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Abstract. We present an optimal data structure for submatrix maxi-
mum queries in n×n Monge matrices. Our result is a two-way reduction
showing that the problem is equivalent to the classical predecessor
problem in a universe of polynomial size. This gives a data structure
of O(n) space that answers submatrix maximum queries in O(log logn)
time, as well as a matching lower bound, showing that O(log logn)
query-time is optimal for any data structure of size O(npolylog(n)).
Our result settles the problem, improving on the O(log2 n) query-time
in SODA’12, and on the O(logn) query-time in ICALP’14.
In addition, we show that partial Monge matrices can be handled in the
same bounds as full Monge matrices. In both previous results, partial
Monge matrices incurred additional inverse-Ackerman factors.

1 Introduction

Data structures for range queries and for predecessor queries are among the
most studied data structures in computer science. Given an n × n matrix M ,
a range maximum (also called submatrix maximum) data structure can report
the maximum entry in any query submatrix (a set of consecutive rows and a
set of consecutive columns) of M . Given a set S ⊆ [0, U) of n integers from a
polynomial universe U , a predecessor data structure can report the predecessor
(and successor) in S of any query integer x ∈ [0, U). In this paper, we prove
that these two seemingly unrelated problems are in fact equivalent when the
matrix M is a Monge matrix.

Range maximum queries. A long line of research over the last three decades
including [3,9,10,13,20] achieved range maximum data structures of Õ(n2)
space and Õ(1) query time4, culminating with the O(n2)-space O(1)-query data
structure of Yuan and Atallah [20]. In general matrices, this is optimal since
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representing the input matrix already requires Θ(n2) space. In fact, reducing
the additional space to O(n2/c) is known to incur an Ω(c) query-time [5] and
such tradeoffs can indeed be achieved for any value of c [4,5].

However, in many applications, the matrixM is not stored explicitly but any
entry of M can be computed when needed in O(1) time. One such case is when
M is a sparse matrix with N = o(n2) nonzero entries. In this case the problem is
known in computational geometry as the orthogonal range searching problem on
the n×n grid. Various data structures with Õ(N)-space and Õ(1)-query appear
in a long history of results including [2,7,8,11,13]. For a survey on orthogonal
range searching see [18]. Another case where the additional space can be made
o(n2) (and in fact even O(n)) is when the matrix is a Monge matrix.

Range maximum queries in Monge matrices. A matrix M is
Monge if for any pair of rows i < j and columns k < ` we have that
M [i, k] + M [j, `] ≥ M [i, `] + M [j, k]. Submatrix maximum queries on Monge
matrices have various important applications in combinatorial optimization and
computational geometry such as problems involving distances in the plane, and
in problems on convex n-gons. See [6] for a survey on Monge matrices and their
uses in combinatorial optimization. Submatrix maximum queries on Monge
matrices are used in algorithms that efficiently find the largest empty rectangle
containing a query point, in dynamic distance oracles for planar graphs, and in
algorithms for maximum flow in planar graphs. See [15] for more details.

Given an n×n Monge matrix M it is possible to obtain compact data struc-
tures of only Õ(n) space that can answer submatrix maximum queries in Õ(1)
time. The first such data structure was given by Kaplan, Mozes, Nussbaum and
Sharir [15]. They presented an O(n log n)-space data structure with O(log2 n)
query time. This was improved in [14] to O(n) space and O(log n) query time.

Breakpoints and Partial Monge matrices. Given an m × n Monge
matrix M , let r(c) be the row containing the maximum element in the c-th
column of M . It is easy to verify that the r(·) values are monotone, i.e.,
r(1) ≤ r(2) ≤ . . . ≤ r(n). Columns c such that r(c − 1) < r(c) are called
the breakpoints of M . A Monge matrix consisting of m < n rows has O(m)
breakpoints, which can be found in O(n) time using the SMAWK algorithm [1].

Some applications involve partial Monge matrices rather than full Monge ma-
trices. A partial Monge matrix is a Monge matrix where some of the entries are
undefined, but the defined entries in each row and in each column are contiguous.
The total number of breakpoints in a partial Monge matrix is still O(m) [14],
and they can be found in O(n · α(n)) time5 using an algorithm of Klawe and
Kleitman [16]. This was used in [14,15] to extend their solutions to partial
Monge matrices at the cost of an additional α(n) factor to the query time.6

Our results. In this paper, we fully resolve the submatrix maximum query
problem in n× n Monge matrices by presenting a data structure of O(n) space
and O(log log n) query time. Consequently, we obtain an improved query time

5 Here α(n) is the inverse-Ackerman function.
6 In [15], there was also an additional logn factor to the space.
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for other applications such as finding the largest empty rectangle containing a
query point. We compliment our upper bound with a matching lower bound,
showing that O(log log n) query-time is optimal for any data structure of size
O(n polylog(n)). In fact, implicit in our upper and lower bound is an equivalence
between the predecessor problem in a universe of polynomial size and the range
maximum query problem in Monge matrices. The upper bound essentially
reduces a submatrix query to a predecessor problem, and vice versa, the lower
bound reduces the predecessor problem to a submatrix query problem.

Finally, we extend our result to partial Monge matrices with the exact same
bounds (i.e., O(n) space and O(log log n) query time). Our result is the first to
achieve such extension with no overhead.

Techniques. Let M be an n× n Monge matrix7. Consider a full binary tree T
whose leaves are the rows of M . Let Mu be the submatrix of M composed of all
rows (i.e., leaves) in the subtree of a node u in T . Both existing data structures for
submatrix maximum queries [14,15] store, for each node u in T a data structure
Du. The goal of Du is to answer submatrix maximum queries for queries that
include an arbitrary interval of columns and exactly all rows ofMu. This way, an
arbitrary query is covered in [14,15] by querying the Du structures of O(log n)
canonical nodes of T . An Ω(log n) bound is thus inherent for any solution that
examines the canonical nodes. We overcome this obstacle by designing a stronger
data structure Du. Namely, one that supports queries that include an arbitrary
interval of columns and a prefix of rows or a suffix of rows of Mu. This way, an
arbitrary query can be covered by just two Dus. The idea behind the new design
is to efficiently encode the changes in column maxima as we add rows toMu one
by one. Retrieving this information is done using weighted ancestor search and
range maximum queries on trees. This is a novel use of these techniques.

For our lower bound, we show that for any set of n integers S ⊆ [0, n2) there
exists an n × n Monge matrix M such that the predecessor of x in S can be
found with submatrix minimum queries on M . The predecessor lower bound
of Pǎtraşcu and Thorup [19] then implies that O(n polylog(n)) space requires
Ω(log log n) query time. We overcome two technical difficulties here: First, M
should be Monge. Second, there must be an O(n polylog(n))-size representation
of M which can retrieve any entry M [i, j] in O(1) time.

Finally, for handling partial Monge matrices, and unlike previous solutions
for this case, we do not directly adapt the solution for the full Monge case to
partial Monge matrices. Instead we decompose the partial Monge matrix into
many full Monge matrices, that can be preprocessed to be queried cumulatively
in an efficient way. This requires significant technical work and careful use of
the structure of the decomposition.

Roadmap. In Section 2 we present an O(n log n)-space data structure for
Monge matrices that answers submatrix maximum queries in O(log log n) time.
In Section 3 we reduce the space to O(n). Our lower bound is given in Section 4.

7 We consider m × n matrices, but for simplicity we sometimes state the results for
n× n matrices.
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The extension to partial Monge matrices, that we believe is a significant
contribution of our paper, is deferred to the full version due to lack of space.

2 Data structure for Monge matrices

Our goal in this section is to construct, for a given m × n Monge matrix M , a
data structure of size O(m log n) that answers submatrix maximum queries in
O(log log n) time. In Section 3 we show how to reduce the space from O(n log n)
to O(n) when m = n. We will actually show a stronger result, namely the
structure allows us to reduce in O(1) time a submatrix maximum query into O(1)
predecessor queries on a set consisting of n integers from a polynomial universe.

We denote by pred(m,n) the complexity of a predecessor query on a set of
m integers from a universe {0, . . . , n− 1}. It is well known that there are O(m)
data structures achieving pred(m,n) = min{O(logm), O(log log n)}.

Recall that a submatrix maximum query returns the maximum M [i, j] over
all i ∈ [i0, i1] and j ∈ [j0, j1] for a given i0 ≤ i1 and j0 ≤ j1. We start by answer-
ing the easier subcolumn maximum queries within these space and time bounds.
That is, finding the maximumM [i, j] over all i ∈ [i0, i1] for a given i0 ≤ i1 and j.

We construct a full binary tree T over the rows of M . Every leaf of the
tree corresponds to a single row of M , and every inner node corresponds to the
range of rows in its subtree. To find the maximum M [i, j] over all i ∈ [i0, i1]
for a given i0 ≤ i1 and j, we first locate the lowest common ancestor (lca) u
of the leaves corresponding to i0 and i1 in the tree. Then we decompose the
query into two parts: one fully within the range of rows M` of the left child of
u, and one fully within the range of rows Mr of the right child of u. The former
ends at the last row of M` and the latter starts at the first row of Mr. We
equip every node with two data structures allowing us to answer such simpler
subcolumn maximum queries. Because of symmetry (if M is Monge, so is M ′,
where M ′[i, j] = M [n + 1 − i, n + 1 − j]) it is enough to show how to answer
subcolumn maximum queries starting at the first row.

Lemma 1. Given an m×n Monge matrix M , a data structure of size O(m) can
be constructed in O(m log n) time to answer in O(pred(m,n)) time subcolumn
maximum queries starting at the first row of M .

Proof. Consider queries spanning an entire column c of M . To answer such a
query, we only need to find the corresponding r(c). If we store the breakpoints of
M in a predecessor structure, where every breakpoint c links to its corresponding
value of r(c), a query can be answered with a single predecessor search. More pre-
cisely, to determine the maximum in the c-th column ofM , we locate the largest
breakpoint c′ ≤ c, and set r(c) = r(c′). Hence we can construct a data structure
of size O(m) to answer entire column maximum queries in O(pred(m,n)) time.

LetMi be a Monge matrix consisting of the first i rows ofM . By applying the
above reasoning to every Mi separately, we immediately get a structure of size
O(m2) answering subcolumn maximum queries starting at the first row of M in
O(pred(m,n)) time. We want to improve on this by utilizing the dependency of
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the structures constructed for different i’s. Namely it can be observed that the
list of breakpoints ofMi+1 is a prefix of the list of breakpoints ofMi to which we
append at most one new element. In other words, if the breakpoints of Mi are
stored on a stack, we need to pop zero or more elements and push at most one new
element to represent the breakpoints of Mi+1. Consequently, instead of storing
a separate list for every Mi, we can succinctly describe the content of all stacks
with a single tree T on at most m+1 nodes. For every i, we store a pointer to a
node s(i) ∈ T , such that the ancestors of s(i) (except for the root) are exactly the
breakpoints ofMi. Whenever we pop an element from the current stack, we move
to the parent of the current node, and whenever we push an element, we create
a new node and make it a child of the current node. Initially, the tree consists of
just the root. Every node is labelled with a column number and by construction
these numbers are strictly increasing on any path starting at the root (the root is
labelled with −∞). Therefore, a predecessor search for j among the breakpoints
of Mi reduces to finding the leafmost ancestor of s(i) whose label is at most j.
This is known as the weighted ancestor problem. Weighted ancestor queries on
a tree of size O(m) are equivalent to predecessor searching on a number of sets
of O(m) total size [17]8, achieving the claimed space and query time bounds.

To finish the proof, we need to bound the construction time. The bottleneck
is constructing the tree T . Let c1 < c2 < . . . < ck for some k ≤ i be the
breakpoints of Mi. As long as M [i+ 1, ck] ≥M [r(ck), ck] we decrease k by one,
i.e., remove the last breakpoint. This process is repeated O(m) times in total. If
k = 0 we create a new breakpoint c1 = 1. If k ≥ 1 andM [i+1, ck] < M [r(ck), ck],
we check if M [i+1, n] ≥M [r(ck), n]. If so, we need to create a new breakpoint.
To this end, we need to find the smallest j such that M [i + 1, j] ≥ M [r(ck), j].
This can be done in O(log n) using binary search. Consequently, T can be
constructed in O(m log n) time. Then augmenting it with a weighted ancestor
structure takes O(m) time. ut

We apply Lemma 1 twice to every node of the full version tree T . Once
for subcolumn maximum queries starting at the first row and once for queries
ending at the last row. Since the total size of all structures at the same level
of the tree is O(m), the total size of our subcolumn maximum data structure
becomes O(m logm), and it can be constructed in O(m logm log n) time to
answer queries in O(pred(m,n)) time. Hence we have proved the following.

Theorem 1. Given an m × n Monge matrix M , a data structure of size
O(m logm) can be constructed in O(m logm log n) time to answer subcolumn
maximum queries in O(pred(m,n)) time.

By symmetry (a transpose of a Monge matrix is Monge) we can answer
subrow maximum queries (where the query is a single row and a range of
columns) in O(pred(n,m)) time. We are now ready to tackle general submatrix
maximum queries.

8 Technically, the reduction adds O(log∗m) to the query time, but this can be avoided.
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At a high level, the idea is identical to the one used for subcolumn maximum
queries: we construct a full binary tree T over the rows of M , where every node
corresponds to a range of rows. To find maximum M [i, j] over all i ∈ [i0, i1]
and j ∈ [j0, j1] for a given i0 ≤ i1 and j0 ≤ j1, we locate the lowest common
ancestor of the leaves corresponding to i0 and i1 and decompose the query into
two parts, the former ending at the last row of M` and the latter starting at the
first row of Mr. Every node is equipped with two data structures allowing us to
answer submatrix maximum queries starting at the first row or ending at the
last row. As before, it is enough to show how to answer submatrix maximum
queries starting at the first row.

Lemma 2. Given an m × n Monge matrix M , and a data structure that
answers subrow maximum queries on M in O(pred(n,m)) time, one can
construct in O(m logm) time a data structure consuming O(m) additional
space, that answers submatrix maximum queries starting at the first row of M
in O(pred(m,n) + pred(n,m)) time.

Proof. We extend the proof of Lemma 1. Let c1 < c2 < . . . < ck be the
breakpoints of M stored in a predecessor structure. For every i ≥ 2 we pre-
compute and store the value mi = maxj∈[ci−1,ci)M [r(ci−1), j]. These values are
augmented with a (one dimensional) range maximum query data structure. To
begin with, consider a submatrix maximum query starting at the first row of M
and ending at the last row of M , i.e., we need to calculate the maximum M [i, j]
over all i ∈ [1,m] and j ∈ [j0, j1]. We find in O(pred(m,n)) the successor of j0,
denoted ci, and the predecessor of j1, denoted ci′ . There are three possibilities:

1. The maximum is reached for j ∈ [j0, ci),
2. The maximum is reached for j ∈ [ci, ci′),
3. The maximum is reached for j ∈ [ci′ , j1).

The first and the third possibilities can be calculated with subrow maximum
queries in O(pred(n,m)), because both ranges span an interval of columns and a
single row. The second possibility can be calculated with a range maximum query
on the range (i, i′]. Consequently, we can construct a data structure of size O(m)
to answer such submatrix maximum queries in O(pred(m,n)+pred(n,m)) time.

The above solution can be generalized to queries that start at the first row of
M but do not necessarily end at the last row of M . This is done by considering
the Monge matricesMi consisting of the first i rows ofM . For every such matrix,
we need a predecessor structure storing all of its breakpoints, and additionally
a range maximum structure over their associated values. Hence now we need to
construct a similar tree T as in Lemma 1 on O(m) nodes, but now every node has
both a weight and a value. The weight of a node is the column number of the cor-
responding breakpoint ck, and the value is its mk (or undefined if k = 1). As in
Lemma 1, the breakpoints of Mi are exactly the ancestors of the node s(i). Note
that everymk is defined in terms of ck−1 and ck, but this is not a problem because
the predecessor of a breakpoint does not change during the whole construction.
We maintain a weighted ancestor structure using the weights (in order to find
ci and ci′ in O(pred(m,n)) time), and a generalized range maximum structure
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using the values. A generalized range maximum structure of a tree T , given two
query nodes u and v, returns the maximum value on the unique u-to-v path in
T . It can be implemented in O(m) space and O(1) query time after O(m logm)
preprocessing [10] once we have the values. The values can be computed with
subrow maximum queries in O(m · pred(n,m)) = O(m logm) total time. ut

By applying Lemma 2 twice to every node of the full binary tree T , we
construct in O(m log2m) time a data structure of size O(m logm) to answer
submatrix maximum queries in O(pred(m,n) + pred(n,m)) time. In order to
apply Lemma 2 to a node of T we need a subrow maximum query data structure
for the corresponding rows of the matrixM . Note, however, that a single subrow
maximum query data structure for M can be used for all nodes of T .

Theorem 2. Given an m×n Monge matrix M , and a data structure answering
subrow maximum queries on M in O(pred(n,m)) time, one can construct in
O(m log2m) time a data structure taking O(m logm) additional space, that
answers submatrix maximum queries on M in O(pred(m,n)+pred(n,m)) time.

By combining Theorem 1 with Theorem 2, given an n × n Monge matrix
M , a data structure of size O(n log n) can be constructed in O(n log2 n) time to
answer submatrix maximum queries in O(pred(n, n)) time.

3 Obtaining linear space

In this section we show how to decrease the space of the data structure pre-
sented in Section 2 to be linear. We extend the idea developed in our previous
paper [14]. The previous linear space solution was based on partitioning the
matrix M into n/x matrices M1,M2, . . . ,Mn/x, where each Mi is a slice of M
consisting of x = log n consecutive rows. Then, instead of working with the
matrix M , we worked with the (n/x) × n matrix M ′, where M ′[i, j] is the
maximum entry in the j-th column of Mi.

Subcolumn queries. Consider a subcolumn query. Suppose the query is en-
tirely contained in someMi. This means it spans less than x = log n rows. In [14],
since the desired query time was O(log n), a query simply inspected all elements
of the subcolumn. In our case however, since the desired query time is only
O(log log n), we apply the above partitioning scheme twice. We explain this now.

We start with the following lemma, that provides an efficient data structure
for queries consisting of a single column and all rows in rectangular matrices.
The statement of the lemma was taken almost verbatim from the previous solu-
tion [14]. Its query time was originally stated in terms of query to a predecessor
structure, but here we prefer to directly plug in the bounds implied by atomic
heaps [12] (which support predecessor searches in constant time provided x is
O(log n)). This requires only an additional O(n) time and space preprocessing.

Lemma 3 ([14]). Given an x× n Monge matrix, a data structure of size O(x)
can be constructed in O(x log n) time to answer entire-column maximum queries
in O(1) time, if x = O(log n).
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Our new subcolumn data structure is summarized in the following theorem. It
uses the above lemma and two applications of the partitioning scheme.

Theorem 3. Given an m× n Monge matrix M , a data structure of size O(m)
can be constructed in O(m log n) time to answer subcolumn maximum queries
in O(log log(n+m)) time.

Proof. We first partition M into n/x matrices M1,M2, . . . ,Mn/x, where
x = logm. Every Mi is a slice of M consisting of x consecutive rows. Next, we
partition everyMi into x/x′ matricesMi,1,Mi,2, . . . ,Mi,x′ , where x′ = log logm.
Every Mi,j is a slice of Mi consisting of x′ consecutive rows (without loss of
generality, assume that x divides m and x′ divides x). Now we define a new
(m/x)× n matrix M ′, where M ′[i, j] is the maximum entry in the j-th column
of Mi. Similarly, for every Mi we define a new (x/x′) × n matrix M ′i , where
M ′i [j, k] is the maximum entry in the k-th column of Mi,j .

We apply Lemma 3 on every Mi and Mi,j in O(m log n) total time and
O(m) total space, so that any M ′[i, j] or M ′i [j, k] can be retrieved O(1) time.
Furthermore, it can be easily verified that M ′ and all M ′is are also Monge.
Therefore, we can apply Theorem 1 on M ′ and every M ′i . The total con-
struction time is O((m/x) log(m/x) log n + (m/x)(x/x′) log(x/x′) log n) =
O(m log n), and the total size of all structures constructed so far is
O((m/x) log(m/x) + (m/x)(x/x′) log(x/x′)) = O(m).

Now consider a subcolumn maximum query. If the range of rows is fully
within a single Mi,j , the query can be answered naively in O(x′) = O(log logm)
time. Otherwise, if the range of rows is fully within a single Mi, the query can
be decomposed into a prefix fully within some Mi,j , an infix corresponding to
a range of rows in M ′i , and a suffix fully within some Mi,j′ . The maximum in
the prefix and the suffix can be computed naively in O(x′) = O(log logm) time,
and the maximum in the infix can be computed in O(log log n) time using the
structure constructed for M ′i . Finally, if the range of rows starts inside some
Mi and ends inside another Mi′ , the query can be decomposed into two queries
fully within Mi and Mi′ , respectively, which can be processed in O(log log n)
time as explained before, and an infix corresponding to a range of rows of M ′.
The maximum in the infix can be computed in O(log log n) time using the
structure constructed for M ′. ut

Submatrix queries. We are ready to present the final version of our data
structure. It is based on two applications of the partitioning scheme, and an
additional trick of transposing the matrix.

Theorem 4. Given an n × n Monge matrix M , a data structure of size O(n)
can be constructed in O(n log n) time to answer submatrix maximum queries in
O(log log n) time.

Proof. We partition M as described in the proof of Theorem 3, i.e., M is par-
titioned into n/x matrices M1,M2, . . . ,Mn/x, where x = log n, and every Mi is
then partitioned into x/x′ matrices Mi,1,Mi,2, . . . ,Mi,x′ , where x′ = log log n.
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Then we define smaller Monge matrices M ′ and M ′i , and provide O(1) time ac-
cess to their entries with Lemma 3. We apply Theorem 3 to the transpose of M ′
to get a subrow maximum query data structure for M ′. This takes O(n) space
and O(n log n) time. With this data structure we can apply Theorem 2 on M ′,
which takes an additional O( n

logn log n
logn ) = O(n) space and O(n log n) time.

We would have liked to apply Theorem 3 to the transpose of all M ′i as well, but
this would require O(n) space for each matrix, which we cannot afford. Since we
do not have subrow maximum query data structure for the M ′is, we cannot ap-
ply Theorem 2 to them directly. However, note that the subrow maximum query
data structure is used in Theorem 2 in two ways (see the proof of Lemma 2). The
first use is in directly finding the subrow maximum in cases 1 and 3 in the proof
of Lemma 2. In the absence of the subrow structure, we can still report the two
rows containing the candidate maximum, although not the maximum itself. The
second use is in computing the values for the generalized range maximum struc-
ture required to handle case 2 in that proof. In this case, we do not really need the
fast query of the data structure of Theorem 3, and can use instead the slower lin-
ear space data structure from [14, Lemma 2] to compute the values in O(n log n)
time. Thus, we can apply Theorem 2 to each M ′i , and get at most two candidate
rows of M ′i (from cases 1 and 3), and one candidate entry of M ′i (from case 2),
with the guarantee that the submatrix maximum is among these candidates.

We repeat the above preprocessing on the transpose of M . Now consider
a submatrix maximum query. If the range of rows starts inside some Mi and
ends inside another Mi′ , the query can be decomposed into two queries fully
within Mi and Mi′ , respectively, and an infix corresponding to a range of rows
of M ′. The maximum in the infix can be computed in O(log log n) time using
the structure constructed for M ′. Consequently, it is enough to show how to
answer a query in O(log log n) time when the range of rows is fully within a
single Mi. In such case, if the range of rows starts inside some Mi,j and ends
inside another Mi,j′ , the query can be decomposed into a prefix fully within
Mi,j , an infix corresponding to a range of rows in M ′i and a suffix fully within
some Mi,j′ . As we explained above, even though we cannot locate the maximum
in the infix exactly, we can isolate at most 2 rows (plus a single entry) of M ′i ,
such that the maximum lies in one of these rows. Each row of M ′i corresponds
to a range of rows fully inside some Mi,j . Consequently, we reduced the query in
O(log log n) time to a constant number of queries such that the range of rows in
each query is fully within a single Mi,j . Since each Mi,j consists of O(log log n)
rows of M , we have identified, in O(log log n) time, a set of O(log log n) rows of
M that contain the desired submatrix maximum.

Now we repeat the same procedure on the transpose ofM to identify a set of
O(log log n) columns ofM that contain the desired submatrix maximum. Since a
submatrix of a Monge matrix is also Monge, the submatrix of M corresponding
to these sets of candidate rows and columns is an O(log log n) × O(log log n)
Monge matrix. By running the SMAWK algorithm [1] in O(log log n) time on
this small Monge matrix, we can finally determine the answer. ut
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4 Lower Bound

A predecessor structure stores a set of n integers S ⊆ [0, U), so that given x we
can determine the largest y ∈ S such that y ≤ x. As shown by Pǎtraşcu and
Thorup [19], for U = n2 any predecessor structure consisting of O(n polylog(n))
words needs Ω(log log n) time to answer queries, assuming that the word size is
Θ(log n). We will use their result to prove that our structure is in fact optimal.

Given a set of n integers S ⊆ [0, n2) we want to construct n × n Monge
matrix M such that the predecessor of any x in S can be found using one
submatrix minimum query on M and O(1) additional time (to decide which
query to ask and then return the final answer). Then, assuming that for any
n × n Monge matrix there exists a data structure of size O(n polylog(n))
answering submatrix minimum queries in o(log log n) time, we can construct a
predecessor structure of size O(n polylog(n)) answering queries in o(log log n)
time, which is not possible. The technical difficulty here is twofolds. First, M
should be Monge. Second, we are working in the indexing model, i.e., the data
structure for submatrix minimum queries can access the matrix. Therefore, for
the lower bound to carry over, M should have the following property: there is a
data structure of size O(n polylog(n)) which retrieves any M [i, j] in O(1) time.
Guaranteeing that both properties hold simultaneously is not trivial.

Before we proceed, let us comment on the condition S ⊆ [0, n2). While
quadratic universe is enough to invoke the Ω(log log n) lower bound for struc-
tures of size O(n polylog(n)), our reduction actually implies that even for larger
polynomially bounded universes, i.e., S ⊆ [0, nc), for any fixed c, it is possible
to construct n× n Monge matrix M such that the predecessor of x in S can be
found with O(1) submatrix minimum queries on M and O(1) additional time
(and, as previously, any M [i, j] can be retrieved in O(1) time with a structure
of size O(n)). This is because any predecessor queries on a set of n integers
S ⊆ [0, nc) can be reduced in O(1) time to O(1) predecessor queries on a set of n
integers S′ ⊆ [0, n2) with a structure of size O(n). See full version of this paper.

The following propositions are easy to verify:

Proposition 1. A matrix M is Monge iff M [i, j] + M [i + 1, j + 1] ≤
M [i+ 1, j] +M [i, j + 1] for all i, j such that all these entries are defined.

Proposition 2. If a matrix M is Monge, then for any vector H the matrix
M ′, where M ′[i, j] =M [i, j] +H[j] for all i, j, is also Monge.

Theorem 5. For any set of n integers S ⊆ [0, n2), there exists a data structure
of size O(n) returning any M [i, j] in O(1) time, where M is a Monge matrix
such that the predecessor of x can be found using O(1) time and one submatrix
minimum query on M .

Proof. We partition the universe [0, n2) into n parts [0, n), [n, 2n), . . .. The i-th
part [i ·n, (i+1) ·n) defines a Monge matrixMi consisting of |S∩ [i ·n, (i+1) ·n)|
rows and n columns. The idea is to encode the predecessor of x ∈ [0, n2) by the
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minimum element in the (x mod n + 1)-th column of Mbx/nc. We first describe
how these matrices are defined, and then show how to stack them together.

Consider any 0 ≤ i < n. Every element in S∩[i·n, (i+1)·n) = {a1, a2, . . . , ak}
has a unique corresponding row in Mi. Let aj = i · n + a′j , so that
a′1 < a′2 < . . . < a′k and a′j ∈ [0, n) for all j, and also define a′k+1 = n.
We describe an incremental construction of Mi. For technical reasons, we
start with an artificial top row containing 1, 2, 3, . . . , n. Then we add the rows
corresponding to a′1, a′2, . . . , a′k. The row corresponding to a′j consists of three
parts. The middle part starts at the (a′j + 1)-th column, ends at the a′j+1-th
column, and contains only 1’s. The elements in the left part decrease by 1 and
end with 2 at the a′j-th column, similarly the elements in the right part (if any)
start with 2 at the (a′j+1 + 1)-th column and increase by 1. Formally, the k-th
element of the (j + 1)-th row, denoted Mi[j + 1, k], is defined as follows.

Mi[j + 1, k] =


a′j − k + 2 if k ∈ [1, a′j ]

1 if k ∈ [a′j + 1, a′j+1]

k − a′j+1 + 1 if k ∈ [a′j+1 + 1, n]

(1)

Finally, we end with an artificial bottom row containing n, n − 1, . . . , 1.
We need to argue that every Mi is Monge. By Proposition 1, it is enough to
consider every pair of adjacent rows r1, r2 there. Define r′1[j] = r1[j]− r1[j − 1]
and similarly r′2[j] = r2[j] − r2[j − 1]. To prove that Mi is Monge, it is enough
to argue that r′2[j] ≥ r′1[j] for all j ≥ 2. By construction, both r′1 and r′2 are of
the form −1,−1, . . . ,−1, 0, 0, . . . , 0, 1, 1, . . . , 1, and all 0’s in r′2 are on the right
of all 0’s in r′1. Therefore, Mi is Monge.

Now one can observe that the predecessor of x ∈ [0, n2) can be found by look-
ing at the (x mod n+1)-th column ofMbx/nc. We check if x < a1, and if so return
the predecessor of a1 in the whole S. This can be done in O(1) time and O(n)
additional space by explicitly storing a1 and its predecessor for every i. Other-
wise we know that the predecessor of x is aj such that x mod n ∈ [a′j , a

′
j+1), and,

by construction, we only need to find j ∈ [1, k] such that the (x mod n + 1)-th
element of row j + 1 in Mi is 1. This is exactly a subcolumn minimum query.

We cannot simply concatenate allMi’s to form a larger Monge matrix. We use
Proposition 2 instead. Initially, we setM =M0. Then we consider every otherMi

one-by-one maintaining invariant that the current M is Monge and its last row
is n, n−1, . . . , 1. In every step we add the vector H = [−n+1,−n+3, . . . , n−1]
to the current matrixM , obtaining a matrixM ′ whose last row is 1, 2, . . . , n. By
Proposition 2, M ′ is Monge. Then we can construct the new M by appending
Mi without its first row to M ′. Because the first row of Mi is also 1, 2, . . . , n,
the new M is also Monge. Furthermore, because we add the same value to all
elements in the same column of Mi, answering subcolumn minimum queries on
Mi can be done with subcolumn minimum queries on the final M .

We need to argue that elements of M can be accessed in O(1) using a
data structure of size O(1). To retrieve M [j, k], first we lookup in O(1) time
the appropriate Mi from which it originates. This can be preprocessed and
stored for every j in O(n) total space and allows us to reduce the question to
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retrievingMi[j
′, k]. Because Proposition 2 is applied exactly n−1− i times after

appending Mi to the current M , then we can return Mi[j
′, k] + (n− 1− i)H[k].

To find Mi[j
′, k], we just directly use Equation 1, which requires only storing

a′1, a
′
2, . . . , a

′
n in O(n) total space. ut
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