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Overview

e Existing methods for comparing the survival of two groups are
generally ineffective against differences in hazard occurring in a
few time instances when those instances are unknown to us in

advance

e We propose a method that is effective against such differences
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7 853 24 841 17
8 829 23 823 16
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The goal of the analysis:
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Determine whether the treatment has a non-null effect.



The Log-Rank Test

o Mantel-Cox log-rank test [mantel 1966]

EVALUATION OF SURVIVAL DATA AND TWO NEW RANK ORDER
STATISTICS ARISING IN ITS CONSIDERATION'

Nathan Mantel?

roF] Evaluation of survival data and two new rank order statistics arising in its
consideration

N Mantel - Cancer Chemother Rep, 1966 - medicine.mcgill.ca

Survival-time patterns should be compared properly in their entirety rather than at isolated

points only. Such overall comparison would require a value function for rating particular

durations of survival, but no such function exists. A chi-square procedure is proposed for

comparing two sets of life-table data in their entirety. The implicit value function for the pro

cedure is reasonable in that it gives greater weight to earlier deaths. By considering the case

in which the life-table intervals are arbitrarily short, it is seen to be essentially a rank order ...
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The Log-Rank Test
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The Log-Rank Test

Control (X) Treatment (Y)
at risk events | at risk events [ total J[ GroupX [ GroupY |
/—’Kﬁ
: : : ; ; = M ne(t—1) | ny(t—1)
t nx(t—1)  ox(t) ny(t—1)  oy(t) k ox(t) oy (t)

H07t : Oy(t) ~ HyG(M, K7 f?)
p(t) :==E[Oy(t)|Hoel,  V(t) = Var[Oy(t)|Ho,]

_ X (0(t) — u(t)
Y V)

LRT :

LRy ~ N(0,1)  under the global null



e The log-rank test:




The Log-Rank Test (cont'd)

e The log-rank test:

LR, o 2t (0 (0) — p(0)
S V()

© Can accommodate censorship

<) Asymptotically equivalent to the likelihood ratio test in a
proportional hazard model [Breslow 1977]

= Not sensitive to excessive hazard localized in time



The Log-Rank Test (cont'd)

e The log-rank test:

LR, o 2t (0 (0) — p(0)
S V()

© Can accommodate censorship
<) Asymptotically equivalent to the likelihood ratio test in a
proportional hazard model [Breslow 1977]
=2 Not sensitive to excessive hazard localized in time
e Non-homogeneous Log-rank [Tarone & James 1977], [Lee 1996], [Liu et. al.
2022]

© Can be sensitive to non-proportional hazards, but
2 Not useful when time instances of excessive hazard are apriori
unknown
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instances such that we do not know in advance where those
instances might be



Survival Data with sparse and weak hazard departures

Our goal:

Attain sensitivity to excessive hazard localized in a few time
instances such that we do not know in advance where those
instances might be

Use cases:

o |dentifying age-specific effects [Nuzhdin, Khazaeli, Curtsinger, 2005)

e Analyzing the effect of bursty “space weather” radiation on
radioactive decay [castro-palacio et. al. 2020]
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HCHG has two steps:



Proposed method: Higher criticism of hypergeometric P-values
(HCHG)

HCHG has two steps:
1. Many exact hypergeometric (HG) tests:

pt := Pr[HyG(M, K, R) > o,(t)], t=1,...,T,

M=n(t—1)+n,(t—1), K=ny(t—1), R=o0x(t)+0y(t)



Proposed method: Higher criticism of hypergeometric P-values
(HCHG)

HCHG has two steps:
1. Many exact hypergeometric (HG) tests:

pt := Pr[HyG(M, K, R) > o,(t)], t=1,...,T,

M=n(t—1)+n,(t—1), K=ny(t—1), R=o0x(t)+0y(t)

2. Global testing with Higher Criticism (HC):

— e VT PO
HC := HC(py,...,pr) := max VT TRIE0



Proposed method: Higher criticism of hypergeometric P-values
(HCHG)

HCHG has two steps:
1. Many exact hypergeometric (HG) tests:

pt := Pr[HyG(M, K, R) > o,(t)], t=1,...,T,

M=n(t—1)+n,(t—1), K=ny(t—1), R=o0x(t)+0y(t)

2. Global testing with Higher Criticism (HC):
i/T— P
HC := HC(py, . ..,pr) := max VT ———u0
(PP = N T =)
Notable properties of HCHG:

e Can accommodate censorship
e More sensitive than log-rank when instances of excessive risk

are sparse and weak (later)
e Has a built-in mechanism to identify instances of excessive risk..



Identifying instances of excessive risk

o |dentifying instances of excessive risk via HC thresholding
[Donoho & Jin 2008, 2009]:

T
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Analysis under Sparse and Weak Effect Model

o Piece-wise exponential decay model [reigl & zelen 1965], [Friedman 1982]:
Nx(0) =xo,  Ny(0) = Yo
fort=1,...,T

{ox<t> ~ Pois(Ny(t — 1)A«(t)) {oym ~ Pois(N, (t — 1)A,(t))
N(t) = Ny(t — 1) — Ox(t) Ny (t) = Ny (t = 1) — Oy (t)
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fort=1,...,T

{ox<t> ~ Pois(Ny(t — 1)A«(t)) {oym ~ Pois(N, (t — 1)A,(t))
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e Non-homogeneous hazard alternative:
Ho = Ac(t) = Ay (1), vt

R A (1) w.p. 1—¢
1= (\/;\X(t)—i—«/é(t))z w.p. €

e Sparse and weak calibration:
- Individual effects are sparse: e =T~ €(0,1)
- Individual effects are weak: 6(t) is small...



Analysis under Sparse and Weak Effect Model (cont’d)

e Individual effects are weak:
conditioned on ny(t — 1), ny(t — 1), nx(t) + oy(t), hypergeometric
P-values of non-null instances are asymptotically
log-chisquared with a moderate location shift:

~2log(p) & (M(V/7oa(T).1) . 10

[Kipnis 2023], [Donoho & Kipnis 2023]
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Analysis under Sparse and Weak Effect Model (cont’d)

Theorem

HCHG is asymptotically powerful if

2(7 —1/2)
r>p() = 2(17\/1f)2

and asymptotically powerless if r < p(/7)
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Analysis under Sparse and Weak Effect Model (cont’d)

Theorem

HCHG is asymptotically powerful if

2(8—1/2
> ol >={2((1 i

and asymptotically powerless if r < p(/7)

IN[JCRII
IN A

e p(/) is the two-sample sparse normal means phase transition
curve [ponoho & kipnis 2023]. p(/7)/2 is the sparse normal means
phase transition curve [ingster 1997], [Jin 2003], [Donoho & Jin 2004],
[Mukherjee et. al 2015], [Arias-Castro & Wu 2015, 2018], [Jin & Ke 2016]...
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Analysis under Sparse and Weak Effect Model (cont’d)

Theorem

HCHG is asymptotically powerful if

2(8—1/2
> ol >={2((1 i

and asymptotically powerless if r < p(/7)

IN[JCRII
IN A

e p(/) is the two-sample sparse normal means phase transition
curve [ponoho & kipnis 2023]. p(/7)/2 is the sparse normal means
phase transition curve [ingster 1997], [Jin 2003], [Donoho & Jin 2004],
[Mukherjee et. al 2015), [Arias-Castro & Wu 2015, 2018], [Jin & ke 2016]...

Also, when 8 > 1/2,

e Log-rank is asymptotically powerless

e Fisher's combination statistic of HG P-values is asymptotically
powerless
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Asymptotic Power and Phase Transition
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Empirical Phase Transition

Empirical power* of HCHG

21--- 0()
— r()

r (intensity)

0.5 0.75 0.95
(sparsity)

* at level a = 0.05

Empirical power* of log-rank

0.5 0.75 0.95
(sparsity)
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Empirical Power Comparison

Significant* empirical power* difference

2 — ]
' I I B B B |
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I HCHG is better
B LR is better

1.5

1

r (intensity)
I

0.5

0.5 0.75 0.95
(sparsity)

* at level a = 0.05
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Demonstration for Real Gene-Expression Data

SCAN dataset [Saal et. al. 2015]2

e 3,069 breast cancer patients

e Expression level of 8,702 genes

We partitioned each gene by its median expression level; yields

2 x 8,702 Control/Treatment assignments

We consolidated events into ~ 21 day intervals (originally,

t € [56,2474] days)

Example:
| Gene name: ADSS |

Below median (X) | Above median (Y)

t at risk events at risk events

0 1534 0 1535 1

1 1534 1 1534 1

2 1533 0 1533 0

3 1533 2 1533 1

97 | 703 0 665 1

98 | 693 0 653 0

99 | 686 0 645 0

15




8702 genes

m HCHG m log-rank

Figure 1: Number of genes with expression levels significantly? associated
with survival according to HCHG(m) and log-rank (m)

Tat level o = 0.05
2at level o = 0.05
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Demonstration for Real Gene-Expression Data - Results (cont'd)

Gene Name  HC(P-value)  Log-rank (P-value)  Increased Mortality
DCK 0.00010 0.35505 > mec
ADSS 0.00005 0.0633 mec
KCTD9 0.01284 0.33369 > mecC
VAMP4 0.01271 0.20006 > med
TMEM38B 0.02857 0.41772 med
HIST1H3G 0.02725 0.39828 < med
SIGMAR1 0.01180 0.16812 < med
POLDIP3 0.04683 0.33744 < med
SMG9 0.03775 0.22874 < med
FBXL12 0.01266 0.05641 mec
BTNL8 0.03934 0.05110 < med

Table 1: Some genes in which HCHG identified a significantly lower survival

rate in one group than the other while log-rank failed to do so.
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Demonstration for Real Gene-Expression Data - Results (cont'd)

ADSS: p(HC) = 5e-05, p(LR)=0.0633

proportion
°
®
[

0.80 -

2 60
t[Time]

— 5

t n(t—1)

56.00 1203.00
62.00 1120.00

ny(t—1)  ox(t)
1187.00 0.00
1101.00 0.00

oy(t) P
8.00 0.00
7.00 0.01
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Demonstration for Real Gene-Expression Data - Results (cont'd)

0.95 -

proportion
° o
3 3

o
3

0.75-

AGT: p(HC) = 0.0002, p(LR)=0.0393

20

t[Time]
t nx(t—1)  ny(t—=1) ox(t) oy(t) Pt
9.00 1524.00 1528.00 0.00 5.00 0.03
38.00 1412.00 1404.00 0.00 5.00 0.03
49.00 1281.00 1275.00 0.00 5.00 0.03
50.00 1271.00 1261.00 0.00 5.00 0.03
66.00 1069.00 1041.00 0.00 5.00 0.03
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Demonstration for Real Gene-Expression Data - Results (cont'd)

SCYL3: p(HC) = 0.0002, p(LR)=0.0223

—
095 — 5
Sy
c 0.90
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g oss
19
2
o
0.80
0.75-
0.70 i 0 . . . i
0 20 40 60 80 100

t[Time]

t n(t—=1)  ny(t—1) 0x(t) 0y(t) pt

29.00  1500.00 1475.00 0.00  6.00 0.01
35.00  1454.00 1439.00 0.00  6.00 0.02
62.00 1111.00 1116.00 0.00 7.00 0.01
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Summary

e HCHG is based on:

1. Many exact hypergeometric tests
2. Global testing with Higher Criticism

e HCHG is sensitive to sparse and weak deviations of
non-proportional hazard

e Theoretically: more powerful than existing methods in exponential
decay sparse and weak hazard departures setting

e Empirically: finds many discoveries not reported by the log-rank
test
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The end.

proportion

ADSS: p(HC) = 5e-05, p(LR)=0.0633

40 60

— S,

t [Time]
tondt-1) n-1) o) o) p
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