Short and Simple Cycle Separators in Planar Graphs

ELI FOX-EPSTEIN, Tufts University

SHAY MOZES, MIT

PHITCHAYA MANGPO PHOTHILIMTHANA, UC Berkeley
CHRISTIAN SOMMER

We provide an implementation of an algorithm that, given a triangulated planar graph with m edges, returns
a simple cycle that is a 3/4-balanced separator consisting of at most +/8m edges. An efficient construction of a
short and balanced separator that forms a simple cycle is essential in numerous planar graph algorithms, for
example, for computing shortest paths, minimum cuts, or maximum flows. To the best of our knowledge, this is
the first implementation of such a cycle separator algorithm with a worst-case guarantee on the cycle length.

We evaluate the performance of our algorithm and compare it to the planar separator algorithms recently
studied by Holzer et al. [2009]. Out of these algorithms, only the Fundamental Cycle Separator (FCS) pro-
duces a simple cycle separator. However, FCS does not provide a worst-case size guarantee. We demonstrate
that (1) our algorithm is competitive across all test cases in terms of running time, balance, and cycle
length; (2) it provides worst-case guarantees on the cycle length, significantly outperforming FCS on some
instances; and (3) it scales to large graphs.

Categories and Subject Descriptors: G.3 [Mathematical Software]: Mathematical Software Performance;
G.1.1 [Combinatorics]: Combinatorial Algorithms; G.1.2 [Graph Theory]: Graph Algorithms

General Terms: Algorithms
Additional Key Words and Phrases: Design, algorithms, performance, planar graphs, cycle separator

ACM Reference Format:

Eli Fox-Epstein, Shay Mozes, Phitchaya Mangpo Phothilimthana, and Christian Sommer. 2016. Short and
simple cycle separators in planar graphs. J. Exp. Algorithmics 21, 2, Article 2.2 (September 2016), 24 pages.
DOL: http://dx.doi.org/10.1145/2957318

1. INTRODUCTION

Separators identify structure in a graph by cleaving it into two balanced parts with
limited mutual interference. A separator theorem typically provides worst-case guar-
antees on the balance of the parts and on the size of their shared boundary. Separators
have been studied extensively and separator theorems have been found for planar
graphs [Ungar 1951; Lipton and Tarjan 1979; Djidjev 1982; Miller 1986; Gazit and
Miller 1990; Spielman and Teng 1996; Djidjev and Venkatesan 1997], bounded-genus

A preliminary version of this work appeared in Fox-Epstein et al. [2013].

Authors’ addresses: E. Fox-Epstein, Dept. of Computer Science, 115 Waterman St, Providence RI1 02912, USA;
email: ef@cs.brown.edu; E.F. is currently affiliated with Brown University. S. Mozes, Efi Arazi School of Com-
puter Science, The interdisciplinary Center Herzliya, POB 167 Herzliya, 4610101, Israel; email: smozes@
idc.ac.il; the bulk of this research was conducted while S. M. was at MIT. Parts of this work were conducted
by S. M. while with Brown University and with IDC Herzliya. P. M. Phothilimthana, Department of Com-
puter Science, 595 Soda Hall, Berkeley CA, 94720, USA; email: mangpo@csail.mit.edu; P. M. P. is currently
affiliated with UC Berkeley. C. Sommer; email: csom@csail.mit.edu; the bulk of this research was conducted
while C.S. was at MIT.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2016 ACM 1084-6654/2016/09-ART2.2 $15.00

DOI: http://dx.doi.org/10.1145/2957318

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

http://dx.doi.org/10.1145/2957318
http://dx.doi.org/10.1145/2957318

2.2:2 E. Fox-Epstein et al.

graphs [Djidjev 1985; Gilbert et al. 1984; Kelner 2006], minor-free graphs [Alon et al.
1990; Plotkin et al. 1994; Reed and Wood 2009; Biswal et al. 2010; Kawarabayashi and
Reed 2010; Wulff-Nilsen 2011], and others.

Efficient algorithms for these graph classes often exploit the fact that the input graph
has small separators. For example, divide-and-conquer algorithms rely on decomposing
a problem into subproblems with limited interference. More formally, a separator of a
graph G = (V, E) is a partition of the vertices into three sets A, B, and S, where S is
relatively small, A and B are of approximately the same size! (say, |A|, |B| < 3|V |/4),
and no edges exist between the two parts (E N A x B =). A smaller set S often implies
faster algorithms providing solutions for various problems such as exact shortest paths
[Frederickson 1987; Henzinger et al. 1997] or approximate vertex cover [Lipton and
Tarjan 1980], and many more [Goodrich 1995; Klein and Subramanian 1998;
Fakcharoenphol and Rao 2006; Mozes and Wulff-Nilsen 2010; Cabello 2012;
Kawarabayashi et al. 2011; Italiano et al. 2011; Lacki and Sankowski 2011; Borradaile

et al. 2011; Mozes and Sommer 2012]. For planar graphs, it is known that |S| = O(/|V|)
is possible, even for worst-case instances [Lipton and Tarjan 1979].

Separators in planar graphs are based on fundamental cycles. For a spanning tree T',
the fundamental cycle C,, induced by an edge uv ¢ T is the simple cycle formed by uv
and the unique u-to-v path in 7. Every fundamental cycle C separates an embedded
planar graph into two parts: the subgraph enclosed by C and the subgraph not enclosed
by C. An elementary argument shows that, if the graph is triangulated, then there
always exists an edge e ¢ T such that C, is a balanced separator in G. Namely, each of
the two parts consists of at most 2| V| /3 vertices. A key observation is that, starting with
a breadth-first search tree, the size of any fundamental cycle is at most one plus twice
the diameter of the graph. Therefore, if the diameter is small, the simple Fundamental
Cycle Separator (FCS) algorithm works well: arbitrarily select a root for a breadth-first
search (BFS), compute a BFS tree, and then return the best fundamental cycle (best
may be defined in terms of balance, length, or both). However, if the diameter is large,
any balanced fundamental cycle may be long, and, as a consequence, the separator may
be large as well.

In order to provide separators with small worst-case sizes, most separator algorithms
first reduce the diameter of the input graph and then use the Fundamental Cycle
Separator Algorithm as a subroutine. The seminal Planar Separator Algorithm of
Lipton and Tarjan [1979] (henceforth referred to as Lipton-Tarjan) finds a 2/3-balanced

separator by identifying a set S’ of small size |S/| = O(/|V]), whose removal yields

a subgraph with diameter O(,/|V|) and large enough weight. One can interpret the
diameter reduction as shortcutting a fundamental cycle using the vertices of S'.

For many planar graph algorithms such as those computing shortest paths [Klein
and Subramanian 1998; Fakcharoenphol and Rao 2006; Mozes and Wulff-Nilsen 2010;
Cabello 2012; Mozes and Sommer 2012], minimum cuts [Italiano et al. 2011; Lacki
and Sankowski 2011], or maximum flows [Borradaile et al. 2011], it is crucial that
the separator S forms a (simple) cycle in G. Unfortunately, adding vertices of the
set S’ to shortcut a fundamental cycle, as in the Lipton-Tarjan algorithm, results in a
separator S that does not necessarily form a simple cycle. Neither the Lipton-Tarjan
algorithm [Lipton and Tarjan 1979] nor Djidjev’s algorithm [Djidjev 1982] obtains
simple cycles, and the FCS algorithm does not provide any worst-case guarantees on
the cycle length.

The algorithms of Miller [1986], Gazit and Miller [1990], and Djidjev and Venkatesan
[1997] offer both guarantees: for any triangulated 2-connected planar graph, they can

IMore generally, one can define separators to be balanced with respect to a weight function on the vertices,
edges, and, in embedded graphs, faces.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

Short and Simple Cycle Separators in Planar Graphs 2.2:3

compute a simple cycle separator of length O(,/|V]) in linear time. In this work, we
focus on cycle separator algorithms for planar graphs.

1.1. Related Experimental Work

There is a large body of experimental work on graph partitioning, mostly implementing
various heuristics. In this work, we shall focus on algorithms with worst-case guaran-
tees. Theoretical results on separators suggest that they can be used to substantially
speed up algorithms. Consequently, Lipton-Tarjan separators and variants have been
implemented and evaluated experimentally [Farrag 1998; Aleksandrov et al. 2007,
Holzer et al. 2009].

Farrag [1998] implemented an algorithm of Aleksandrov and Djidjev [1996] where,
instead of separating V into two sets A, B, the number of pieces can be specified. The
separator algorithm is used for load balancing of parallel algorithms: the input graph
is partitioned into & pieces, distributing the work evenly among % processors.

Aleksandrov et al. [2007] implemented a three-phase algorithm, which (1) partitions
the graph by levels, (2) partitions the graph by fundamental cycles, and (3) combines
the resulting components into the right number of pieces (packing).

The most recent experimental work, and the one most relevant to compare with
our work, is by Holzer et al. [2009], who implemented the Lipton-Tarjan algorithm
[1979] and Djidjev’s algorithm [1982], and provided an extensive experimental eval-
uation. One of the main findings of their study is that, across their battery of test
graphs, the FCS algorithm performs at least as well as their more carefully engineered
counterparts, despite the lack of worst-case guarantees.

To the best of our knowledge, cycle separator algorithms with worst-case guarantees
on the cycle length have not been implemented and evaluated yet.

1.2. Contributions

We provide an implementation of a cycle separator algorithm with a worst-case guar-
anteed size of \/8|E| for triangulated planar graphs with at least 29 edges. We experi-
mentally evaluate our algorithm and compare it to the FCS algorithm. As mentioned
in Section 1.1, the experimental results of Holzer et al. [2009] suggest that the FCS
algorithm works well for most inputs. We confirm their findings. However, we also iden-
tify classes of graphs for which the FCS algorithm returns arbitrarily long cycles.? We
demonstrate that (1) our algorithm is competitive with FCS for the graphs in Holzer
et al. [2009]; (2) it provides worst-case guarantees on the cycle length, significantly
outperforming FCS on some instances; and (3) it scales to large graphs.

Our algorithm is, in spirit, similar to algorithms given in Miller [1986], Klein et al.
[2013], and Klein and Mozes [2013], though it differs significantly in some details. It
was designed with implementation ease in mind and evolved throughout the imple-
mentation process.

We are hopeful that this implementation will pave the way to implementing the
many theoretically efficient algorithms that rely on simple cycle separators in planar
graphs.

2. PRELIMINARIES

For a tree T and an edge e € T, let T, denote the subtree of T' rooted at the leafward
endpoint of e. A breadth-first search yields a tree, which is the subgraph of the input
with the same vertices and exactly the edges traversed in the search. One can seed a

21n the hard instances for FCS, the length of the cycle heavily depends on the choice of the root of the BFS
tree. For some roots, the fundamental cycles are short, while for other roots the cycles are very long.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

2.2:4 E. Fox-Epstein et al.

BF'S with a number of vertices or edges. To do this, imagine the search started from a
super-vertex connected to all the seed vertices. Doing so may yield a forest instead of a
tree.

For a rooted tree T' and a set S of nodes of T', a leafimost node in S is a node s of S
with the property that s does not lie on the root-to-s’ path in 7' for any other node s’ € S.

For a spanning tree T' of G and an edge e of G not in T', the fundamental cycle of e
with respect to 7' in G is the simple cycle consisting of e and the unique simple path
in T between the endpoints of e.

A simple cut is a subset S € V(@) such that G[S] is connected and G[V(G) \ S] is
connected. Given a set of vertices S, we denote with §5(S) the set of edges of G with
exactly one endpoint in S: §g(S) = {uv € E(G) | |{u, v} N S| = 1}. When S is a simple
cut, §g(S) is referred to as the edge boundary of the cut.

We provide a brief review of basic definitions and facts related to planar graphs,
combinatorial embeddings, and planar duality. For elaboration, see also Klein and
Mozes [2013].

2.1. Embeddings and Planar Graphs

We use an edge-centric definition of graphs suitable for combinatorial embeddings and
implementation; see Klein and Mozes [2013] for a more detailed treatment.

Let E be a finite set, the edge-set. We define the corresponding set of darts to be
E x {£1}. For e € E, the darts of e are (e, +1) and (e, —1). We think of the darts of e
as oriented versions of e (one for each orientation). We define the involution rev(-) by
rev((e,1)) = (e, —i). That is, rev(d) is the dart with the same edge but the opposite
orientation.

A graph on E is defined to be a pair (V, E), where V is a partition of the darts. Thus,
each element of V is a nonempty subset of darts. We refer to the elements of V as
vertices. The endpoints of an edge e are the subsets v, v' € V containing the darts of e
(e is incident to v and v'). The head of a dart d is the subset v € V containing d, and its
tail is the head of rev(d).

An embedding of (V, E) is a permutation 7 of the darts such that V is the set of
orbits of 7. For each orbit v, the restriction of 7 to that orbit is a permutation cycle.
The permutation cycle for v specifies how the darts with head v are arranged around v
in the embedding (in, say, counterclockwise order). We refer to the pair (7, E) as an
embedded graph.

Let 7n* denote the permutation rev o, where o denotes functional composition. Then
(7*, E) is another embedded graph, the dual of (;r, E). (In this context, we refer to (7, E)
as the primal.)

The faces of (v, E) are defined to be the vertices of (7 *, E). Since revo (revorn) = 7,
the dual of the dual of (r, E) is (r, E). Therefore, the faces of (z*, E) are the vertices
of (;r, E). Throughout the article, we denote the primal graph by G and its dual by G*.

We define an embedded graph (zr, E) to be planar if n — m + ¢ = 2k, where n is the
number of vertices, m is the number of edges, ¢ is the number of faces, and « is the
number of connected components. Since taking the dual swaps vertices and faces and
preserves the number of connected components, the dual of a planar embedded graph
is also planar.

Note that, according to our notation, we can use e to refer to an edge in the primal
or the dual.

Combinatorial embeddings are useful in practice as well. In our implementation,
embedded planar graphs are represented as permutations on their darts. Darts and
vertices are represented by integer values. Graphs are efficiently traversed by retaining
lookup tables allowing one to walk around permutations and find incident darts and
vertices. In our implementation, each graph requires 4|E| + |V | + |F| integers for the

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

Short and Simple Cycle Separators in Planar Graphs 2.2:5

primal and dual representations, which is sufficiently compact as to accommodate
graphs with millions of vertices with commodity hardware.

To provide more intuition, we use geometric embeddings of planar graphs in the
figures in this article. Both the primal and the dual graphs are embedded on the same
plane, so their edges are in one-to-one correspondence. The edges of the dual graph in
the figures are rotated by roughly 90 degrees clockwise with respect to their primal
counterparts.

We focus on undirected embedded planar graphs without self-loops or parallel edges.
For a graph G, we use V(G), E(G), F(G) to denote the vertices, edges, and faces of G,
respectively.

We use the following properties of planar graphs.

Fact 1. (SIMPLE-CYCLE/SIMPLE-CUT DUALITY [WHITNEY 1932]). A set of edges forms a
simple cycle in a planar embedded graph G if and only if it forms the boundary of a
simple cut in the dual G*.

Since a simple cut in a graph uniquely determines a bipartition of the vertices of the
graph, a simple cycle in a planar embedded graph G uniquely determines a bipartition
of the faces.

Definition 2.1. (Encloses). Let C be a simple cycle in a connected planar embedded
graph G with distinguished face f,. Then the edges of C form the boundary of a
simple cut §5+(S) for some set S of vertices of G*, that is, faces of G. Thus, C uniquely
determines a bipartition {Fy, F1} of the faces of G. Let f, f be faces of G. We say C
encloses f with respect to f, if exactly one of f, f, is in S. For a vertex/edge x, we say
C encloses x (with respect to f.,) if it encloses some face incident to x (encloses strictly
if in addition x is not part of C).

Fact 2. (von Stauprt [1847]). For any spanning tree T of G, the set of edges of G not
in T form a spanning tree of G*.

For a spanning tree T' of G, we typically use T* to denote the spanning tree of G*
consisting of the edges not in 7.

2.2. Cycle Separators in Planar Graphs

We define an a-balanced separator to be a tripartition of the vertices of the graph into
(A, B, S) that is:

—Separated There are no edges from any node in A to any node in B.
—Balanced |A| and |B| are each at most «|V(G)| with « < 1.

Let G be a triangulated biconnected simple planar graph.? Any simple cycle C in G
separates G into the interior of C (the subgraph strictly enclosed by C) and the exterior
of C (the subgraph not enclosed by C), such that there are no edges between vertices
strictly enclosed by C and vertices not enclosed by C. We call a simple cycle C a small
balanced cycle separator in G if the separator defined by the interior of C, the exterior
of C, and C itself is «-balanced for some constant « and |C| = O(\/|E(G))).

We note that balance can be defined in more general terms than number of vertices.
Let w be a function assigning real weights to vertices, edges, and faces of G. A cycle
separator C is balanced with respect to the weight function w if the total weight of
vertices, edges, and faces strictly enclosed (not enclosed, respectively) by C is at most «
of the total weight of G. General weights can be handled by considering just face

3If G is not biconnected, a simple cycle separator might not exist. If the degrees of faces in G are not bounded,
a small cycle separator might not exist.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

2.2:6 E. Fox-Epstein et al.

Fig. 1. Atriangulated graph with unit face weights and a spanning tree (solid edges) for which no fundamen-
tal cycle is 2/3-balanced. In this example, all fundamental cycles are 3/4-balanced. In fact, this exemplifies
the worst case. That is, a fundamental cycle with a balance of 3/4 always exists, provided no single face
accounts for more than 3/4 of the total weight.

weights: arbitrarily assign the weight of any vertex or edge to an incident face. Any cycle
separator that is balanced with respect to the new weight assignment is necessarily
balanced with respect to the original one. Therefore, without loss of generality, we only
refer to face weights in this article.

Recall that, for a biconnected planar graph G with maximum face size d, the al-
gorithm of Miller [1986] finds a 2/3-balanced simple cycle separator with at most
2/2|d/2]|V(Q)| vertices. It is easy to see that in the worst case, 2/3 is the best bal-
ance guarantee achievable (e.g., in a graph with three faces and uniform face weights).
However, there may not exist a 2/3-balanced fundamental cycle separator, even in
a biconnected triangulated planar graph where the weight of any single face is at
most 2/3 of the total weight. This is illustrated in Figure 1. It is not difficult to see
that if the weight of each face is at most 3/4 one can always achieve a balance of 3/4
on biconnected triangulated planar graphs. Furthermore, if the weight of each face is
negligible with respect to the total weight (as is the case when separating according to
just the number of vertices in a graph with many vertices), a balance of almost 2/3 is
achievable. Since our algorithm is based on finding a fundamental cycle separator, we
use a balance of 3/4 in our proofs. Experimentally, since the balance criterion we use
is the number of vertices, we always observe a balance of at most 2/3.

If the input graph is not triangulated, one can always add edges to triangulate it.
In this case, the cycle separator does not necessarily form a cycle in the input graph.
However, topologically, the separator does form a cycle. For some applications such a
topological separation suffices, while in others it is possible to retain the additional
edges without affecting the application.

3. THE CYCLE SEPARATOR ALGORITHM

In this section, we describe our simple cycle separator algorithm. It roughly follows the
overall structure of Miller’s algorithm [Miller 1986] but is significantly different. The
algorithm is similar to the one suggested recently in Klein et al. [2013], also described
in the forthcoming book [Klein and Mozes 2013].

3.1. Levels and Level Components
We define levels with respect to an arbitrarily chosen face f.,, which we designate as
the infinite face.

Definition 3.1. The level of a face f is the minimum number of edges on an f,,-to-f
path in the dual G* of G. We use LY to denote the faces having level i, and we use Lgi

to denote the set of faces f having level at least i.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

Short and Simple Cycle Separators in Planar Graphs 2.2:7

g

Q/ ~ C
(a) A triangulated graph (blue discs as vertices, black squares (b) The corresponding component
as faces, solid blue primal edges) along with a dual BFS tree (in tree K. Each node of the component

dashed black, rooted at the infinite face). Alternating levels of tree corresponds to a connected com-
the BFS are highlighted gray. ponent of G*.

Fig. 2. Illustration of the component tree K.

Definition 3.2. For an integer i > 0, a connected component of the subgraph of G*
induced by L; is called a level-i component, or, if we do not want to specify i, a level
component. We use K; to denote the set of level-i components. A nontrivial level
component is a level component that is not G. The set of vertices of G* (faces of G)
belonging to a level component K is denoted by F(K).

Note that we use K (not K*) to denote a level component even though it is a connected
component of a subgraph of the planar dual.

Fact 3. For any level component K, the subgraph of G* consisting of faces not in F(K)
is connected.

CoROLLARY 3.3. For any nontrivial level component K, §q-(F(K)), the edges crossing
the cut F(K) form a simple cycle in the primal G.

In view of Corollary 3.3, for any nontrivial level component K, we use X(K) to denote
the simple cycle in the primal G consisting of the edges 3¢ (F(K)). We refer to X(K) as
the level cycle bounding K.

Definition 3.4. The component tree K is the rooted tree whose nodes are the level
components, and in which K is an ancestor of K’ if the faces of K include the faces of K'.
The root of the component tree is the unique level-1 component consisting of all of G*
except fuo.

Figure 2 illustrates the definition of the component tree.

Definition 3.5. An edge ff’ of G* has level i if f has level i — 1 and f’ has level i.
We use LF to denote the set of edges of level i.

Note that not every edge of G* has a level.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

2.2:8 E. Fox-Epstein et al.

3.2. Description of the Algorithm

ALGORITHM 1: Cycle Separator Algorithm

1 triangulate G and choose f,,, arbitrarily

construct the component tree /C

if 3 component K € K s.t. | X(K)| < vV8mand W/4 < w(K) < 3W/4 then return X(K)

let i_ be the maximum level where |LF | < \/m/2 and 3 a level i_ component K, with

w(Kpy) > 3W /4 (or 1 if no level qualifies)

let i, be the minimum level greater than i_ where |Lﬁ | < m/2

let K1, Ko, ..., K, be the components at level i, contained in K,

let F be a forest, initially containing all edges of X(Kj) except an arbitrary one

for j=1,2,..., g do
foreach edge e of X(K;) do

10 | adde to F ifit does not introduce a cycle in F

11 extend F into a spanning tree T' of G by a breadth-first search, starting from the
component of F' that contains the edges of X(Kj)

12 let T* be the spanning tree of G* rooted at f., that consists of edges not in 7'

13 let e* be a most balanced edge separator of 7'*

14 if e € Ko \ U;-;, K; then return the fundamental cycle of e w.r.t. T

15 let j > 1 be such thate € K;

16 let Hy, Hs, ..., H, be the subtrees of T, rooted at edges of X(K;)

17 if w(H,) > W/4 for some k (1 < k < ¢) then return the boundary of H,

18 let r be such thatW/4 < w (K; U U, .., H) < 3W/4

19 return the boundary of K; U | J,_,., H:

W N

© XIS W

The pseudocode of our algorithm is listed in Algorithm 1. An overview of our algo-
rithm is as follows. Let W be the sum of the weights of all the faces. The algorithm
starts by computing the component tree K. If any level cycle is a short and balanced
cycle separator, it is returned (line 3).

Next, the algorithm finds a small range of levels where a short balanced cycle sepa-
rator is guaranteed to exist (see appendix). The algorithm finds two levels, i_ and i,
each with at most \/m/2 edges (lines 4 and 5).4

Component K; is defined as the unique level i component enclosing a weight of
at least 3W/4. We denote the level-i; components contained in Ky by K, Ky, ..., K,.
Roughly speaking, the algorithm finds a balanced fundamental cycle in K; and short-
cuts it along one of the cycles X(K;) (refer to lines 13-19). Care must be taken to ensure
that the resulting cycle is simple. This is ensured by meticulously computing a low-
depth spanning tree and by appropriately defining how to shortcut the fundamental
cycle along X(Kj;).

More precisely, the algorithm builds a forest F' containing all edges of X(Kj) except
an arbitrary one and as many edges of cycles X(K;) as possible for each i, 1 <i < q
(line 10). Note that this is not the same as adding all but one of the edges of each of the
cycles X(K;) one after the other because these cycles are not necessarily vertex-disjoint
(see, e.g., the situation depicted in the bottom left of Figure 3). In line 11, it further
extends F into a spanning tree 7' of G by performing a breadth-first search starting
from the component of F' that contains the edges of X(Kj). By this we mean that the
BFS is seeded with the component T' of F' that contains the edges of X(K;). Whenever

4If no level meets the requirements for i_, then i_ = 1. Note that, in this case, we have \Lf | =8> .,m/2,so
this can only happen when m < 18. If no valid i exists, no components K; are defined for j > 1.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

Short and Simple Cycle Separators in Planar Graphs 2.2:9

Seama==”

PO O

/
'
\
\
\
\
\
’
4
>

/,
\
!

3

T

SO » &
Fig. 3. Illustration of the algorithm. Top: a simple scenario. X(Kj) is in thin dashed black. Two cycles at level
i4 are shown: X(K;) is in solid black, and X(K;) is black and dash-dotted. Edges of the forest F' are highlighted
in gray background. In this case, F' includes all edges of the three depicted cycles except one in each cycle.
Some edges of T'*, the dual spanning tree, are shown in dash-dot-dotted thin red. The blue edge e (an edge
of T*) induces a balanced fundamental cycle formed by edges of T', the primal tree (thick green). Some
additional edges of T' are in green dots. This fundamental cycle is short because it only contains edges of T'
between levelsi_ and i . Bottom left: a more complicated scenario in which e is within the level i, component
K;. Here, the forest F' (highlighted in gray) includes all edges of the three cycles except one of X(Kp), five of
X(Kj), and one of X(K;). The parts of the fundamental cycle induced by e within K; are in green (the rest of
the fundamental cycle is composed of edges of F' and is not highlighted). This fundamental cycle might be
long because the level of e might be much greater than i, . In this case, the balanced separator is constructed
as illustrated in the bottom right figure. Bottom right: the parts of T,* not enclosed by K; are shown in
dash-dot-dotted red (other parts are in pink). The boundaries of regions H;, Hy, and Hj are indicated in solid
blue. In this example, the simple cycle separator returned is indicated by the gray background: the cycle
bounding K; U Hy U Hy.

a vertex in a component 7" of F is first visited by the search, 7" is added to T', and all
the vertices of T’ are marked as visited. This three-step construction of the spanning
tree T is important for ensuring that the cycle returned by the procedure is a simple
cycle (see appendix).

The algorithm next computes a spanning tree T* of G*, consisting of exactly the
edges not in T'. The root of T* is f.. It finds a most balanced edge separator e* in T*.
If e belongs to Ky but not to any K; for j > 1, then the fundamental cycle of e w.r.t. T'
is returned (line 14). Otherwise, e* € K; for some j > 1 (it cannot be that e* ¢ Kj since,
by construction, such fundamental cycles are not balanced). Let 7,* denote the subtree

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

2.2:10 E. Fox-Epstein et al.

of T* rooted at e*. Note that the vertices of T, are exactly the set of faces enclosed
by the fundamental cycle of e w.r.t. T'. We partition the faces of T, outside of K; into
connected subgraphs Hi, Hs, ..., Hy,. If any H,, is a balanced separator, it is returned
(line 17). Otherwise, there must be a prefix of the H’s whose interior, together with
the faces of component Kj, is a set of faces whose boundary is a balanced simple cycle
separator.

We prove in the appendix that Algorithm 1 always returns a 3/4-balanced simple
cycle separator with at most ~/8m edges. As discussed in Section 2, if the weight is
defined as the number of vertices, then 3/4 can be replaced with 2/3 throughout the
article.

4. EXPERIMENTS

In this section, we evaluate the performance of our algorithm and compare it to prior
results. One of the striking findings in the experiments of Holzer et al. [2009] is that the
Fundamental Cycle Separator algorithm is usually very effective in finding small, bal-
anced cycle separators. Our goal in this article is to establish that our algorithm, which
does provide a worst-case guarantee on both separator size and balance, is competitive
with FCS in terms of both runtime and average-case cycle size and balance. We do not
directly compare our results with the other algorithms presented in Aleksandrov et al.
[2007] and Holzer et al. [2009] because they do not produce simple cycle separators.

The FCS algorithm [Holzer et al. 2009] operates as follows: first, it computes a primal
BFS tree T spanning the graph. Recall that the edges not in T' form a spanning tree
T* of the dual graph. Each primal edge e = uv not in T' defines a fundamental cycle,
the one formed by e and the unique path from u to v in 7'. Working from leaves of T'*
toward its root, we can efficiently compute the weight enclosed by each fundamental
cycle of T'. The algorithm returns one of these cycles that is a balanced separator. Such
a balanced cycle must exist since no single face (vertex of 7*) weighs more than W /4.
The length of any fundamental cycle of T' is bounded by one plus twice the diameter
of T'. In the worst case, however, there is no guarantee on the diameter of T, so a
balanced fundamental cycle separator might not be short.

The algorithm described in Section 3 is guaranteed to return a short and balanced
simple cycle separator. There is a tradeoff between balance and cycle length, and
between those two properties and the running time of the algorithm. Depending on the
application, one property may be more important than the other. We have implemented
the following variants of our algorithm and of FCS.

—Fastest-Balanced: Terminates when the first balanced cycle separator is encountered.
This variant does not guarantee short separators.

—Shortest-Balanced: Returns the shortest cycle separator among all balanced cycle
separators encountered throughout the entire run of the algorithm. This variant
guarantees balanced separators. For our algorithm, it also guarantees short separa-
tors, but for FCS it does not.

—Most-Balanced-Short: Returns the most balanced cycle separator among all short
cycle separators encountered throughout the entire run of the algorithm. This vari-
ant guarantees short separators. For our algorithm, it also guarantees balanced
separators, but for FCS it does not.

—Fastest-Short-and-Balanced: Terminates when the first short and balanced cycle
separator is encountered. Note that FCS is not guaranteed to find such a separator.

Throughout our experiments, we regard any «-balanced separator with o < 2/3
as a balanced separator, and any separator with at most /8|E| as a short separator.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

Short and Simple Cycle Separators in Planar Graphs 2.2:11

Other variants (Fastest-Short, Shortest, Most-Balanced, Sparsest) are also easy to
implement.

Since different variants differ in the way a good separator is defined, the edge e* in
line 13 of our algorithm may be chosen according to different criteria, not necessarily
the most balanced one. For example, the Most-Balanced-Short variant chooses e* to be
the one that induces the most balanced fundamental cycle separator among all edges of
T* that induce short cycles. The Shortest-Balanced variant chooses e* to be the edge of
T* that induces the shortest fundamental cycle among all those that induce a balanced
one. In a similar way, the choice of the best cycle to return in lines 18 and 19 changes
between the different variants.

4.1. Datasets

To effectively compare our algorithms, we draw extensively from the graphs tested
experimentally in Aleksandrov et al. [2007] and Holzer et al. [2009]. Each graph is
triangulated before testing. Note that there is some degree of freedom in triangulation
(Holzer et al. [2009] use the triangulation routines provided by LEDA). As our graphs
are represented by permutations of the darts, we triangulate by walking through the
permutation describing the faces, and if any orbit is larger than three, we insert an
edge to produce a triangle and reduce the size of the orbit by one. To follow is a list of
the classes of graphs:

(1) grid are square grid graphs; rect are rectangular grid graphs with about 20 times
as many rows as columns.

(2) sixgrid graphs are tessellated hexagons.

(3) A k-iteration tri graph starts with a triangle, and on each of % iterations, each face
except f» has a new vertex embedded within it and connected to each vertex on
the face’s boundary.

(4) globe graphs approximate spheres and are implemented by wrapping a rect into
a cylinder and adding a vertex on the top and bottom connected to the vertices of
the top and bottom rows, respectively. We call very skewed globes eggs.

(5) cylinder graphs are similar to globe graphs, with the addition of an extra vertex
in every square. BFS trees produced for cylinder and (triangulated) globe graphs
differ substantially.

(6) A diameter-k graph is essentially a narrow, length-% strip, triangulated in a way
that maintains a diameter of £ and a very small separator (cf. [Holzer et al. 2009,
Figure 7]).

(7) The airfoil graphis a finite-element mesh of real-world data [Diekmann and Preis
1998].

(8) The graphs BAY, CAL, COL, CTR, E, W, FLA, LKS, NE, NW, NY, USA are road
networks used in the 9th DIMACS Implementation Challenge—Shortest
Paths [Demetrescu et al. 2008], accessible online [Demetrescu et al. 2006]. We
interpret each graph and the coordinates as a straight-line embedding and we add
vertices whenever two edges intersect geometrically.

4.2. Implementation Details

All tests are run on a machine with an Intel Xeon X5650 processor (six Hyper-Threaded
cores for 12 execution threads) and 48.4 gigabytes of RAM. The code is compiled
using GCC 4.4.5 targeting Intel x86_64. The operating system is Debian. Runtime
tests are run single-threaded on an otherwise idle machine. Time is measured using
clock_gettime provided by time.h. Instances tested are sufficiently large as to render
clock granularity issues negligible.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

2.2:12 E. Fox-Epstein et al.

Embedded graphs are represented by arrays, such that the value at index i is the
identifier of the next dart in a primal or dual permutation from dart i. Additionally,
we store a map from each vertex and face to some incident dart and a map from darts
to the vertices and faces to which they are incident. In total, this consists of storing
approximately 7.5n integers for an n-vertex graph.

Reusing a breadth-first search subroutine simplifies the implementation: we com-
pute dual BFS levels for the component tree, span the primal, and generate the
cotree using the same subroutine; the only difference is the function that determines
whether the search should follow a particular edge. Our breadth-first search trees
retain information about parents, children, and levels. The component tree stores a
pointer to a representative face for each component and weight information about each
component.

Subgraphs are represented by a mapping from vertices or faces to Boolean values; a
value of true indicates that the given vertex or face is in the subgraph.

Our implementation constructs the component tree using a simple method backed
by a disjoint set data structure in O(na(n)) time (here, a(n) is the inverse Ackermann
function, which is at most 4 for any practical purposes [Tarjan 1975]). We build the
component tree from the leaves, working rootward to propagate weights up as it is
built. Each component stores the number of faces it encloses. Each face belongs to one
leafmost component; we store a mapping from each face to this.

Our implementation of the FCS algorithm employs the same breadth-first-search
mechanism used for our algorithm. The breadth-first-search mechanism is used to
span the primal. Then we use a breadth-first search of the dual, avoiding primal-
tree edges, to construct the cotree. We believe that using the same basic mecha-
nisms to implement both algorithms makes the runtime comparison less likely to be
biased.

4.3. Results and Interpretation

We compare our algorithm (indicated as “ALG” in figures) with FCS on runtime and
resulting separator quality on a variety of graphs. For each graph, we sampled many
possible faces as roots of the component trees for our algorithm, and possible vertices
as roots of the primal BF'S trees for FCS. Following Holzer et al. [2009], we use whisker
plots to display the range of observed values. The box in each plot corresponds to the
middle 50% of values obtained for all choices of root vertices; the whiskers span the
entire range of values observed.

4.3.1. Running Time. Figure 4 shows running times of the Fastest-Short-and-Balanced
and Most-Balanced-Short variants of our algorithms and those of the Fastest-Balanced
and Most-Balanced-Short variants of FCS on square grids of increasing size. As theory
predicts, the running time of each variant appears to scale linearly with the number of
vertices. The Fastest-Short-and-Balanced variant of our algorithm is fastest (linear fit
with slope 1.59), Fastest-Balanced FCS is slightly slower (slope 1.84), Most-Balanced-
Short FCS is slightly slower than that (slope 2.08), and Most-Balanced-Short is slowest
(slope 3.78). On square grids, there always exists a short and balanced level cycle.
Therefore, the Fastest-Short-and-Balanced variant of our algorithm terminates after
computing just a dual BFS and constructing (perhaps just part of) the component tree.
FCS computes a primal BFS, then constructs the cotree (implemented via a dual BFS),
and then computes the size and balance of fundamental cycles, working from the leaves
of the cotree to the root. Depending on the variant, it either stops the moment the search
first encounters a balanced cycle (Fastest-Balanced FCS) or returns the most balanced
short cycle after completing the entire rootward computation (Most-Balanced-Short

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

Short and Simple Cycle Separators in Planar Graphs 2.2:18

250 -
200
%150- +‘
Emo- +*
D

L

LLLLLLLLLL’LLL#LL g
00 5 10 15 20 05 ” - - .

Vertices (in millions)

ALG fastest short and balanced = FCS fastest balanced
ALG most balanced short s FCS most balanced short s

Fig. 4. Running time for our algorithm (Fastest-Short-and-Balanced and Most-Balanced-Short variants)
and for FCS (Fastest-Balanced and Most-Balanced-Short variants). We offset the box plots for each graph
size slightly for clarity; 60 random seeds are used for each trial in this plot.

FCS). The Most-Balanced-Short variant of our algorithm goes through all the steps of
the algorithm and is therefore slower, though by a factor smaller than 3.

Similar behavior for other families of graphs is shown in Figure 5 (also showing the
Shortest-Balanced variant for both our algorithm and FCS). All graphs reported in this
figure have approximately 213,370 vertices (this is the number of vertices in the road
network NY). Specifically, we test on a 462-by-462 grid, 100-by-2,133 rect, 462-by-462
globe, 10-by-21,337 egg, 21,337-by-5 cylinder, 327-square hex, and a diameter-71,225
graph. Although all graphs have essentially the same size, the execution times differ
between different graph types. For example, the fast variant of our algorithm is slower
for rectangular graphs (rect), and for road networks (NY). The reason is that for many
seeds of the dual BFS of these graph types, no level cycle is short and balanced, so our
algorithm must perform the other steps of the algorithm.

It is interesting that the running times of the Most-Balanced-Short and Shortest-
Balanced variants of our algorithm vary across the different graph types. This can-
not be attributed to the algorithm terminating at different stages since these vari-
ants always execute all steps of the algorithm. We suspect that the reason is due
to different cache performance when the BFS tree is wide and shallow or thin and
deep.

The running time of the same variants on all road networks as a function of the
number of vertices is shown in Figure 6. As was the case for NY in Figure 5, our
algorithm is typically slower. The reason is that our algorithm seldom finds a short and
balanced level cycle and must perform the other steps of the algorithm.

Figure 7 shows the step that contributed the separator returned by our algorithm
(for different variants). Recall that our algorithm can return a level cycle (line 3) when
the component tree is computed, return a fundamental cycle with respect to the primal
BF'S tree (line 14), or return a repaired FCS, that is, a combination of a fundamental
cycle and a level cycle (lines 17 or 19). The figure for the Fastest-Short-and-Balanced

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

2.2:14 E. Fox-Epstein et al.

@
T 04} + *
3
& 0.3 -
£ R + 4 i
£ o02] Wl H
s 02 + + ‘
o . ‘ T ++ 1
01 F EIIT :
O I I I I I I I I I I
c-grid cylinder diam globe egg grid rect sixgrid tri NY
Graph Class
ALG fastest short and balanced mmmm FCS fastest balanced
ALG shortest balanced . FCS shortest balanced
ALG most balanced short FCS most balanced short s

Fig. 5. Running time for our algorithm (Fastest-Short-and-Balanced, Shortest-Balanced, and Most-
Balanced-Short variants) and for FCS (Fastest-Balanced, Shortest-Balanced, and Most-Balanced-Short vari-
ants) for various types of graphs, all with roughly the same number of vertices; 1,500 random seeds are used
for each trial in this plot.

180 -
160
_. 140 +
%)
2
S 120
o
3 100 |
£
[0 80 I~ ﬂ *
£
IS 60 - +
T
40 ﬁ' i‘
20 %L 4
:-.IL’-—T’ ¢
0 T T T T 1
0 5 10 15 20 25

Vertices (in millions)

ALG fastest short and balanced mmmm FCS fastest balanced

ALG most balanced short s FCS most balanced short s
Fig. 6. Running time for our algorithm (Fastest-Short-and-Balanced and Most-Balanced-Short variants)
and for FCS (Fastest-Balanced and Most-Balanced-Short variants) on various road networks as a function

of the number of vertices. We offset the box plots for each road network slightly for clarity; 100 random seeds
are used for each trial in this plot.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

Short and Simple Cycle Separators in Planar Graphs

100

80

60

Percentage

40

20

100

80

60

Percentage

40

20

100

80

60

Percentage

40

20

c-grid cylinder diam globe egg grid

rect

fastest short and balanced

c-grid cylinder diam globe egg grid

rect

most balanced short

c-grid cylinder diam globe egg grid

shortest balanced

rect

sixgrid

sixgrid

sixgrid

tri

tri

tri

NY

NY

NY

2.2:15

FCS mmmm
Repaired FCS s
Level Cycle mmmmm

FCS
Repaired FCS s
Level Cycle mmmmm

FCS mmmm
Repaired FCS s
Level Cycle mmmmm

Fig. 7. The type of separator returned by three variants of our algorithm on various graph families. The vari-
ants are Fastest-Short-and-Balanced (top), Most-Balanced-Short (middle), and Shortest-Balanced (bottom);
1,500 random seeds are used for each trial in these plots.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

2.2:16 E. Fox-Epstein et al.

04 dual bfs
components tree

0.35 - component separator m—

find level range

0.3 primal tree m—
co-tree
0.25 | fes

- repair

assemble separator M=

0.05 |-

Runtime (seconds)

ALG FCS ALG FCS
cylinder cylinder grid grid

Fig. 8. Breakdown of running time of our algorithm and the FCS algorithm according to the average amount
of time spent at each step of the algorithm. Times are shown for two different graphs: grid and cylinder;
1,500 seeds are used for each trial in this plot.

variant supports the explanation given earlier for the fast execution of this variant. On
most graph families, this variant returns a level cycle, so it terminates immediately
after generating the component tree. For rect and road networks, and to a lesser
extent for grid and sixgrid, the first short and balanced separator encountered is in
the fundamental cycle step, which takes additional time. The data for the Shortest-
Balanced and Most-Balanced-Short variants shows that the shortest- or most-balanced
separators are often produced by different steps that vary between the different graph
families and variants. For example, the most-balanced short separator for the skewed
cylinder graph is always produced by the FCS stage, while the shortest-balanced
separator for the same graph is often a repaired FCS. For the tri graph, the most-
balanced short separator is (almost always) either an FCS or a repaired FCS, but the
shortest-balanced separator is usually a level cycle. The fact that in many instances
level cycles still produce the best separator with the desired criterion suggests that
considering just level cycles is an effective heuristic for producing short and balanced
cycle separators. We note that this heuristic does not seem to be very effective on road
networks.

The amount of time spent on each of the steps of our algorithm (Most-Balanced-Short
variant) and of the FCS algorithm is shown in Figure 8. The steps reported are:

—dual BFS: spanning the dual,

—component tree: constructing the component tree (including the computation of the
weight of each component and the length of its boundary (level cycle)),

—components separator: checking all level cycles to find if any of them is a short and
balanced separator,

—find level range: identifying levels i_ and i,

—primal tree: computing the primal spanning tree T',

—cotree: computing the cotree T'*,

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

Short and Simple Cycle Separators in Planar Graphs 2.2:17

—fes: finding a fundamental cycle separator,
—repair: repairing a long fcs, if necessary, and
—assemble separator: mark all faces inside the separator and trace boundary.

We use the Most-Balanced-Short variant of our algorithm since it is guaranteed to
run through all the stages of the algorithm (results for Shortest-Balanced are nearly
identical). We emphasize that while we took care that our implementation is efficient,
we did not fully optimize our code. Hence, we refrain from making strong statements
about one stage or algorithm being faster than another if the two times are of the same
order of magnitude.

It is evident that the first three stages of our algorithm (dual BF'S, component tree,
and finding if any level cycle is good) run in about the same time as the entire FCS
algorithm (in fact, slightly faster). This is consistent with the observation that our
algorithm is slightly faster than FCS in instances where a good level cycle is returned.
The primal BFS step of our algorithm is slower than that of FCS because of the
additional complication arising from computing the forest F' and extending it in a
breadth-first-search manner (this is implemented by three concurrent searches with
different priorities and restrictions on the edges used by each search).

We note that the time to compute the dual BFS is smaller than the time to compute
the cotree of the primal BFS tree. This may seem unexpected since both procedures
are implemented by a breadth-first search of the dual. The cotree computation takes
longer since, for each dart d considered, it needs to check both that d is not in the
primal BF'S and that the head of d was not previously visited by the search. The dual
BF'S computation only needs to verify the latter condition.

Another observation is that computing the primal BFS (first step of the FCS algo-
rithm) is faster than computing the dual BF'S (first step of our algorithm). The reason
for this is that, in triangulated planar graphs, the number of faces is twice the number
of vertices. Hence, a dual spanning tree has twice as many edges as a primal one. While
both primal and dual breadth-first searches consider each dart exactly once, the size
of the queue used to implement the search is larger for the computation in the dual
graph.

4.3.2. Separator Balance and Size. We next discuss the quality of the separators produced
by our algorithm and by FCS. To this end we analyze the size (number of edges on the
cycle separator) and balance of the separators produced on the same graphs used to
produce Figure 5. Please refer to Figure 9.

As expected, we see that all variants of our algorithm return separators that are
at least 1/3-balanced. This is not the case with the Most-Balanced-Short variant of
FCS, which on certain graphs (egg and cylinder) sometimes fails to meet this balance
guarantee (i.e., it finds no balanced fundamental cycle that is also short). We focus on
these graphs in more detail later.

We observe that for both the Most-Balanced-Short and the Shortest-Balanced vari-
ants, our algorithm tends to find separators that are slightly more balanced than the
corresponding variant of FCS. In particular, the Most-Balanced-Short variant of our
algorithm usually returns a nearly perfectly balanced separator. The reason is that our
algorithm is designed to construct a low-diameter primal spanning tree “around” the
most balanced component in the component tree (through its choice of i and i,).

Figure 10 shows that while our algorithm always produces balanced separators
that are significantly shorter than the +/8m size guarantee, FCS typically produces
somewhat shorter separators. The reason is that, in order to guarantee the worst-case
behavior, our algorithm forces its fundamental cycles to use the small levels i, andi_.
This restriction is enforced even if the length of a fundamental cycle in an unrestricted

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

2.2:18 E. Fox-Epstein et al.

05 T - - - { ‘(‘[‘ [-
C
5 Al] L
©
o 03
S
IS
8 02
(]
n
0.1 -
O T T T T T T T T T T
c-grid cylinder diam globe egg grid rect sixgrid tri NY
Graph Class
ALG fastest short and balanced FCS fastest balanced
ALG shortest balanced mmmmm FCS shortest balanced
ALG most balanced short FCS most balanced short

Fig. 9. Separator balance (number of vertices in smaller part divided by the total number of vertices) for the
Fastest-Short-and-Balanced, Shortest-Balanced, and Most-Balanced-Short variants of our algorithm, and
for the Fastest-Balanced, Shortest-Balanced, and Most-Balanced-Short variants of FCS; 1,500 random seeds
are used for each trial in this plot.

10
g il
n r
1 L fl fl
5 L
E 01 | il i ‘ i
@ I L1l *
® 0.01 F ”
N [
E X
E i Iu ' Y
o 0.001 | -
S . ol I
00001 T T T T T T T T T T
c-grid cylinder diam globe egg grid rect sixgrid tri NY
Graph Class
ALG fastest short and balanced = FCS fastest balanced
ALG shortest balanced s FCS shortest balanced
ALG most balanced short s FCS most balanced short s

Fig. 10. Separator size divided by /m for variants of our algorithm and FCS; 1,500 random seeds are used
for each trial in this plot.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

Short and Simple Cycle Separators in Planar Graphs 2.2:19

100
90
80
70

60 :

50 - "

40 -

30

20 -

10

0 L L L | L " L s L L L |
0.0001 0.001 0.01 0.1 sqri(8m) 10

Separator Size

Percentage better

ALG fastest short and balanced -------- rand-FCS shortest balanced - - - -
FCS shortest balanced

Fig. 11. X-axis: separator size. Y-axis: percentage of starting vertices achieving a separator of at most this
size. Our algorithm (red), shortest-balanced randomized FCS (green), and shortest-balanced deterministic
FCS (blue) are compared. We tested each possible starting face or vertex for each trial in this plot.

primal tree (i.e., the one used by the FCS algorithm) is not big. This situation is
apparent in road networks, where the dual BF'S is rather shallow, and level cycles tend
to be large. For NY, for example, i_ is typically at most level 50, and the size of Xj
typically exceeds 350 (/m for NY is 461.9). The average distance between vertices on i_
in the primal tree constructed by our algorithm is half the length of X, (i.e., 231), while
in unrestricted primal BFS the distance would be at most i_ (i.e., 50), via a path that
goes to the root level and back.

For egg and cylinder graphs, FCS often produces separators whose length is well
above our size guarantee. To understand the extent to which FCS performs poorly on
cylinder graphs, we compute the percentage of viable starting vertices (for FCS) and
faces (for our algorithm) on a 20,000-by-5 cylinder. The structure of this graph is such
that balanced fundamental cycles of the primal BFS trees “travel” along the longer
dimension of the cylinder and are thus long. Holzer et al. [2009] studied a randomized
heuristic, wherein at each level of construction of the BFS tree, the order in which
vertices are processed is chosen randomly. BF'S trees constructed in this way are less
susceptible to the phenomenon described earlier.

A graph of the cumulative frequency diagram for separator size is shown in Figure 11.
The results are shown for the Fastest-Short-and-Balanced variant of our algorithm,
and for the Shortest-Balanced variant of FCS (deterministic and randomized heuristic
for the construction of the BFS tree). Our algorithm reaches 100% well before the
guaranteed +/8m size bound, while FCS has many poor choices for the starting vertex.
This implies that one might need to try FCS several times before locating a viable
separator. However, especially for the shortest-balanced randomized version of FCS,
the expected number of attempts is small (less than two).

5. CONCLUSIONS

In this article, we describe an implementation of a simple cycle balanced separator
algorithm for planar graphs with proven worst-case guarantees on the separator’s size.
To the best of our knowledge, the only other algorithm that has been implemented and

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

2.2:20 E. Fox-Epstein et al.

guarantees a simple cycle separator is the Fundamental Cycle Separator algorithm.
However, unlike our algorithm, FCS does not provide worst-case size guarantees.

Our experiments show that the running time of our algorithm is comparable to that of
FCS on all instances. We demonstrate families of graphs for which our algorithm finds
extremely small separators, while FCS often finds separators that are much larger
than even the worst-case guarantee of our algorithm. However, when FCS is tuned for
returning a shortest-balanced FCS and employs randomization in the construction of
the BFS tree, it finds a small separator with (experimentally observed) high proba-
bility. An interesting conjecture in this context is that FCS works well with constant
probability on any input graph, where the probability is over the choices of BFS trees
(choice of root as well as choice of order in which nodes are visited).

We further observe that our algorithm seldom requires the somewhat complicated
last phase, which combines a long fundamental cycle with short level cycles to produce
a short separator. For almost all tested instances, our algorithm returns either a level
cycle or a fundamental cycle as the short separator. This implies that complementing
the FCS algorithm with computing level cycles (i.e., computing both the primal and
dual BFS) is in itself a useful and efficient simple cycle separator algorithm (albeit
without the theoretical worst-case guarantee).

We conclude that our algorithm is a viable alternative to FCS, which outperforms it
in certain cases. We believe that optimizations such as those studied by Holzer et al.
would further enhance its performance.

An interesting direction for future work is to construct the component tree based on
a BFS of the radial graph of G (face-vertex incidence graph) instead of the dual of G,
as was suggested by van Walderveen et al. [2013]. This has the effect that level cycles
at different levels are vertex disjoint. Combined with our initialization of the primal
tree T, this seems to guarantee that the balanced fundamental cycle of T' is always
short. Another interesting direction is implementing the separator algorithm in Klein
et al. [2013], which is quite similar to the algorithm discussed in the current article.
An implementation of the algorithm in Klein et al. [2013] can be used to compute
r-divisions in asymptotic linear time. It would be interesting to see how well that
algorithm actually performs in practice.

APPENDIX
A. CORRECTNESS OF ALGORITHM 1
LeEmMA A.1. The cycle returned by the algorithm is simple.

Proor. The cycle returned in line 3 is simple since component boundaries are simple
cycles. The cycle returned in line 14 is simple since it is a fundamental cycle. The cycle
returned in line 17 is simple because each H} is connected in the dual by definition,
as is its complement. It remains to show that the boundary of R = K; U J;_;., Hris a
simple cycle. o

We now show that R is a simple cut in G*, and thus, by Fact 1, that it is bounded by
a simple cycle. Suppose, for the sake of contradiction, that R is not a simple cut. Then
some set of faces A not in R must be separated from f,, by the boundary of R because
the faces of R are connected by definition. By definition of the components tree I, there
is an f-to- fs path for each f € A where the level of each face monotonically decreases.
However, since neither f nor f. is enclosed by R, this path must cross the boundary
of R at least twice and an even number of times. In particular, the path must contain
at least two edges on the boundary of R.

By construction, a face is in R if and only if its closest ancestor in 7'* incident to an
edge of X(K;) is in R. Contrapositively, a face is not in R if and only if it has no ancestor
incident to an edge of X(K;) or if its closest ancestor incident to X(K}) is not in R. All

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

Short and Simple Cycle Separators in Planar Graphs 2.2:21

faces in R are descendants in 7'* of some face in K. If two faces are not descendants of
any face in Kj, then the unique path in 7* connecting them does not enter R. As such,
faces not in R with no ancestor incident to an edge of X(K;) are connected to f,, outside
of R. Such faces, by definition, are not in A. Thus, each face in A has some ancestor in A
and not in K; but incident to an edge of X(K;). This means that there is some face f € A
incident to an edge of X(K;) and thus with level iy — 1.

All faces of A are within Kj since Kj is bounded by a simple cycle and R is entirely
within Kj. Thus, the first time a level-monotone f-to-f, path encounters an edge
bounding R, it is not an edge of X(Kjy); in particular, since R’s boundary is a subset of
the edges of F' by construction, it must be a level i, edge. This precludes any f-to-fy
path from having monotonically decreasing levels, raising a contradiction. Thus, R
must be bounded by a simple cut and by Fact 1 its boundary is a simple cycle. O

We have shown that the cycle returned by the algorithm is simple. We next argue
that this simple cycle is a short balanced separator.

LeEmMA A.2. The simple cycle returned by the algorithm is 3/4-balanced.

Proor. Clearly, the cycles returned in lines 3, 14, or 17 are balanced separators. It
only remains to argue that if line 18 is reached, then there exists an r such that K; U
U1<p<, Hr1s 3/4-balanced. By construction of T', the fundamental cycle of e with respect
to T is enclosed by X(Kj). Since this fundamental cycle is a balanced separator (albeit
not a short one), this implies that w(K;Ul J; _,., Hr) = W/4. Since the condition in line 17
is false, w(H;) < W/4 for each 1 < k < ¢. Furthermore, by choice of i, w(K;) < W/4.
Hence, an appropriate r must exist. O

LemMA A.3. If m > 18, the forest F consists of at most ~/2m — 2 edges.

Proor. Each edge of F either has level i_ or level i,.. By construction, each of the

levelsi_ and i, consists of at most /m/2 edges. However, F' cannot include all edges of
either level as the edges on each level form at least one simple cycle in the primal. As

such, F has at most 2(,/m/2 — 1) = ~/2m — 2 edges. O

Lemma A.4. Suppose r is an arbitrary vertex of X(Ky) and let u be a vertex in Ky
incident to a face f with level less than i.. The r-to-upath in T consists of at most \/m/2+

2 edges that do not belong to F and at most \/m/2 + 1 edges if F contains at least \/m/2
edges.

Proor. By definition of face levels, there exists a face f’ that is incident to X(K;) and
whose distance in the dual graph from f is at most i, —i_. Since each face is a triangle,
this implies that there exists a path in G from u to some vertex v of X(K;) whose length
is at most [(i; —i_)/2]. Since T is obtained from F' by breadth-first search, the v-to-u
path in T consists of at most [(i; —i_)/2] edges not in F. F connects all of X(Kj), so
there is an r-to-v path using only edges of F.

It remains to bound i, — i_. Since the cycles bounding different components are

edge disjoint, and since every level strictly between i and i, consists of at least \/m
edges, (i; —i_ — 1)y/m/2 < m — |F|. This shows that i, —i_ < ~2m — |F|/\/m/2 + 1.
Hence, the root-to-u path in T' consists of at most [(v/2m — |F|/M+ 1)/2] < \/rm —
LIF|/y/m/2) + 2 edges that are not in F. O

Lemma A.5. The boundary of Hp, 1 < k < {, consists solely of edges of F, with the
exception of a single edge of X(K;) notin F.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

2.2:22 E. Fox-Epstein et al.

Proor. Hj, is defined to be the subtree T} for some edge e’ € X(K;). By Facts 1 and 2,
the boundary of H, is the fundamental cycle of e’ with respect to T'. Let u and v be the
endpoints of ¢’ in G. Since u and v belong to X(K;), v and v must belong to the same

component of F. Therefore, the path in T' between u and v must consist only of edges
of F. O

TuEOREM A.6. The algorithm returns a 3/4-balanced simple cycle separator with at
most «/8m edges on graphs when m > 29.

Proor. Lemma A.1 shows that the cycle returned by the algorithm is simple.
Lemma A.2 shows that it is a 3/4-balanced separator. It remains to bound the length
of the cycle.

The cycle returned in line 3 consists of at most v/8m edges by definition.

Root T' at an arbitrary vertex of X(K,). The fundamental cycle returned in line 14
consists of at most all the edges in F plus all the edges not in F along the two paths from
the endpoints of e to the root of T'. Since e is within Kj but not within K;, 0 <i < q,
its endpoints are both incident to faces with levels less than i,. Using Lemmas A.4

and A.3, this is at most (/m/2 — 1) + 2(/m/2 + 2) in the case when |F| < /m/2 and

(vV2m — 2) + 2(/m/2 + 1)) otherwise. In either case, this is at most +/8m when m > 29.
Suppose line 17 returns the boundary of H,. By Lemma A.5, all except one edge

bounding H; is in F. F’s size is at most +v2m — 2, so H,’s boundary has at most

v2m —1 < +/8m edges.

An overestimate on the edges of a cycle returned in line 19 is the set of all edges
bounding any H, or K;. By Lemmas A.5 and A.3, this totals |F| + | X(K;)| < vV2m— 2+
vm/2 < v/8medges. O

ACKNOWLEDGMENTS

This work originated from MIT course 6.889 on “Algorithms for Planar Graphs and Beyond.” The authors
would like to thank Erik Demaine and Philip Klein for fruitful discussions. Additionally, we thank David
Eisenstat and Philip Klein for providing us with their planar graph library.

E.F. was partially supported by NSF grants CCF-0964037, CCF-1409520, and CCF-9640347. C.S. was
partially supported by the Swiss National Science Foundation. S.M. was partially supported by National
Science Foundation grants CCF-0964037 and CCF-1111109, and by an Israeli Science Foundation grant
ISF-749/13.

REFERENCES

Lyudmil Aleksandrov, Hristo Djidjev, Hua Guo, and Anil Maheshwari. 2007. Partitioning planar graphs with
costs and weights. ACM Journal of Experimental Algorithmics 11, Article 1.5 (Feb. 2007). Announced at
ALENEX 2002.

Lyudmil Aleksandrov and Hristo N. Djidjev. 1996. Linear algorithms for partitioning embedded graphs of
bounded genus. SIAM Journal on Discrete Mathematics 9, 1 (1996), 129-150.

Noga Alon, Paul D. Seymour, and Robin Thomas. 1990. A separator theorem for nonplanar graphs. Journal
of the American Mathematical Society 3, 4 (1990), 801-808. Announced at STOC 1990.

Punyashloka Biswal, James R. Lee, and Satish Rao. 2010. Eigenvalue bounds, spectral partitioning, and
metrical deformations via flows. Journal of the ACM 57, 3 (2010), 13:1-13:23. Announced at FOCS 2008.

Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-Nilsen. 2011.
Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear time. In 52nd
IEEE Symposium on Foundations of Computer Science (FOCS’11). 170-179.

Sergio Cabello. 2012. Many distances in planar graphs. Algorithmica 62, 1-2 (2012), 361-381. Announced
at SODA 2006.

Camil Demetrescu, Andrew V. Goldberg, and David Johnson. 2006. 9th DIMACS Implementation
Challenge—Shortest Paths. (2006). http:/www.dis.uniromal.it/challenge9/download.shtml; accessed
October 21, 2012.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

http://www.dis.uniroma1.it/challenge9/download.shtml

Short and Simple Cycle Separators in Planar Graphs 2.2:23

Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson. 2008. Implementation challenge for shortest
paths. In Encyclopedia of Algorithms, Ming-Yang Kao (Ed.). Springer-Verlag New York.

Ralf Diekmann and Robert Preis. 1998. (1998). http:/www2.cs.uni-paderborn.de/fachbereich/AG/monien/
RESEARCH/PART/GRAPHS/FEM2.tar; accessed October 21, 2012.

Hristo N. Djidjev. 1982. On the problem of partitioning planar graphs. SIAM Journal on Algebraic Discrete
Methods 3, 2 (1982), 229-240.

Hristo N. Djidjev. 1985. A linear algorithm for partitioning graphs of fixed genus. Serdica. Bulgariacae
Mathematicae Publicationes 11,4 (1985), 369-387. Announced in Comptes Rendus de I’Académie Bulgare
des Sciences, 34:643-645, 1981.

Hristo N. Djidjev and Shankar M. Venkatesan. 1997. Reduced constants for simple cycle graph separation.
Acta Informatica 34 (1997), 231-243.

Jittat Fakcharoenphol and Satish Rao. 2006. Planar graphs, negative weight edges, shortest paths, and near
linear time. Journal of Computer and System Sciences 72, 5 (2006), 868—889. Announced at FOCS 2001.

Lamis M. Farrag. 1998. Applications of Graph Partitioning Algorithms to Terrain Visibility and Shortest
Path Problems. Master’s thesis. School of Computer Science, Carleton University.

Eli Fox-Epstein, Shay Mozes, Phitchaya M. Phothilimthana, and Christian Sommer. 2013. Short and simple
cycle separators in planar graphs. In Proceedings of the Meeting on Algorithm Engineering & Expermi-
ments. Society for Industrial and Applied Mathematics, 26—40.

Greg N. Frederickson. 1987. Fast algorithms for shortest paths in planar graphs, with applications. SIAM
Journal on Computing 16, 6 (1987), 1004-1022.

Hillel Gazit and Gary L. Miller. 1990. Planar separators and the Euclidean norm. In SIGAL International
Symposium on Algorithms. 338-3417.

John R. Gilbert, Joan P. Hutchinson, and Robert E. Tarjan. 1984. A separator theorem for graphs
of bounded genus. Journal of Algorithms 5, 3 (1984), 391-407. Announced as TR82-506 in
1982.

Michael T. Goodrich. 1995. Planar separators and parallel polygon triangulation. Journal of Computer and
System Sciences 51, 3 (1995), 374-389. Announced at STOC 1992.

Monika R. Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian. 1997. Faster shortest-path
algorithms for planar graphs. Journal of Computer and System Sciences 55, 1 (1997), 3-23. Announced
at STOC 1994.

Martin Holzer, Frank Schulz, Dorothea Wagner, Grigorios Prasinos, and Christos D. Zaroliagis. 2009. Engi-
neering planar separator algorithms. ACM Journal of Experimental Algorithmics 14 (2009), 5:1.5-5:1.31.

Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. 2011. Improved algo-
rithms for min cut and max flow in undirected planar graphs. In 43rd ACM Symposium on Theory of
Computing (STOC’11). 313-322.

Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Sommer. 2011. Linear-space approximate distance
oracles for planar, bounded-genus, and minor-free graphs. In 38th International Colloquium on Au-
tomata, Languages and Programming (ICALP’11). 135-146.

Ken-ichi Kawarabayashi and Bruce A. Reed. 2010. A separator theorem in minor-closed classes. In 51s¢
IEEE Symposium on Foundations of Computer Science (FOCS’10). 153—-162.

Jonathan A. Kelner. 2006. Spectral partitioning, eigenvalue bounds, and circle packings for graphs
of bounded genus. SIAM Journal on Computing 35, 4 (2006), 882-902. Announced at STOC
2004.

Philip N. Klein and Shay Mozes. 2013. Optimization Algorithms for Planar Graphs. http://www.planarity.org.
(Forthcoming). Accessed April 2013.

Philip N. Klein, Shay Mozes, and Christian Sommer. 2013. Structured recursive separator decompositions
for planar graphs in linear time. In 45th ACM Symposium on Theory of Computing (STOC’13). 505-514.

Philip N. Klein and Sairam Subramanian. 1998. A fully dynamic approximation scheme for shortest paths
in planar graphs. Algorithmica 22, 3 (1998), 235-249. Announced at WADS 1993.

Richard J. Lipton and Robert E. Tarjan. 1979. A separator theorem for planar graphs. SIAM Journal on
Applied Mathematics 36, 2 (1979), 177-189.

Richard J. Lipton and Robert E. Tarjan. 1980. Applications of a planar separator theorem. SIAM Journal on
Computing 9, 3 (1980), 615-627. Announced at FOCS 1977.

Jakub Lacki and Piotr Sankowski. 2011. Min-cuts and shortest cycles in planar graphs in O(nloglogn) time.
In 19th European Symposium on Algorithms (ESA’11). 155-166.

Gary L. Miller. 1986. Finding small simple cycle separators for 2-connected planar graphs. Journal of
Computer and System Sciences 32, 3 (1986), 265-279.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

http://www2.cs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/GRAPHS/FEM2.tarhttp://www2.cs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/GRAPHS/FEM2.tar
http://www2.cs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/GRAPHS/FEM2.tarhttp://www2.cs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/GRAPHS/FEM2.tar
http://www.planarity.org

2.2:24 E. Fox-Epstein et al.

Shay Mozes and Christian Sommer. 2012. Exact distance oracles for planar graphs. In 23rd ACM-SIAM
Symposium on Discrete Algorithms (SODA’12). 209-222.

Shay Mozes and Christian Wulff-Nilsen. 2010. Shortest paths in planar graphs with real lengths in
O(nlog? n/loglogn) time. In 18th Annual European Symposium on Algorithms (ESA’10).

Serge A. Plotkin, Satish Rao, and Warren D. Smith. 1994. Shallow excluded minors and improved graph
decompositions. In 5th ACM-SIAM Symposium on Discrete Algorithms (SODA’94). 462—470.

Bruce A. Reed and David R. Wood. 2009. A linear-time algorithm to find a separator in a graph excluding a
minor. ACM Transactions on Algorithms 5, 4 (2009), 39:1-39:16. Announced at EuroComb 2005.

Daniel A. Spielman and Shang-Hua Teng. 1996. Disk packings and planar separators. In 12¢th Symposium
on Computational Geometry (SoCG’96). 349-358.

Robert E. Tarjan. 1975. Efficiency of a good but not linear set union algorithm. Journal of the ACM 22, 2
(April 1975), 215-225. DOI : http://dx.doi.org/10.1145/321879.321884

Peter Ungar. 1951. A theorem on planar graphs. Journal of the London Mathematical Society s1-26, 4 (1951),
256-262.

Freek van Walderveen, Norbert Zeh, and Lars Arge. 2013. Multiway simple cycle separators and I/O-efficient
algorithms for planar graphs. In 24th ACM-SIAM Symposium on Discrete Algorithms (SODA’13). ACM,
901-918.

Karl G. C. von Staudt. 1847. Geometrie der Lage. Bauer und Raspe, Nurnberg.

Hassler Whitney. 1932. Non-separable and planar graphs. Transactions of the American Mathematical So-
ciety 34, 2 (1932), 339-362.

Christian Wulff-Nilsen. 2011. Separator theorems for minor-free and shallow minor-free graphs with appli-
cations. In 52nd IEEE Symposium on Foundations of Computer Science (FOCS’11). 37-46.

Received April 2013; revised May 2016; accepted June 2016

ACM Journal of Experimental Algorithmics, Vol. 21, No. 2, Article 2.2, Publication date: September 2016.

http://dx.doi.org/10.1145/321879.321884

