.
14. P. N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the 16th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 146–155, 2005.
15. R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM Journal on Numerical Analysis,

16:346–358, 1979.
16. R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied Mathematics,

36(2):177–189, 1979.
17. G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs. Journal of Computer and

System Sciences, 32(3):265–279, 1986.
18. G. L. Miller and J. Naor. Flow in planar graphs with multiple sources and sinks. SIAM Journal on Computing,

24(5):1002–1017, 1995.
19. G. Monge. Mémoire sur la théorie des déblais et ramblais. Mém. Math. Phys. Acad. Roy. Sci. Paris, pages

666–704, 1781.
20. O. Veksler. Stereo correspondence with compact windows via minimum ratio cycle. IEEE Trans. Pattern Anal.

Mach. Intell., 24(12):1654–1660, 2002.

A Appendix

A.1 Proof of Lemma 1

Consider a decomposition of P = P1P2P3 . . . into maximal subpaths such that the subpath Pi
consists of nodes of Gi mod 2. Since r and v are boundary nodes, and since the boundary nodes are
the only nodes common to both G0 and G1, each subpath Pi starts and ends on a boundary node.
If Pi were not a shortest path in Gi mod 2 between its endpoints, replacing Pi in P with a shorter
path would yield a shorter r-to-v path, a contradiction.

It remains to show that there are at most |Vc| subpaths in the decomposition of P . Since P is
simple, each node, and in particular each boundary node appears in P at most once. Hence there
can be at most |Vc| − 1 non-empty subpaths in the decomposition of P . Note, however, that if P
starts with an arc of G0 then P1 is a trivial empty path from r to r. Hence, P can be decomposed
into at most |Vc| subpaths. ut

11

A.2 Proof of Lemma 5

Let u be the last boundary node visited by P . Let P1 be the r-to-u prefix of P , and let P2 be the
u-to-v suffix of P . Since P1 and P2 are subpaths of a shortest path in G, they are each shortest as
well. By choice of u, P2 has no internal boundary nodes, so is a path in Gi. ut

A.3 Running-Time Recurrence

Lemma 8. Let T (n) satisfy the recurrence T (n) = T (n1) + T (n2) + C1(n log n), where n1 + n2 ≤
n+ 4

√
n and ni ≤ 2n

3 . Then T (n) = O(n log2 n).

Proof. We show by induction that for any n ≥ N0, T (n) ≤ Cn log2 n for some constants N0, C
to be specified later. The base case holds since we may choose C so that T (N0) ≤ CN0 log2(N0).
Assume the claim holds for all n′ such that N0 ≤ n′ < n. Then:

T (n) ≤ C(n1 log2 n1 + n2 log2 n2) + C1n log n
≤ C(n1 + n2) log2(2n/3) + C1n log n
≤ C(n+ 4

√
n) log2(2n/3) + C1n log n

= C(n+ 4
√
n)(log(2/3) + log n)2 + C1n log n

≤ Cn log2 n+ 4C
√
n log2 n− 2C log(3/2)n log n+ (n+ 4

√
n) log2(2/3) + C1n log n

It therefore suffices to show that

4C
√
n log2 n− 2C log(3/2)n log n+ (n+ 4

√
n) log2(2/3) + C1n log n ≤ 0.

or equivalently that(
1− C1

2C log(3/2)

)
n log n ≥ 2

log(3/2)
√
n log2 n+

log(2/3)
2C

(n+ 4
√
n)

We therefore choose C > C1
2 log(3/2) , so that the above inequality holds since the coefficient in the

left hand side is positive, and since 2
log(3/2)

√
n log2 n+ log(2/3)

2C (n+ 4
√
n) is in o(n log n). ut

A.4 Proof Sketch of Theorem 2

The O(n log3 n) time-complexity of Emek et al. [4] origins in O(lg n) recursive calls to the District
procedure. This procedure computes in O(|G| log2 |G|) time all row minima of the matrix l̂end,d′

associated with G. We next describe this matrix and show that its row minima can actually be
found in O(|G|α(|G|) lg |G|) time.

Let P = (u0, u1, . . . , up+1) be the shortest path from s = u0 to t = up+1 in the graph G.
Consider the replacement s-to-t path Q that avoids the edge e in P . Q can be decomposed into
Q1Q2Q3 where Q1 is a prefix of P , Q3 is a suffix of P , and Q2 is a subpath from some ui to some
uj that avoids any other vertex in P . The first edge of Q2 can be left or right of P and the last edge
of Q2 can be left or right of P (see [4] for a common formal definition of the left-of and right-of
relations). In all four cases Q2 never crosses P (see Fig. 7 and Fig. 8).

The matrix l̂end,d′ is defined in [4] as the length of the shortest s-to-t path Q = Q1Q2Q3 with
Q2 as follows: Q2 starts at ui, its first edge is to the left of P if d = L and to its right if d = R.
Similarly, its last edge is to the left of P if d′ = L and to its right if d′ = R. The last vertex

12

s

i
i'

j

j'

t

z

Fig. 7. The s-t shortest path P is shown in solid blue.
Paths of type Q2 (dashed black) do not cross P . Two LL
paths (i.e., leaving and entering P from the left) are shown.
For i < i′ < j < j′, the ij path and the i′j′ path must cross
at some node z.

s

i
i'

j

j'

t

z

Fig. 8. The s-t shortest path P is shown in solid blue.
Paths of type Q2 (dashed black) do not cross P . Two LR
paths (i.e., leaving P from the left and entering P from the
right) are shown. For i < i′ < j < j′, the ij′ path and the
i′j path must cross at some node z.

of Q2 is uj . The lengths of Q1 and Q3 are denoted δG(s, ui) and δG(uj , t) and can be extracted
in O(1)-time assuming a preprocessing Dijkstra step computed P . The length of Q2 is denoted
PAD-queryG,d,d′(i, j) and it can be computed in O(lg |G|) time by a single query to a data structure
that Emek et al. call PADO (Path Avoiding Distance Oracle). Thus, we can write

l̂end,d′(i, j) = δG(s, ui) + PAD-queryG,d,d′(i, j) + δG(uj , t),

and query each entry of l̂end,d′ in O(lg |G|) time.

Lemma 9. The row minima of l̂end,d′ can be computed in O(|G|α(|G|) lg |G|) time.

Proof. Recall that a falling staircase matrix is a lower triangular fragment of a totally monotone
matrix. We first consider the case where d = d′ and show that the matrix PAD-queryG,d,d′ is a falling
staircase. Notice that l̂end,d′ is obtained from PAD-queryG,d,d′ by adding the same value δG(s, ui)
to all elements in the i’th row and then adding the same value δG(uj , t) to all elements in the j’th
column. It is not hard to verify that adding the same value to an entire row or column of a falling
staircase matrix gives another falling staircase matrix.

When d = d′, the proof of PAD-queryG,d,d′ being a falling staircase is essentially the same as the
proof of Lemma 3 since the Q2 paths have the same crossing property as the paths in Lemma 3.
This is illustrated in Fig. 7. Since l̂end,d′ is a falling staircase its row minima can be computed using
Klawe and Kleitman’s algorithm by querying only O(|G|α(|G|)) matrix entries (see Section 2.2).
The total running time is O(|G|α(|G|) lg |G|) as each such query can be done in O(lg |G|).

We now turn to to the case of d 6= d′. In this case, Lemma 3 holds but the Monge condition is
with a ≤ rather than a ≥. To see this, consider the crossing paths in Fig. 8. As opposed to Fig. 7,

13

this time the crossing paths are i-to-j′ and i′-to-j. By negating all the elements of PAD-queryG,d,d′

we get a falling staircase matrix with the original ≥ Monge condition and we are now looking for its
row maxima. As we explained in Section 2.2, finding the row maxima in a falling staircase matrix
can be easily done using SMAWK in O(|G|) time after replacing the blanks with sufficiently small
numbers so that the resulting matrix is totally monotone. The total running time for d 6= d′ is thus
O(|G| lg |G|). ut

14

